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Fig. 1.1 Relationship between vehicle weight and fuel efficiency [1]
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Fig. 1.2 Relationship between vehicle weight and CO? emission [1]
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Table 1.3 Microstructuring methods on metal surface by laser processing

(a) DLAMP? (b) Laseridge®® (c) Periodic microstructures®- 39 (d) Periodic nanostructures®”

Process Melt Evaporation Ablation
Laser CW ':Lallr; Zzeg::: Femto-nanosecond pulsed laser
Technology 23 . Periodic Periodic
) 22)
name DLAMFE Liesandge microstructures?®3) | nanostructures?®)

Topography

o ,vd :

microstructure |~ @

100 pm
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Z > 100 Jem? 2 DFEISIC 5T, R5ET T 10000 K LA Ric7e 2 2 e 3T v 2 %
7= EEBRCHE TN T\ 3([33-36], $72, 2SR 10ns HiETT 7L —3 a VERffIC
(a) (b) (c)

Confinement
Pulsed laser by ambient gas
NP
Al uster
Laer-induced ﬁg‘r?m A /(1::- R ’?/
plume ===/ Electron ~ "“ . T

Metal 3;@1@ \/

Fig. 1.9 Behavior of laser-induced plume in ambient gas by nanosecond laser irradiation.

(a) Plume formation, (b) increase in plume temperature by laser-plume interaction, and (c) adiabatic

expansion and cooling by ambient gas.
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WL CHIE L —F = A L F 2N E 0 10 J/em? FiE OIS IC B W TIE, =y 7 vz fnizE
Bk 7 — L DMREED 4000 K 2> 5 10000 K 551272 5 T & A3 T 5[37,38], % 7z,
Smijesh 13 =Y 7 LKL Tns DF /L —FERBE L ZBICtE S 3 7 — Ah o
TORT - A F v ORNIWEFMIAT-oTEDY, 14J/em? IZEDL —F T AL FTlEL —
PG 100ns TIE= v 74 & VIFFEEE T, 10km/s B O#EE T= v 7 VRT3
IND T LG TN T 539,40,

152 L—¥HFR SNV — oI & 2EERLF /) BT DR

L—FHRSFIC X VFRI N TV — 22 BRKREICHE S 2 2 8T, L—FRHOH
K 2R HfEFAE LT, v—FRE X =MENCHsk L 72L& & i 2 iR E
10 nm Hifg D F / K F %2 BT 2MHE B TTHOILT» 5,

L—HFHR SN — L BBAICERA L2 —FMT e LTk, re—L—F%2HWn<
i & DA RN U BRI % 3 72 EBERDS 1965 £ I THE S N T 3[41], % D,
1980 4EfR % H- I IR TR E AR O B A 7z & LT & 0 [42], BEREMEEIE 2 - / RiT7x
CoMERIEZ HIWICS H £ TIEFR IS TOI TE T b, #EPRIZ SV AL —F
HEF&iE (PLD, Pulsed laser deposition), 7/ R FAEIZ L —F T 7L —v a VikicaI R,
PLD ¥5H, F /7 KiFAERIZ5HHE D L < IZRMHEREE TfTH 4 5, Fig. 1.10 IC PLD O#fig[X]
%9, Fig. 1.10 IC/R 3 X 5 IC PLD Tl, HEZEBREL T Ot L — FHASTRE & Foi % 5o i fid
EL, VAL =S N — PR S - B - IR L 72 L — R
N— LHRFER KR ICHERE ¢ 2 2 L X 0 B B IicEESER S B,

Vacuum chamber

Pulsed laser

Substrate

Laser- /
induced ;
plume \

Specimen

Fig. 1.10 Pulsed laser deposition (PLD)
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153 L—¥FHE SNV — L DRTTEENC & 2 F / HREEEDOTE

L —HHL TN — IR TR EHR AT 2 & offig2ic X Y =TI L TR, o
T WL — IREMRIR A~ & 2 D EESRAET L 2 E BRI LN TV 5[43-45], L—F
FHC 70— LD ITIEB)C K U 7z L — IR PORIER I I A S L 2R idh < 205
BRI TEY, ROEFUWRELLOMTIDETCIR [F7Y] 2 [Fey 7Ly ] &
LT, L—¥IMLoHKE T 2MEMortEzHiE T 2b 08 LTifibhTE 7,

TRICH LT PLD ®F /M TAERKDO DB TIX, L—¥FR TV —20%hEH %2R L
T HEE R OTERKIC D W T2 T T w5, AR Z B SR o T 75 171 & i 2 72 4RBE©
IE L, L—YIREm e E—FRICkES % 2 & T, Fig. 1.10 I3 L7z & 5 7oy 7 &
WRELE X 0 b PR ECR RS E > T 2B T 2RI LT3, PLD Tit
1992 HIC Kennedy 5 IC & 0 EREFESIRE I [46], EKHPEZET 2 doicEE L > 7 KT
DIEEICBE L TR Th T W B[47], L —FFHEL 7 — L D% 58S % R L 72 PLD &
ek PLD & ZXHl3 5 729 1C, Szorenyi bt Z DAL /7L % Inverse pulsed laser
deposition (IPLD) & METF, 2~50 Pa O HEZE N T Si @O K FEE % 1T > T\ 5[48-50], %
7z Lin b |% Backward plume deposition (BPD)& #i L, 10~1000 Pa DIREZE % 7z (I EZE [ C
Fe %\ 72 i FEER % 2 L2 1T - T 5 [51,52],

KAWL DI HF T, (REZE20 5 KAUEEREE T2 B W TR RS L — 3 2 B L 72 B8
I, L— RS ORI IC L —FFHE TN — ZHER OISk & B F ) HEHER ST X
N3 Z & Pereira HIC X YRR X T 5[53-56], Fig. 1.11 ICfKEZED & KAEBREE T i
BV —HFETN— L DEERZ 727 BRSNS % 7R3, Fig. 1.11(a)
Da-llICRT LIS, L—FeREOHAMERICI Y L —FFE TN — L2358 T 2 23, Fig.
L11(a) ® a2 IR T X HIC, RARFMYOGEEN T TlE, MEDFHRARICE Y L—F
FHEL T — LD FFICEA LA b, % LT Fig. 1.11(a) D a3 IR $ X9, BALA
Do TN —LDBFEENICX ) L—FFER I — L L RBRRASHEFRZREC L,
Fig. 1.11(b) 1T F & S iC b — FRNTHIE O FFIC )/ SR AT I N5 2 L B3Rk I

(@) (b) Nanostructure
Pulsed laser formation area
Laser

irradiated are
a-2 Ambient gas

Laser-induced
plume \

AN

b Nanostructure
\* , formation area

Fig. 1.11 Backward pulsed laser deposition.
(a) Schematic, a-1 laser-metal interaction, a-2 plume-ambient gas interaction, a-3
plume-metal interaction, and (b) top view.
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T3, RABEICLY, BRI N 2HERIT, Bom 4 XORF2REE L -fETh 5
TENRBREINTEY, 7V — LTI 728 nm 3 4 XOR T2 EHER R CBHE T 5
TETIEEEINEZIDLINT VS, 2D b, oM ZHIET 2 2 & cF / Hk
MEREERCE 2R D 2 L E X 72, 72, COBREFAL L —F 25T 2
LT, L—VHRENEEE X ORF IR 22 LEF I ) 2 G 2 TR T
%2 L QAR T & 3, Fig 1.12 IKi@5I8EHC X 2 F  HIREEE RO K 7' 0+ 2 7R §, Fig.
1.12(a) ISR &5, R5IBHOEA, V—FDBFED Y y FRIE TR IS, ErlE
oG, /7 RS L — FIRETEEIC IR X 0971 L — IS A PR X
N3 23, Fig. 1.12(b), (c), K UNd) ISR X5 ICiRBIlBE %235 2 & T, HiEoL—Ficky
FHEINT TN — LD ERZ T, L —FRPEEEIC S - GG 2T 5 2 &2
TEHLEZOLND,

itoC, RFEEEZHSZ LT, HEETIHMOBIESEZRS CBWTERE RS, F/
FRREE AR % RTINS C & 2 R[REMEDS B 2 B 2 T2, $7-, BEEEAZLEL LAWK
SERBECIN L2175 & L BHkIE, FEENZRARED KE W,

Z TR T, L—¥FERI N — L 0%EE) 2 i) SR OB TFiEE [
J78V A L —HHERGER, Backward pulsed laser deposition (BPLD)] & #R L, Hid®E m, FF
ICPER Ny =Y R E LSRR RO BMEEADDIC, BIT VAL —FHEE
FExHCCH R EROREHIE T L & L,

KFEZBMEEE ST 2720121, 7 /7 HIREEER O TE RS %2 B L, & Ic sl
L3 F NG EOMINE I KX, vy, KOTEREEZHIE S 3 0 ES D B, B
R IC DWW T, EPEZE N CfTbis PLD 7 / K1 O 4B O TR 13 P SR HE
FRICHET 22BN T3, b PLD 7 /KoL, v —¥iFE 7 L— L4
DIFIR L HZ2IC X Y 7L — L ORI T 38 L [47,57), KL 723 R FE I ~HERE 3 2 © & it

() Pulsed laesr

Scannig direction - plume

Specimen
(b)  puised laesr (©) (d)

Laser-induced
plume

Nanostructure }---—-""""- ~

 Nanostructure

| H \ /_/ | ’__.m’m.._L / y ¥

Fig. 1.12 Wide area formation process of nanostructure by scanning laser irradiation.
(a) Overview, (b) 1% pulse, (c) 2" pulse, and (d) 3 pulse.
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14358, — /T, KEZETEZRKALCET BB VAL —FHEECIR, FHKA
JEJ1 %o Aff, L —FIREREEIC XY F BEROTBENZT 5 3 rkIhTtE Y,

PLD %L [FAIRRIC L —FFHlE 7 v — 2k L 72001 D HAMR_E o RIAHEELDS T /7 Wik o
REICHG LT W3 T EARBINTWAB[51,52,55], LaL, TEEEERE ICoWTiz+icif
LAICTE o TWe\y, TNE TOWRICE T 5 HhE RO R X, K b OB R,
MBI ATETH Y, FHMATERIZHS 221k > TE ST, MIMBIRCTEREFH 2 & DIIR
FIENCEE M 2 Y TRgED ST v, AT, ik & OREOSEMENT X 285 13
HDHHbo0, HEFNEE Ny F—YCALfEHINSE =y ek L iz F / iz iy
FCRTRED> &5 2293 0> T Fr by,
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154 L—¥FFH RSN — 4 L EEREOMHE A

Hiffici~7- X 5 1c, BTSNV A L —FHERIEIC X 0 F 7 HIREERZ BT % 7291
1, 7/ HEREEROI B EREL, v —¥, &8, L—¥HEIv— L4, FHEATA
ZNENDOIMLAT A =2 OHANFHOFEZHLICT 5 EREEL RS, KREITIHE,
BTSN AL —FHERGEICB T 3L —HHRE T — L L EEEHOMEIEM 2, PLD L I[H
BRI SAHHERE IR IC 5 ) 2 BIEO BB I3 % L & 2, BRGNS X ORI o
TEIC O THRE 21T 2 72,

IR D BB 13 2 O FIEMTFE L, W & S, 2 oftic KAl & 05 [59,60]. #AH
FICED o ZL AT, BAD Y, LA KA 2 ORI L < — 2k
HEHDATRETH 2 &\ S FEE Fio, — /7T, SMHIEIZ X o IcY B SHHHERG L (PVD ¢ Physical
vapor deposition) & L2 5AHHERE R (CVD @ Chemical vapor deposition) [C/¥HE 15, PVD
ZE A2 RO JFRHC v, B BEREDO T AL FIT X W EF - Sfb e e H T2
T 7 I RZ—FHONTRIERICHE S ¢ 2 2 & CHESEK S S, LT CVD T,
JERI T % &0 7T A R HARFI LG E ¢ % 2 & TR TTD IS, PVD DfREN A
FHRITIFFEEC ANy A% T b, CVD IREACVD 7' 7 X~ CVD &\ o 7= FIEDFELE
5, HiETiR~7z X 51T, PLD ZL —FHSHIC X W MRIERH» SRR S e 7 v — Lrh
DT % RN ST 5 729, PVD ICB L 72 L TH B[58], 2D &H 56, A
eI D BTN AL —FHERRE IC B ) 5 F  BEER OIS, PVD T2 T et
ATHBEE T,

PLD ® 7 v X%, L—¥FHRYHC X 3EEMEIOL —FFE TN —LDFAE, Tr—24
HOJHT - 5+ F 7 KT EDOFMR~ Dk, HA~DFROHER D 3 > DFEfRIc X 17
b, L—FRE DR LIC X Y BEE I LSO R AT 2 o IR O TR HER
Rcfrbh, BEOIRICITER % R T 2 KO &M Lo RMILHAERE L 72 5, Fig. 1.13
(SRR AR D WIHHERE I 35 2 HER Ok T D 53 Evic o TR K %R T, Fig 1.13
R T & 90T, BRI ERE L 2R3 S U LR M AR I X0 SR g
T 5, WE LR, —E RN - % RIEILE L 7= 22 i, L < idfh o WoE R+ &
FREEEVIBLADORER~EKEL, RO E T\ <L [61,62], Fig. 1.14 ICERL T
DRF VY ¥ NI FINAFR %IRRT, Fig 1.14 1R X 95 1C, K7D IZ London 738071 %

: Desorption
Adsorption P
Surface Island
diffusion Ad-dimer
Maom o) Oy () s (Y0
7
~ Substrate /
222224 4
Fig. 1.13 Behavior of adsorbed particles on the surface
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WU-FH BAFFHEE D van der Waals 111 X 0 5] Z i Z I 15 BRI 7 )T H 2 YBoE
&, Rt & HER e DR CLER A DI E 1L 5 IR 2 72 )T H 2L FEE IC I L
%[63-65] fLEWFE DIEHACLZ AN F Euw 25 2 5N 5 &P 2> LA ENE ~ & 21
L, WERFIdEMRICm SR I NS, (- ¢, FERRH LK FORMILE & B 1355
WCBAR L T, KEILHORRIL Fig. 1.15 12773 Random hopping model CHiHH & 41 5 [66—
68]. Random hopping model Tl, WEH 4 b p3EARKRIICHKHENLL, BAER T 230805 - 4
FOBEET AV A P ~T VX LICHBEIT 5 8 E 2 5, WEN T DIREIE & ve, WED TV
BNE—% Ea, WEVA FMEOKRT vy VEEER Eg &35 8, WOER T2 BEET 4 b
~EE) S BB vy & IR 2> O B3 2 B vee IR THZ DN D,

Vai = vo exp(—Eq;/kT) (1.12)
Vae = Vo exp(—Eqq/kT) (1.13)

TIT, kAR Y =V ER TIEBERNTORETH 5, X(1.12)(1.13)H2 553025 & 91T,
WEDT Y ZNE—=PRES A PHORT v v LVEREX D O KE W (B> Es) 56, W
LRl SIcER LA B R s C b ic kB, £, WEYA FEOWEREY d LT
%L, WOERL T ORAILEUREULH(1.14) TR T 1 5 [68,69],

D = d?vyexp(—Ey;/kT) (1.14)

o T, RIGHEOWEF A P W2 5 2 L CREDI A FMEOHEENT /2% 2, W&EHA b
MloRT vy LVEEERKE D, L IIWENTOIRE, 2% 0 #d = 4L F2MKL
755 &, WoEKF DORMEILEPREED R < 75 5,

PIEE SRR 1T 35\ T, R R D R IAA DS ISR ICTE K & 1L 2 I D JZ IR IC K &
(HEST 22 eRHMONT S, KT OME T v ¥ B X ORAILE & HE O TR O BR

Potential energy (J/mol)

\ /| Eae: (physical — chemical)

| AT [Ea®hysica)  pigance

E., (chemical) T """

Y

Fig. 1.14 Energy diagram of physical adsorption and chemical adsorption
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% Fig. 1.16 /"9, Fig. 1.16(a) IZ/RT X 5 ICER 7 D@ T A L FHRKE C FEW EDE
HLEERES R WA, TER S W 3 EIEOIRIE, ROHHT A V¥ 2 R/IMEd 2 & 5 105
oI/ 5, ik L Fig. 1.16(b) 1IC/R3 X 9 ICEE) T 4 v F 29N & < LEIREL
DHEIG L, 3 RITH R OBIERPTER SN2 2 LA ST 5[70-73], ZKE P ANy
2 HFORKIEE TR, EENFAST, b L RENGRE MK WA ICHIREERSEK & h
LAMICH 5, WENFHRT CiE, FHRTPORFED L I3k & FRRAT AR T LD
ESSHE AL, R OEH T AN FIE T T 2420 TH 5, 72, EGREIMEEE
1%, AR 200G L 2B Ic 2 S i, REIEET 2720 0B = AL F%2K5 720 ThH
%, MAT, @ENFHT 72 & TR OB 2% < RLT D FAR~ D AG 75 1 23 FEAR D A7k
HIEcx LEE 2 F5o 84, HOSHEMRIC X @b Iic =18 EmREns 2 L2 s n
TW3[74-76], T b 3 RITH R TRIR ORGSR QTR IC D Wi, EER &7 7
0 —F 72 ThRL, HERENART 7 —F O HERINTE Y, RO Z Y 2 %A
INTWB[77,78]s X b, B85S 2L —FHEREEIC BT 5 F / SR O IR 134
AR I3 5 LHEE L 72, 2 LT, L—¥F L 2BHE R LI X Y F / fdEEoD
EmIMBEML, Tr—LhokTOEE T AN F LTI 5 2 &TF 7 HEREERZIE
JCEDAREED D B L& 2T,

Energy (J/mol)

0 Hopping = =========---- i

_____________ E.q

Es i
Activation Agr?tcl)wre‘zjlg?ﬁn
energy

Y

/ ___________ -
g Position
* on surface
Adsorption site
Fig. 1.15 Random hopping model
(a) (b)

particle

VPSS 7

Fig. 1.16 Relationship between the kinetic energy of particles and the shape of the microstructure.
(a) Low-kinetic energy (low-surface diffusion) and (b) high-kinetic energy (high-surface diffusion).
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155 L—¥FHR I — 4 ¢ FHEHAS X ORI EER

AT IS CYIBL SR IC 310 5 F 7 RS RO TR IE, FER B ICBos L 2R o Kk
MOMEERKRELZ T2 L, 2 LT FORMILIK 7 OEE T 4 L X ITKET %
CICDOWTHMAL 7z, L—FFHR TN — 2Ok F OEH) = 4 L F1x, 70— Lok
310M¥a@lﬂﬁxk®@ﬁ IO KRELELHT S, 2 LT, TNOEFHHZICTIZIT N
— L OCRHIFA S ERLICBR L T2, $72, BTV AL —FHERREIC BT 5/ ik
X, 7»—Aké@%@#%@tt%lf%ﬁéné&%xahé o, F/ HEERD
TR PTG IC X, 7V — LR EBAERE L 25, £ T CAHMiTIE, L—¥FRT L
—A®mﬁéﬁowfﬁﬂ%ﬁoto

L —FHFRE SN — LDEHKIL, FHAATADEIRPL —FDIALENKE HES 2
[33,79-82], &@@EMICL —F B I D L, FRireA A v 2E508ERL —FHE 7
—LDRET D, T — L ORI TEEIFIER ICE <, M¥®¥ﬁ§mﬁ&i#%’%<&
22 Lpb, T— MEOYIIABRE IC BT T — ALk & L Cilib i 5[79],
—FIRETE, 70— LFBEIEZRIC X VB L Tv» {28, m%®ﬂ&fﬂl® RS A D
WERZTLI LIk, BERVARAIEZEDEETICE T2 L —FFHE 7L — L 0%
B % Fig. 1.17 \C/" 9, Fig. 1.17(a) ISR T X HIC, EZE T TIET NV — 2 OERk % 2 FHR
HADBFEL R (b L IEA7RWw) 729, HHFZREL TWw<{, Harlal bicX 3 &, 7 —

ZATIRFNICR LA ICARIE L T S 2 8 RE I N T 5[79], T ISR LFEFSHETI 2K &
{7ZpoTWwL &, Fig L170)ICRT X 51, FHARA R & DEZROFEIC LY, Tr—L0D
EREEE IR L & b ICBBICIE L, A — 23S ERmICHEET S Lichk 5,

JESIRIMEn72FHRATICEWT, L—¥FR 7L — 2 ogHEREOERFIX (1.15)
D E 7L TR I N 5[80,83],

Exn+2 2
R(t)=f(—) tn+z (1.15)
p
A Laser-induced
(a) _~ plume (b)
» . 4 Pulsed laser , Confinement

by ambient gas

TR L
%\ |
My | ( L

Nanostructure formation area

Fig. 1.17 Effect of ambient pressure on laser-induced plume propagation
(@) in vacuum and (b) in high-pressure.
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TZT, SIFHRAN ADOHEMITIKFET 2R, E XL —F DTV FIUKIFET 2 15T
K E N ZALF, p3 TSI AOEETH L, Tz, n FEBBRICKET 27
A—RTHY, :qzsi%n%nﬁﬁ MR, BRROEFEIRICHEL Tw b, REAET
DF I BL—FDOFHE TN — LIZFTRIRIGIRIC TV — 2 3MEIE L T 2 ERHIL
THY, TLIMICHLTr=3 TEHfEL X —T 2 2 LpHE I T 35[80],

CREPHEITT 2 &, T — LIMGIRHE I B L 729 2 BRI AL VR T B 2 LI
b, COERBICET S IV —20EFKIEX (1116) OV Z v ZrETATRINS[79,81],

R = Ry[1 — exp(—pBt)] (1.16)

T, RIITN—LDFEIETH Y, plI 7N — LEHDYIE v ICHBI L 728 = vy /R,
TRINDBERECTD 5, A, FHEHKIE & TV — LDOET B FHHRREIC R 572 &
ESN—LMFIET 2, 2D L 20T v — Lo IREREEE (1.17) OWEWRE T v oFR
TN 5[84],

= A[(y — 1)E]V/3y p=1/3vy v-1/3y (1.17)

TIZT, A7V — LOEIEABICKE L 2RMAZRTFTH Y, W3FHKRHT A DHELL, E
FL—HFI7NZT VR, PEFEMAGRAADIENTH 5. VIZREVHO 7V — LOEETH Y,
TN — DMBIRDYIE vy, L —F DSV Rz, L—FDAKy FEw 2TV = vtwTH:
ZbNd, o TREIIC TV — Lo EEIEX (1.18) TRI N2,

= Al(y — 1)E]V3Y P~V/37 (pyrw) v —D/3y (1.18)

X (1.18) XV, 77— LoEIEHEET L —F OEMAIR, A RIE, AL F L, FH
[AADES), HEIKTE T 2 2 LRI,

PEd»s, v=¥FI7rz vy 2eFERAENICL D, L—PFHEE 7V — L ORIKEEEE & OB
CIADTHENEENT 2 2 EBRREINTZ, (o T, L—F 7T v ARFHSATE 0T 7 IR
WSROI NEIF I E T 5 L F 2T, 72, MFEHAEN T Tld 7 v — L o ki1 O s
SEREDSE <, B OB T AL F A L, -/ HREEREZ TR CE 2 REE S B 5 & &
A 720
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156 L—¥FHE 7V — L L FHRT X OLENHEER

MESLERL L OENET AR TR, L—FFR I — ot PICERSA Y R & BLE

DAL A EAER 2 3 2 E MO N T 3[32,85], L —FFHL 7L — 4 & FHR A

& DALE R EAER L, 70— BRI IZ SRR AT R & D EBRZ 2 T — 20

%%TEU% TN — LR ORIIED IR T REDOBEE % n, 7V — LOEHEIEREL d &35
, BHSHTADEER L L2561, L¥akcir TRick v e h s,

n = ngexp(—on,d) (1.19)

2TT, ng BRFHRT AL DRIGHTID 7N — AH DA FHEOEELTH Y, o3 AT L 55
FRA ADIGHHERETH Y, n ZFEHIAN ZADOREZEETH B, [>T, HEHN A DEE
BREVIIEL—FFE TN — L L FRRA AN RMHAFRSIER 5 2 & 235 Hh
%5

Tz, L—FHET N — L DRT & FHRAN AMEZRIC X VLERISERD L, K6
BRI ERR X N D G, RIEH 2 REZRTH VN, L D1 pMBn e v e 5 &, KB
A& o @B ILESH RAF X PckIn s,

mqvq + mypv, = m3vs (1 20)
TZT, m, i TN—LHORTOEEEHEE, my, v EETADERE & HEE, ms
BIRICERYIOBEE EEETH 5, Th— LMeIREIEA DK T O RE 18T K 2> 5 10000 K

Eml, WEEARADOEELHETE 213 EREVWET 2L, RICERYOEE vi 1T T T
xKIns,

my

v3 = ml +m2 Ul (121)
T Tma=m+m TH 5, feo CRISEBYIOEE = AL XX T e 5,
1 m?
_ 2 _ 1 2
> (my + my)vs 2+ % (1.22)

FRI 0 RISERYAEREINE Z LT, L—FFEL S — bk FOEE T 2L F0
BT 2208005, /6o T, BEFEMHA N R &7 NV— 0 e FEHRN R E DL RAMHEA
ER%RR 3T & T, 7/ HEIREERZIERTE 2 0[REELRH 5 & & 2 72,

22



1.6 FFECHWHERR

AKWFZe 72 3B A D SMEIER % Fig. 1.18 ISR $, 72, :ABRA5#H % Table 1.4 12/
3, Fig. 1.18 & Table 1.4 I/~ T X H 1, AR TIHMIESmm, & 7mm, EH 1 mm O
MR T H % C1020 13 L TEA 10 um OHEEEME Ni 0 - % 25 & 7= ilBxH % v 72,
C1020 [FFRIL % & F 72> 99.96 % LA b D @Al 7 il < & U [86], EMmERIcEn, &
oy r—voev—trv oIt kb MElchd s, F-MEMNI Do 2T,
i Ee 2 M 35 i 1 7 & DAL AR C TN EERENE: 70 & OB RFIE IS N 2, XA 2T T HES
MEEIC D END L2 b, FEERAY F—Oh EOBEBE ML b T Vw29
> EMEITH [87], HEMBE MM THEAINZEMB LD > EMEHIfhic b4 B
23, AT CTIIRRP MBI 1 D& L ClEERENS XOMEMNi 0> 2 23h & L
TR LEHRZT- 7%,

Fig. 1.18 Specimen used in present study.

(a) Top view and (b) cross-sectional image.

Table 1.4 Specimen used in present study

Base metal C1020 (Oxygen-free copper)
Plating Electroless nickel
Size W:5mm, H: 7mm, T: | mm

Thickness of plating 10 pm
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1.7 AHECHWIZL—¥F

AEFFETIE, L= THD L —# ¢ L T AMPLITUDE £t ® Nd:YAG L — ¥ (Surelite 1I1)
W, L=V OHEE L SV RMRIZZNZI 1064 nm & 6 ns TH B, = v T LIiCHT 3
L —HF DRI A~ 7 b L% Fig. 1.19 78 3[88], Fig. 1.19 i< 3 X H g, ARFFKOMIAR T
HH=yrricx LT, BARKETHZ 1064nm DR LD b 2 5EHBETH 2 532nm D
BRDOTT 1.5 ERREPRICRA R, —77T, WREAHIC I VG52 532 nm DHEDZEHA
RIZZNIZEREL L 50 A TRETHY, B FEEN 2522 8LV E V-
T REB D D AWFOFERE G2 7254, I LRFICER T 2 FEdmec e n
PE L, ZZ TR T, FiioFEAEZERL 1064 nm DIREZHA L 72,

72, L—FD L ZMEICO\WTIE Fig. 1.8 IR L7z X 91T, RFEBRZHEI ML 21T
TeDIEF /U TSN AL —=FR L HwoNE, 726 M- vapr—FLF /B
L —HF D 7N — MMeiE oK % Fig. 1.20 12733, Fig. 1.20(b) IR L e/ L —+
THEEINDE TNV —L1F, TA—LRERDL—F L TA—LBHEERT 22T
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Fig. 2.1 Schematic diagram of semiconductor package and resin-metal joining interface.
(a) Semiconductor package, (b) interface between resin and conventional metal surface, (c) interface

between resin and roughened metal surface, and (d) columnar structure.
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Laser-induced | | Plume-affected area;
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Irradiation area

(b)  Laser scanning direction —

Fig. 2.2 Nanostructure formation process by backward-pulsed laser deposition.
(a) Fixed-point laser irradiation and (b) scanning laser irradiation.
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Fig. 2.3 Experimental setup in present study
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Intensity

Low

Fig. 2.4 Laser beam profile on Ni surface

Table 2.1 Experimental parameters

Laser wavelength
Pulse width
Repetition frequency
Laser spot diameter
Laser fluence

Laser intensity
Ambient gas

Number of laser pulse
Specimen

1064 nm

6 ns

10 Hz

105 pum (1/¢%)

5.0 J/em?

0.83 GW/cm?

Air (atmospheric pressure)
1,8, 16

Ni
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Fig. 2.5 Top view of fixed laser irradiation by SEM.

(a), (b), and (c) overview at each laser pulses. (d), (¢), and (f) laser-irradiated area.
(g), (h), and (i) plume-affected area 150 um away from center of laser irradiated area.
(a), (d), and (g) single pulse, (b), (e), and (h) 8 pulses, (c), (f), and (i) 16 pulses.
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— P HASTRT O Wi %, Fig. 2.6(b), (c) 1IZNZ L —HF L 2E28 1 [l & 16 [8] 0 Wi E 524%
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Substrate 1 (ﬁm

Fig. 2.6 Cross-sectional images at laser-irradiated area by STEM.

(a) Before irradiation, (b) single pulse, and (c) 16 pulses.
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JHRERT, JtR~ v ¥ v 7 E STEM BIEEEE I © EELS (Electron energy loss

C)

Nanoparticles Nanolayer

Substrate (Ni) 10 nm

Fig. 2.7 Cross-sectional images of nanostructure at 150 wm away from center of laser irradiated

area. (a) Single pulse, (b) 8 pulses, and (c) 16 pulses.

(d) (e)

Substrate =
(Niy 10nm

Intensity (a.u.)

Low N High

Fig. 2.8 EELS imaging of nanostructure at 150 um away from center of laser irradiated area after
16 pluses irradiation.
(a) STEM image, (b) C-K image, (c) N-K image, (d) O-K image, and (e) Ni-L image.
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Fig. 2.9 EELS intensity profile dependence on distance from substrate surface.

(a) Analysis area and (b) intensity profile. All pixels are added in the horizontal direction.
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Fig. 2.10 Schematic diagram of Nanostructure on substrate
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Fig. 2.11 Dependence of height of Nanostructure on number of laser pulse
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Fig. 3.1 Experimental setup in present study.
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Table 3.1 Experimental condition

Fig. 3.2 Laser beam profile. (a) Contour map, (b) x-x line profile, and (c) y-y line profile.

Laser wavelength
Pulse width
Repetition frequency
Laser spot diameter
Laser fluence

Laser intensity
Ambient gas

Number of laser pulse
Specimen

1064 nm

6 ns

1.0 Hz

100 pm (1/e%)

1.50, 2.25, 3.75, 7.50 J/em?

0.25, 0.38, 0.63, 1.25 GW/cm?

Air (atmospheric pressure)
100
Ni
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Fig. 3.3 Top view of Ni surface after fixed-point laser irradiation. Number of laser pulses was 100

shots. Laser fluence were (a) 1.50 J/cm?, (b) 2.25 J/cm?, (¢) 3.75 J/em?, and (d) 7.50 J/cm?.
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Fig. 3.4 Top view of nanostructure by SEM. Laser fluence were (a) to (c) 1.50 J/em?, (d) to (f) 2.25
J/em?, (g) to (i) 3.75 J/em?, and (j) to (1) 7.50 J/cm?. Scope of each image in terms of distance away
from center of laser irradiation area: (a), (d), (g), and (j) 100 um, (b), (e), (h), and (h) 150 pum, (c),
(), (i), and (1) 200 um.
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Fig. 3.5 Cross-section images of nanostructure by SEM. Laser fluence were (a) to (c) 1.50 J/cm?, (d)
to (f) 2.25 J/em?, (g) to (i) 3.75 J/em?, and (j) to (1) 7.50 J/cm?. Scope of each image in terms of
distance away from center of laser irradiation area: (a), (d), (g), and (j) 100 um, (b), (e), (h), and (h)
150 um, (c¢), (), (i), and (1) 200 um.
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Fig. 3.6 Dependence of height of nanostructure on distance from center of laser irradiated area.
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Fig. 3.7 Dependence of width of columnar structure on laser fluence.

Analyses were performed at 100 um away from center of laser irradiated area.
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Fig. 3.8 Dependence of pitch of columnar structure on laser fluence.
Analyses were performed at 100 um away from center of laser irradiated area.
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Fig. 3.9 Dependence of height of nanostructure on laser fluence. Analysis area were 100 um away
from center of laser irradiated area. Maximum and minimum height of nanostructure were defined as

peak and valley, respectively, as shown inserted figure.
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Fig. 3.10 Dependence of aspect ratio of columnar structure on laser fluence.
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Fig. 4.1 Effect of ambient pressure on laser-induced plume propagation
(a) in vacuum, (b) in high-pressure.
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Fig. 4.2 Experimental setup in present study.
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Fig. 4.3 Laser beam profile. (a) Contour map, (b) x-x line profile, and (c) y-y line profile.

Table 4.1 Experimental condition of fixed-point laser irradiation

Laser wavelength 1064 nm
Pulse width 6 ns
Repetition frequency 10 Hz

Laser spot diameter 100 pm (1/e%)
Laser fluence 3.75 J/em?
Laser intensity 0.63 GW/em?
Number of laser pulse 100

Ambient gas Air

Ambient pressure

Specimen

14, 500, 10000 Pa,
Atmospheric pressure
(1.0 x'10° Pa)

Ni
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Fig. 4.4 Laser irradiation by raster scanning.

Table 4.2 Experimental condition of scanning laser irradiation

Laser wavelength
Pulse width
Repetition frequency
Laser spot diameter
Laser fluence

Laser intensity

Scan speed

Pulse pitch

Scanning area

Ambient gas
Ambient pressure

Specimen

1064 nm

6 ns

10 Hz

105 um (1/¢?)
10.0 J/cm?
1.67 GW/cm?
500 pm/s

50 um

2 mm X 2 mm
Air

6.7, 200 Pa,

Atmospheric pressure
(1.0 x 10° Pa)

N1
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Fig. 4.5 Top view of Ni surface after fixed-point laser irradiation with laser fluence of 3.75 J/cm?.
Number of laser pulses was 100 shots. Ambient pressure were (a) 14 Pa, (b) 500 Pa, (c) 10000 Pa, and
(d) Atmospheric pressure.
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Fig. 4.6 Top view of nanostructure by SEM. Laser fluence was 3.75 J/cm?. Ambient pressure were (a)
to (c) 14 Pa, (d) to (f) 500 Pa, (g) to (i) 10000 Pa, and (j) to (I) Atmospheric pressure. Scope of each
image in terms of distance away from center of laser irradiation area: (a), (d), (g), and (j) 100 um, (b),
(e), (h), and (h) 150 um, (c), (f), (i), and (1) 200 pm.
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Fig. 4.7 Cross-section images of nanostructure by SEM. Laser fluence was 3.75 J/cm?. Ambient
pressure were (a) to (c) 14 Pa, (d) to (f) 500 Pa, (g) to (i) 10000 Pa, and (j) to (1) atmospheric pressure.
Scope of each image in terms of distance away from center of laser irradiation area: (a), (d), (g), and
() 100 pum, (b), (e), (h), and (h) 150 um, (c), (), (i), and (1) 200 pum.
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Fig. 4.8 Dependence of height of nanostructure on distance from center of laser irradiated area.
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Fig. 4.11 Top view of nanostructure at laser irradiated area by SEM.
(a), (b) Low-magnification images, and (c), (d) high-magnification images.

(a), (¢) In 6.7 Pa, and (b), (d) in atmospheric pressure.
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Fig. 5.1 (a) Schematic diagram of semiconductor installed in automotive component.

(b) Joining interface between resin and roughened metal surface.
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Fig. 5.2 Schematic process of microstructure formation

by backward pulsed laser deposition.
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Fig. 5.3 Schematic process of microstructure formation by backward pulsed laser deposition with
raster scanning of laser irradiation. (a) Overview, (b) first pulse, (¢) second pulse, (d) third pulse.
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Fig. 5.4 Schematic diagram of experimental setup in present study.
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Fig. 5.5 Laser beam profile. (a) Contour map, (b) x-x line profile, and (c) y-y line profile.

Table 5.1 Experimental condition of fixed-point laser irradiation

Laser wavelength
Pulse width
Repetition frequency
Laser spot diameter
Laser fluence

Laser intensity
Number of laser pulse
Ambient gas

Oxygen concentration of
influent gas

Chamber pressure at start
of gas inflow

Total pressure
Partial pressure of oxygen
Specimen

1064 nm

6 ns

10 Hz

100 um (1/e?)
3.75, 7.50 J/cm?
0.63,1.25 GW/cm?
100

O,N,
0,0.2,2.0,21 %
1.0 Pa

Atmospheric pressure (0.1 x 10° Pa)
21 %107 t0 2.1 x 10* Pa
Ni
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Fig. 5.6 Scanning laser irradiation

Table 5.2 Experimental condition of scanning laser irradiation

Laser wavelength 1064 nm
Pulse width 6 ns
Repetition frequency 10 Hz

Laser spot diameter 100 pum (1/€?)
Laser fluence 7.50 J/em?
Laser intensity 1.25 GW/cm?
Scan speed 500 pm/s
Pulse pitch 50 um
Scanning area 2 mm X 2 mm
Ambient gas 0,/N,

Chamber pressure at start
of gas inflow 1.0Pa

Total pressure Atmospheric pressure (0.1 x 10° Pa)
Partial pressure of oxygen 0.21-2 x 10* Pa
Specimen Ni

78



5.3 EEFER

53.1 ERBEIC X VR E iz T EREEE O TR

FHRHTAICEL L —FFETNV— LD LADERKELS D L, Tr— Lok
TRIPR T L BEIHRN A L OWMESELIKE 2 b, AEBRTIEF / HEREEEO R
W9 2 FEHRATOBEENITEDOHED B %I L 72\ 720, EZEE 7 & ORI 2
T2 2 DMOMAERHOEBIIMBH/NE W EAEE L, 2 2 CRERTIE, BENITE
BEZTBC TN — LOMBIBHEHEA KR ECEL LR X ) C, RAETAICIIEE LS TED
MNEREH W, 72, ERBSCER S W27 SR o R EIB % fihr 32 © & T,
TN — LORIERIFE 2 HEE L, BEREOZIC X 3 T — L oniEiERE, 2% 0 R
FIDAHN R & DERBE DEALICOWTEE %{T > 72, Fig. 5.7 ICKHBFESILEICEH T 3.75
Jem? DL —H 7L LV ZATL —HIBRHED = v F L KEDOLMEGRE R T, L —F 28
1% 100 [B1TH b, Fig.5.7(a), (b), (c), XU (d) 23% X NFEFHKRF OMEFR 5 ES 0.21 Pa, 200
Pa, 2.0 X 10% Pa, KX U2.1%x 10* Pa DFERTH 5, BHEIFIKFAETH Y, BHESFEDH2.1 X
10* Pa DHEARH RAIERLBEORAT AZMFHL 72, &HEIE O H 23 L — IG5

S

=0 Lhe! - 2% ¥ :
(34 { 5 y
et B R

Fig. 5.7 Top view of Ni surface after fixed-point laser irradiation with laser fluence of 3.75 J/cm?.
Number of laser pulses was 100 shots. Total pressure was atmospheric pressure and partial pressure
of oxygen during processing were (a) 0.21 Pa, (b) 200 Pa, (¢) 2.0 X 103 Pa, and (d) 2.1 x 10* Pa.

The ambient gasses were mixture of nitrogen and oxygen.
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Fig. 5.8 Top view of Ni surface after fixed-point laser irradiation with laser fluence of 7.50 J/cm?.
Number of laser pulses was 100 shots. Total pressure was atmospheric pressure and partial pressure of
oxygen during processing were (a) 0.21 Pa, (b) 200 Pa, (c) 2.0 x 10® Pa, and (d) 2.1 X 10* Pa.
The ambient gasses were mixture of nitrogen and oxygen.
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Fig. 5.9 Cross-section images of nanostructure by SEM. Laser fluence was 3.75 J/cm?. Total pressure
was atmospheric pressure and partial pressure of oxygen during processing were (a) to (c) 0.21 Pa,
(e) to (f) 200 Pa, (g) to (i) 2.0 x 103 Pa, (j) to (1) 2.1 X 10* Pa. The ambient gasses were mixture
of nitrogen and oxygen. Scope of each image in terms of distance away from center of laser irradiation

area: (a), (d), (g), and (j) 100 um, (b), (e), (h), and (k) 200 pum, (c), (f), (i), and (1) 300 um.
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Fig. 5.10 Cross-section images of nanostructure by SEM. Laser fluence was 7.50 J/cm?.Total pressure
was atmospheric pressure and partial pressure of oxygen during processing were (a) to (d) 0.21 Pa, (e)
to (h) 200 Pa, (i) to (1) 2.0 X 103 Pa, (m) to (q) 2.1 X 10* Pa. The ambient gasses were mixture of
nitrogen and oxygen. Scope of each image in terms of distance away from center of laser irradiation
area: (a), (e), (i), and (m) 200 um, (b), (f), (j), and (0) 300 um, (c), (9), (K), and (p) 400 um, (d), (h),
(1), and (q) 500 pm.
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Fig. 5.11 Dependence of height of nanostructure on distance from center of laser irradiated area at

laser fluence of 3.75 J/cm?.
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Fig. 5.12 Dependence of height of nanostructure on distance from center of laser irradiated area at

laser fluence of 7.50 J/cm?.
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Fig. 5.13 Dependence of height of nanostructure on partial pressure of oxygen. Total pressure was
atmospheric pressure and laser fluence was 3.75 J/cm?. Analysis area were 100 um away from center
of laser irradiated area. Maximum and minimum height of nanostructure were defined as peak and

valley, respectively, as shown inserted figure.
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Fig. 5.14 Dependence of height of nanostructure on partial pressure of oxygen. Total pressure was
atmospheric pressure and laser fluence was 7.50 J/cm?. Analysis area were 100 um away from center
of laser irradiated area. Maximum and minimum height of nanostructure were defined as peak and

valley, respectively, as shown inserted figure.

85



532 RFIESIC X VBRI Wiz F / EREEER ORISR

J HERESEERTER S iz, 2 2 ¢, iR X o T S 5 F 7 ik b Rk E
HBEONEHE I DhERMER LTz, L—F 71Ty 2 TEARNOERLFE L < 7.50 Jem?
&L, L—¥ oI S0pm & LT 2mm A OHPZ RIS L 72, v 2L —4
HERRIRIC B 1T 2GRS <, Bt &L —FIREHC X o TER S 1L 5 M ik o 22 75
B VICX o, BITL 7L —FREHEIC T/ liEEATER I Tn, fEoT, /1
ERDOEEICHE S 2 kD L — IS S I Y, SEMICBR I N5 T 7 BidEko
BEINEL D, ZDD, L—FRF v VIO CIX, F/ BEBRICHET 2L —
FOWHE D 72720, oI TR I N2 -/ fEEkom I dEd s, 22
TAREB T, 7/ WEHRORICHET 2 L — FIREBDEIR 3 2tk </ fidEiko
Mt %47 o 720 SEDTE MIRE ORI B W T, EFEHRN A TR E Wiz /7 ko
TERKEIPHIZ 500 pum AR TH o7z, 2D, ZF ¥ VHEBOIHEEE 2 5 500 um BL_EAHID
T T &R DT % 1T o 72, Fig. 5.15 IC 2 F ¥ VHEBICTE K S Wiz F &k o K
% SEM IC X » THIZ L =48 %/~ 3, Fig. 5.15(a), (b), (c), KT (d) Iz nzh, FHERY
A DRI EA 021 Pa, 20Pa, 200Pa, K U2.1x 10* Pad & X DFERTH 5, Fig. 5.15

Fig. 5.15 Top view of nanostructure formed on laser scanning area. The ambient gas during processing
was air under condition d, and the other conditions used a controlled mixture of nitrogen and oxygen.
Total pressure was atmospheric pressure and partial pressure of oxygen during processing were (a)
0.21 Pa, (b) 20 Pa, (c) 200 Pa, and (d) 2.1 X 10* Pa.

86



CRT XD, TRTCOFHAEKMFICE T, BT VAL —FHERERICK > TERKE Wiz
K7 DEEERD b7 3 F /) SRS HEZE I N, L2 L, SHEHKICE T 2 EEIRERAL Y,
FEHATh OEENTEL R D KA - 7 Fig. 5.15(a) Tl, F/ HERIIEEICEELTEHD,
F 7 SR Ol % SFHICTERE 3 2 & L Uk R d o 72, — T, FHKF OEERSIELE
(B ONT, F/ EEEEROIRIAEEIIC R > T & (Fig. 5.15(b), (c), HIRHYICHEHE Y
JED i D @i, /7 BiEROMBES BT 7 A — iz 0% UE R Gk
DB E 7z (Fig. 5.15(d). HEV>C, BFRHLSMT TR S vz F 7 BE ko Gl 22
K%z T3 5 7291 TEM I X 2 Wi 2 1T o 72, Fig. 5.15 (X)) 3 % Wil iR % Fig. 5.16
/RS, Fig.5.15 LRIBRIC, Fig 5.16(a), (b), (c), KT (d) dZxhzh, FHSAHT AT OMME
SYIEAS 021 Pa, 20Pa, 200Pa, KX 1821 x 10* Pa D & X DR TH 3, KR D F 10 DK
av b 7R MEBIE= y S AERTH Y, ENE EoER R S A L — FHERREIC
Lo TR I N/ BiERTH 2, T, 7/ BERDE S ORI IEMRFE% Fig. 5.17
IR T, Fig. 5.17 AR T X H1C, F/ BEEROE S DR KfE%Z "Peak”, R AfE
Z”Valley”t LC7 1 v b L7z, Fig. 5.16 JXx U Fig. 5.17 IC/" 3 & 5 ic, FHS P ORI
BEL RDICONTF / EEROE S BE L R 2 HEAPHR SN2, MATHBREDIELE
{7mB &, F7HEEROM MY KE L ko Twotz, BEHENITES 0.21 Pa TIEEN-F
MEEARIZIZIT T EE TH - 72 (Fig. 5.16(a)) o T 2UiCx LEEFR I H DY 20 Pa TR X 1172

C)

Nanostructure

Substrate (Ni) 100 nm Nanostructure

Nanostructure Columnar structure

Fig. 5.16 Cross-section images of nanostructure formed on laser scanning area. The ambient gasses
were mixture of nitrogen and oxygen. Total pressure was atmospheric pressure and partial pressure
of oxygen during processing were (a) 0.21 Pa, (b) 20 Pa, (c) 200 Pa, and (d) 2.1 X 10* Pa.
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Fig. 5.17 Dependence of height of nanostructure on partial pressure of oxygen. Total pressure was
atmospheric pressure and laser fluence was 7.50 J/cm?. Laser irradiation was scanned and analysis
was performed in the region 500 um or more from the edge of the laser scanning area. Maximum and
minimum height of nanostructure were defined as peak and valley, respectively, as shown inserted

figure.

88



FEEAYE A 2 12 O TF J BEEROMIE X 8k % o Tl o - BRI, Ei
W5 & [FRRIC, BEESERINT 3 2 & cAr—ahokit & EHATh oS & oK
JGDMREAE X AL, BRAUISIC X 2R DB = 4 v X D IC X o ThF DM EER DF
HIRBCOMETT U, K7 23808 IS HERE & L9 i BT oo U C R E T AN HERE DS HEA 7272 72
EHERI NG, 2 2 TH I/ MEROBEEFHMTE LT, F /A VvT v T—vavickoTH/
WERDOEX 2T L 7z, F /&R DOF /4 vT v T— a v ol LIARESIKFE
Fig. 5.18 IC/R 3, e OWTHIEISE & [IERIC, F /7 MEEARDTEKICRE T 5 L — RS EU A
35, AF ¥ VEBOUD B 500 um LA EPIEIOREIS % fENT L 72, Fig. 5.18(a), (b), KT (c)
ZZNTh, FHRNT ADEESEAS 0.21Pa, 200Pa, K TU2.1x 10* Pa DFERZRL T
%, FHEFRSEMFICE Tz Zn 78], 96, 10 B3 DHIE 21T o 7z, #f LIABRE S TP
AN F / BEERORELAT & 35 720K 100 nm ICHE L7z, WINOHEEICE T
b, I LIAREZICIL U CY v 7N T 2 R 238 X 7z, BEFR 5321 X 10* Pa,
200 Pa, M TF0.21 Pa DFHRICHENTENE N LIABRZE X 2340 nm, 20 nm, S OFARKE A
oYY IR AWEBEMAHRI NS, ZOY Y FRoAMAEINE, F / BE&EAET O
=y TNERDOEEICLEDDTH 2, BMEDEPMEL B ICONTY v 7K LG
DA UIAREEDBEAL o To2DIE, F /SR & & IR DT DK FIC VK

N ma . e 7 200 . e .
s F a) ] b) ]
& : (a) 1 r (b) 1
G} L ]
~ 150} - 150} .
w - - 4
3 4 L 4
S L ] L ]
8 100[ ] 100f ]
£} - _
w 1
= | ] C ]
£ 50| 4 sof .
g - - - -
> L L 1

L | . . Ll L Ll ) ) L]

° 101 102 0 10! 102

Indentation depth (nm) Indentation depth (nm)
N - -

— C c) -
& : (c) 1
G] L ]
~ 150} .
w L
3 L 4
=S L ]
8 100f ]
£ I 1
_(.ﬂ
= | ]
£ 50 .
3 | ]
= L

0_ [——— 1 L I [ R SR |

10! 102

Indentation depth (nm)

Fig. 5.18 Indentation depth dependence on Young’s modulus of nanostructure. The ambient gas during
processing was air under condition ¢, and the other conditions used a controlled mixture of nitrogen
and oxygen. Total pressure was atmospheric pressure and partial pressure of oxygen during processing

were (a) 0.21 Pa, (b) 200 Pa, (¢) 2.1 X 10* Pa.
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Fig. 5.19 Dependence of Young’s modulus and roughness of nanostructure on partial pressure of
oxygen. Total pressure was atmospheric pressure. Inset: Illustration of the definition of outline length

ratio of nanostructure.
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Fig. 5.20 Schematic diagram of nanostructure formation process.

(a) In low partial pressure of oxygen, (b) in high partial pressure of oxygen.
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