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ABSTRACT 

Global warming causes a rise in the sea level, thereby aggravating beach erosion 

and overtopping on many beaches. When erosion occurs, sand beaches cannot maintain 

sufficient sand width, and foreshore slopes become steeper from frequent erosion effects, 

and beaches are trapped in a vicious circle of becoming vulnerable due to incident waves. 

For this reason, beach nourishment can be used as a countermeasure which 

simultaneously minimizes environmental impacts. However, beach nourishment is not 

a permanent solution and requires periodic renourishment after several years. To address 

this problem, minimizing the period of renourishment must be an economical alternative. 

In this respect, selecting the optimum grain size of the sand of the beach nourishment is 

essential.  

Numerous previous studies have found that larger grain-sized sand is more 

resistant to the erosion that using gravel for the nourishment and can extend the period 

of renourishment. In addition to selecting the optimum grain size of the sand 

nourishment, determining the durability and maintaining the familiarity of the native 

sand users should also be considered. Thus, the gravel nourishment can be an optimum 

method.  

Among many gravel nourished beaches, Tuvalu (one of the Pacific island 

nations facing the threat of disappearing from erosion) is a great example of reducing 

erosion from storm waves. Under extreme wave conditions, other parts of the Tuvaluan 

coast massively lost their shoreline; however, the section with gravel nourishment had 

its damage appreciably less as compared to other nourished areas. In the present study, 

using the Tuvaluan coast with its cross-sectional of gravel nourishment site, four 

different test cases with one extra test case were selected for the hydraulic model 



 xi 

experiment aimed at discovering an effective nourishment strategy find the effective 

alternative methods. Two types with different mean diameters, sand and coral gravel, 

were used throughout the experiments in a wave flume.  

Numerical simulations were performed to reproduce the gravel nourishment; 

however, none of such models simultaneously simulate the sediment transport of gravel 

and sand. Thus, the artificial neural networks (ANN), a deep-learning model, was 

developed throughout the study using hydraulic model experiments as training datasets 

to analyze its possibility to simultaneously accomplish the sediment transport of the 

sand and gravel and supplement the shortcomings of the numerical models.  
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Chapter 1 

INTRODUCTION 

1.1 Background  

Coastal erosion has natural causes such as sea-level rise and wave energy 

increase; however, it is accelerated by changes in the natural environment from various 

artificial structures installed on the coast. Coastal zones are significant for society's 

development; however, they are particularly vulnerable to the impacts of nature and 

man and are physically very unstable. Erosion and associated loss of land is the most 

evident sign of this instability. Negative shoreline trends cause secondary effects that 

affect society through threats to human settlement. However, most of the natural sandy 

beach is not sufficient to protect the beach itself against extreme wave and storm surge 

from the beach erosion. Thus, coastal structures can be used in these erosive beaches. 

Coastal structures are generally built at the locations where beach erosion causes 

a severe problem. The decision to build a coastal structure should be based on a thorough 

analysis of the shoreline developments in the past and estimated events in the future. 

The physical processes causing erosion should be properly identified. For the coastal 

protections, there are mainly two categories: hard techniques and soft techniques. Hard 

methods include seawalls, revetments, or jetties that can be effective, which intercept 

and dissipate the wave energy and currents and associated sand transport. 

Nonetheless, these hard structures may enhance erosion in such areas and 

collapse, which results in high construction and maintenance costs. On the other hand, 

soft methods aim to dissipate wave energy using natural coastal processes. In this way, 
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coastal defense works in sympathy with natural means of sediment erosion, storage, and 

transport. This results in a low maintenance coastal system that can respond to external 

forcing factors such as storms and sea-level rise. 

The erosion of the world’s coasts and sand storage to mitigate beach erosion are 

leading to the increasingly common use of gravel for coastal protection and beach 

nourishment (Lopez et al., 2017). Beach nourishment, as a soft technique, can be used 

as a countermeasure for the erosion problem while minimizing the environmental 

impacts. However, beach nourishment is not a permanent solution like most soft 

techniques and needs periodic renourishment after several years. Beach nourishment 

incorporates a series of beach renourishment over a long-time horizon or life cycle of 

an application. This fact poses difficulties in predicting benefits and costs because of 

both uncertain project performance and future markets for necessary inputs. Sand is the 

most critical input. And with demand for sand increasing, it is difficult to predict the 

cost of sand a decade or more into the future (National Research Council, 1995; Davison 

et al., 1992; Houston, 1991). Thus, reducing the period of renourishment is essential, 

and therefore, it is crucial to slow down the erosion by careful planning of the 

nourishment to remain prolonged period. That being said, larger grain-sized sand is 

more resistant to erosion (Wieser, 1953), and many beaches around the world proved 

the usage of these gravels as a nourishment material to a lengthen the period of 

renourishment. 

Jinkoji coast in Japan (Figure 1.1) had gravel nourishment in April 2008, using 

87,000 m3 of gravel size between 2.5 to 13 mm. It was found that the nourishment gravel 

was deposited with a slope of 1:8 at the foot of the seawall, and provided some 

protection from the erosion, effective in widening the foreshore and nourishment gravel 
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was stably deposited without offshore discharge (Kumada et al., 2010). Another beach, 

Marina di Pisa, Tuscany in Italy (Figure 1.2), gravel nourishment was used in 2002 as 

a countermeasure to protect a seawall and provide a beach on an eroding, developed, 

sandy shore. Gravel beach could protect coastal infrastructure and produce a surface 

usable for tourist activity. The movement of gravel offshore was not likely observed; 

however, the beach may become re-oriented toward the direction of high-energy wave 

approach, resulting in a narrowing of the berm in one segment, causing waves to overtop 

the seawall and deposit gravel landward of it (Cammelli et al., 2006). While gravel 

nourishment act as a significant role as beach protection, it can be inefficient if the 

phenomena prediction of the gravel nourishment was not analyzed well before the 

nourishment like Nice bay in France (Figure 1.3). On this beach, very little significant 

change over the last 30 years despite massive gravel nourishment amounting to 558,000 

m3. It was not possible to lengthen the foreshore; however, gravel nourishment in Nice 

beach is an essential means of containing the beach erosion hazard, at least contributing 

to stabilizing the beach widths (Cohen and Anthony, 2007). Lastly, Fongafale shore in 

Funafuti, Tuvalu (Figure 1.4), used gravel nourishment to protect the coast from erosion. 

Since Tuvalu is a Pacific island nation, locally available coral gravel was procured as a 

nourishment material. This was the first trial of a user- and eco-friendly type of coastal 

conservation measure in Pacific Island nations. The executed gravel beach nourishment 

could maintain stability under seasonal and extreme conditions of wave actions (Onaka 

et al., 2017). 
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Figure 1.1:   Gravel nourished Jinkoji coast in Japan (Kumada et al., 2010) 

 

 

Figure 1.2:   Gravel nourished Marina Di Pisa beach in Italy (Cammeli et al., 2010) 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fpdfs.semanticscholar.org%2Fc2ac%2F3799a8e9a84c16793cd281d98952a5eb43dc.pdf&psig=AOvVaw140YN2hwTcXtp-pviIm1V_&ust=1593713340999000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOj7__7SrOoCFQAAAAAdAAAAABAb
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.worldscientific.com%2Fdoi%2Fpdf%2F10.1142%2F9789814366489_0021&psig=AOvVaw140YN2hwTcXtp-pviIm1V_&ust=1593713340999000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOj7__7SrOoCFQAAAAAdAAAAABAx
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.hotelbeachside.com%2Ftop-10-most-beautiful-beaches-in-italy%2Fpisabeach.htm&psig=AOvVaw3KH1FvvNwDryzWfsClam-d&ust=1593680740102000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCLCZmcnZq-oCFQAAAAAdAAAAABAK
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Figure 1.3:   Gravel nourished Nice bay in France (Cohen and Anthony, 2007) 

 

 

      

Figure 1.4:   Gravel nourished Funafuti shore in Tuvalu (Onaka et al., 2017) 

  

https://www.google.com/url?sa=i&url=https%3A%2F%2Fjournals.openedition.org%2Fmediterranee%2F182&psig=AOvVaw2b36I1klIKMva67eGAsiYz&ust=1593713703835000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNiQyazUrOoCFQAAAAAdAAAAABAD
https://www.google.com/url?sa=i&url=https%3A%2F%2Fjournals.openedition.org%2Fmediterranee%2F182&psig=AOvVaw2b36I1klIKMva67eGAsiYz&ust=1593713703835000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNiQyazUrOoCFQAAAAAdAAAAABAI
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Although there are many successful cases using gravel nourishment as good 

protection, the gravel nourishment cannot be the permanent solution for the erosion 

(Daves et al., 2000; Ishikawa et al., 2012). The periodic renourishment is needed; 

however, lengthening the period is essential for both economic and environmental 

purposes. Throughout this paper, gravel nourishment will be discussed, and different 

placement methods and numerical simulations were used to simulate the beach profile 

evolution and sediment transport. Because current models cannot accurately predict the 

two or more-sediment usage (like gravel nourishment), these shortcomings were tried 

to overcome by using artificial deep learning neural networks. Thus, throughout the 

study, artificial neural networks have been used to simulate the nourished gravel beach 

with different test cases using the datasets obtained from the hydraulic model 

experiments to remedy numerical simulations’ shortcomings. 
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1.2 Goals and objectives of the study 

The flow of the research is described in this section. This thesis consists of five 

different chapters, chapter 1. Introduction, chapter 2. Field measurement and necessary 

data investigation, chapter 3. Experiment, chapter 4. Numerical simulations and 

artificial intelligence, and lastly, chapter 5 with conclusions and discussions. 

In chapter 2, the study site was described with historical background. To 

understand the underlying causes of beach erosion and site-specific morphology after 

the nourishments to quantify the nourishment performance, bathymetric survey, 

topographic survey, and wave observation were conducted in the study site, Funafuti, 

Tuvalu. Gravel nourished areas found to be the protective sections among other sand 

nourished sections, and from the simple wave test using SWAN, all the sections affect 

similar wave heights during abnormal wind conditions (e.g., cyclones).   

To elucidate the interaction processes, a hydraulic model experiment was 

conducted, as explained in detail in Chapter 3. Overview of experiment setup, sand 

profiles, and characteristics of gravel used in the experiment was explained. Four 

different nourishment styles (Sand berm and beach (SBB), Gravel berm and sand beach 

(GBS), Buried gravel layer (BGL), and Buried gravel sill (BGS)) with one extra test 

case (Gravel bag layer (GBL)) were conducted to find out best methods amongst. 

Chapter 4 introduces existing cross-shore numerical models (CSHORE, 

SBEACH, and XBEACH-G) and predict sand transport in the swash zone. Because of 

the current model’s limitation, the artificial neural networks model was introduced and 

developed to make it suitable to beach profile evolution prediction using various 

features with datasets obtained from chapter 3. 

Lastly, in chapter 5, the results of the overall experimental findings and 

discussions were briefly summarized. 



 8 

Chapter 2 

FIELD MEASUREMENT AND BASIC DATA INVESTIGATION 

2.1 Introduction 

Tuvalu has been chosen as a study site. Sea-level rise has become increasingly 

evident in the Pacific, with the southwestern Pacific regarded as one of the region’s 

most vulnerable to contemporary and future changes (Nicholls and Cazenave, 2010). 

Tuvalu, as shown in Figure 2.1, is one of these pacific island nations suffer from rising 

sea levels, which aggravate beach erosion and wave overtopping. Nonetheless, this 

country is faced with the threat of disappearing as rising sea levels cause beach erosion; 

however, it is challenging to build study constructions on Pacific islands due to their 

locations far from developed countries, making installation difficult. For this reason, 

Tuvalu has been chosen as a study site. Moreover, this country does the nourishment 

constantly to prevent erosion, and thus, finding the phenomena of the nourishment was 

one of the keys to this study.  

To gain more complete understanding of the underlying causes of beach erosion 

and site-specific morphology after the nourishments to quantify the nourishment 

performance, bathymetric, topographic survey along with UAV survey have been 

conducted. To understand the normal conditions of wave characteristics, wave and tidal 

observation have been conducted as well. It is important to conduct a survey to obtain 

the latest information on study site to observe the recent erosion status as well as use 

them as input of a numerical simulation to find the erosive wave conditions (10 or 50 

year return period waves) and use the wave conditions on hydraulic model experiments 

to reproduce the erosive wave conditions to compare each nourishment placement 

methods for efficiency. Surveys were conducted during November 2017 to December 

2017. As shown in a Table 2.1, the scope of each survey and observation are listed. 
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Figure 2.1:   Survey location, Funafuti in Tuvalu 

Table 2.1:   Scope of the survey 

Division Target of survey Scope Note 

Leveling and GCP survey Fongafale shore 10 EA 
Direct 

Leveling 

Topographic 

Survey 

Status 

Survey 
Fongafale region A=250,000 m2 

Ground 

survey 

UAV 

Survey 
Fongafale A=250,000 m2  

Bathymetric Survey Fongafale shore L= 280 km 
Detailed:  

20 m pitch 

Wave and Tide Observation Fongafale shore 
20 days 

observation 
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2.2 Wave and Tide Observation 

The wave and tide observations aim to verify the existing tidal data observed at 

the study site and analyze the characteristics of the wave at the lagoon area of Fongafale 

shore. Later in this chapter, results were used in SWAN model to see the normal and 

abnormal wave conditions (wave height and period) and its deformation. For the 

observations, wave pressure gauge was installed in a point located in Figure 2.2 around 

2 km from the Fongafale shore on lagoon side from November 16th to December 5th, 

total 20 days. Throughout the observation, the wave pressure gauge manufactured by 

AAT in Korea was used (WTG-IC256), which is based on the IC pressure sensor. The 

observed data were acquired for 20 days with 30 min intervals. 

Collected data were analyzed by Zerocross analysis to yield significant wave 

height (H1/3), significant wave period (T1/3), 1/10 maximum wave height (H1/10), 

maximum wave period (T1/10), mean wave height (Hmean), mean wave period (Tmean), 

and peak wave directions (Dp). The observation location's significant wave height was 

in the range of 0.09~0.25m, with an average value of 0.13m. The maximum wave height 

(Hmax) was in the range of 0.13~0.91m, with an average value of 0.31m. The significant 

wave period (T1/3) was in the range of 5.25~14.03sec with an average value of 7.77sec, 

and the maximum wave period (Tmax) was in the range of 3.00~13.73sec with an average 

value 5.28 sec as shown in Table.2.3. 
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Figure 2.2:   Wave and tide observation 
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Table 2.2:   Specifications of the wave and tide observation 

Site (WGS84) Duration 
Depth  

(DL(-)m) 
Device 

8° 30' 36'' S 

179° 11' 08'' E 

2017. 11. 16~ 

2017. 12. 05 
2.34 WTG-256 

 

 

 

 

Table 2.3:   Observed wave characteristics in Fongafale 

Specifications 

H1/3 H1/10 Hmean Hmax T1/3 T1/10 Tmean Tmax 

(m) (sec) 

Max 0.25 0.44 0.14 0.91 14.03 10.34 13.83 13.73 

 

Min 0.09 0.11 0.04 0.13 5.25 4.29 5.26 3.00 

Mean 0.13 0.20 0.07 0.31 7.77 5.75 8.37 5.28 
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The wind data of Fongafale from the Australian Bureau of Meteorology during 

the same period was in the range of 0.2~8.2 m/s, and the data were compared with the 

observed data. By comparing the two results, a similar trend was observed. The wave 

characteristics of the study area surrounded by the atoll were analyzed to be strongly 

affected by the wind. This area is lagoon area where it is difficult for deep-sea waves to 

reach, and the lagoon has a distance of 17 km which makes harder for deep-sea waves 

affecting the shoreline without having wind waves. Wind speed during November 16th 

to December 5th is observed and analyzed in Figure 2.3 and wave characteristics are 

observed and analyzed in Figure 2.4. 

 

 

Figure 2.3:   Wind data during the observation 
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Figure 2.4:   Time series of wave height and period 
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As a result of analyzing wind data observed for 24 years by the Australian 

Bureau of Meteorology from 1993 to 2017 at the Funafuti, Tuvalu (Figure 2.5), Tuvalu's 

lowest annual average wind speed was 2.8m/sec, and the highest annual average wind 

speed was 4.3m/sec. The yearly average wind speed during the observation period was 

3.3 m/sec, and the annual average wind speed was increased by 2.8 cm/sec every year 

and was increased by 60 cm/sec for 24 years.  

Tropical cyclones do not occur much in equatorial regions within 5 degrees of 

latitude; however, Tuvalu is located in 8-degree latitude that the number of invasions of 

a cyclone which is directly affected is less than once per year. Due to Tuvalu’s low and 

narrow topographical characteristics, it is very vulnerable to storm wave and has a great 

deal of damage. Recent cyclones (shown in Table 2.4) affected Tuvaluan coast which 

caused beach erosion and flooding problems. Because of having wind dominant wave 

conditions, these storms cause tremendous damages to the Tuvaluan coast. 
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Table 2.4:   Recent cyclones impacted Tuvalu  

Cyclone Category Dates Affected area 

Winston 
Category 5 Severe 

Tropical Cyclone 

Feb 7, 2016~ 

March 3, 

2016 

Fiji, Vanuatu,  
Tonga, Queensland 

Pam 
Category 5 

Hurricane 

Mar 7, 2015~ 

Mar 20, 2015 

New Zealand, Fiji,  

Papua New Guinea,  

New Caledonia, Vanuatu, 
Tuvalu, Kiribati,  

Solomon Island 

Ula 
Category 4 Severe 

Tropical Cyclone 

Feb 26, 

2015~   

Jan 16, 2016 

Tonga, Tuvalu,  

American Samoa 

Gitta 
Category 5 Severe 

Tropical Cyclone 

Feb 3, 2018~  

Feb 22, 2018 

New Zealand, Fiji, 

Samoa, Tonga, Vanuatu, 
Queensland,  

American Samoa 

 

 

Figure 2.5:  Average annual wind speed in Tuvalu (1993~2017) 
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To compare the observed tide data with obtained tide data from the Australian 

Bureau of Meteorology, tide observation was conducted from November 16th to 

December 5th, 2017, with the same period of wave observation. Observed tide data 

shows a minimum of -0.92 m and a maximum of +1.21 m with the tide difference of 

0.29 m. For the same duration, the Australian Bureau of Meteorology data shows a 

minimum of -0.96 m and a maximum of +1.12 m and difference of 0.26 m as shown in 

Figure 2.6 with the tide elevation time series. By comparing the two data, it was 

considered that the existing tide observation data could be applied in the numerical 

simulations since the difference was minimal. 

 

Figure 2.6:  Observed tide comparison with that of the Australian Bureau of 

Meteorology 

Again, from the observed data, Fongafale shore, surrounded by atoll, has less 

impact on deep-sea water waves and mostly affected by the wind wave. That being said, 

the Tuvaluan coast is considered as a low-wave energy coast that the beaches would be 

vulnerable to the storm sized wind wave. 
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2.3 Topographic Survey 

A topographic survey was performed by a 3D station using Total Station, GPS 

instrument RTK (GNSS), and used to survey geographical features, boundary exposed 

in the area to observe the coordinate information, and produce it in the form of numerical 

data. RTK survey used a combination measurement of station’s GPS receiver, and two 

mobile station’s GPS receiver with one controller. Coordinates and heights were 

determined using control points directly provided by the Tuvalu Government’s PMU 

project manager, and the drawing elements could be edited freely. Drawing display 

functions enable marking of geographical features, and prevents overlapping of the 

current line and contour lines. 

Total Station and RTK(GNSS) were used for the topographic survey, and terrain 

composition was created. A drone measurement was carried out outside the task area 

and marked on the drawings to identify the surrounding topography. All the conducted 

survey areas were larger than a task area to improve the survey performances. The 

maximum elevation of the topographic survey result was (+) 8.72m, measured from the 

east side of Fongafale to the north side of runway near the Mainaga Fou Church, where 

the runway was composed with the dunes. Moreover, the lagoon side zone has (+) 4.53m 

elevation near the community church, and the ocean side zone has (+)5.17m elevation 

near the harbor container. 

UAV survey and comparison with past satellite images have been conducted in 

this section. DJI Phantom 4 Pro was used for the UAV survey, and Pix 4D Mapper pro 

(Rossi et al., 2017) was used for data processing. A topographic survey using UAV was 

performed, and the GCP (Ground control point) survey results were used to correct the 
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distorted images. The result of the UAV image was compared with past satellite images 

to examine the erosion analysis. 

Uniform results were derived using unified values for each step configuration, 

including initial processing, point cloud, mesh generation, ortho-image, and DSM 

extraction. Form a grouping of points (Point Cloud) with the Pix 4D program and model 

it in exact contact with the location of ground control points taken on each photo and 

identified the QC errors recorded on the verification reports' results.  

UAV survey for the GCP survey at the Fongafale was conducted by installing a 

reference station based on existing control points (FUN42, FUN43, FUN48), as shown 

in Figure 2.7 with the coordinates on table 2.5. UAV survey can be used to view the 

entire area of the Fongafale at a glance. Also, it was confirmed that the error value is 

within the range compared to the land survey and confirmed the error value by 

comparing the location and altitude information of the GCP point generated by UAV 

and survey results conducted by RTK GPS. Using UAV surveys, it was possible to 

compare and analyze with Google images and continuously monitor the erosion of 

nourished areas. 
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Table 2.5:   Coordinates of control points  

No. 

WGS4 ellipsoid  

(UTM coordinates) 

H (DL) note 

X (Norhting) Y(Easting) 

FUN 43 9057957.56 742099.76 4.472 

unit : m FUN 42 9057816.17 742062.06 4.821 

FUN 48 9056444.91 741181.28 3.715 
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Figure 2.7:   Fongafale GCP points with some of measured locations 
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The accuracy verification of UAV survey performance can be confirmed by the 

performance of the Ground control Point (GCP), which is used for the positioning and 

altitude calibration and the DSM (Figure 2.8). The accuracy of data generated by the 

program can be verified by checking the error values of each ground control point 

recorded in the QC report are formed within the tolerances.  

Fongafale has a narrow and long shape, about 20m to 70m wide, and has major 

facilities such as airports, hotels, government buildings, hospitals, and schools. As a 

result of creating a topographical survey (Figure 2.9, and Figure 2.10), the ocean side 

datum level was higher with DL.(+) 4.5m to 5m, than the lagoon side datum level with 

DL.(+) 4m to 4.5m. 

 

  

Figure 2.8:   Combining UAV survey result and field survey data (left: visual 

inspection result, right: DSM result)  
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Figure 2.9:   Cross-section of Fongafale Atoll in Tuvalu 
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Figure 2.10:   Cross-section of Fongafale Atoll in Tuvalu 

Past satellite images from 1941 to 1984 were collected from the SOPAC report 

(SOPAC, 2006), and satellite images from Google Earth (2003, 2005, 2007, 2012, and 

2016) have been used as the past satellite images to compare with the present UAV 

survey result (Figure 2.12). Using past and present satellite images, the approximate 

beach area has been compared, as shown in Figure 2.12 and Table. 2.6.  

 

Figure 2.11:   Sections of nourishment conducted in Fongafale 
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Figure 2.12:   Some of satellite images from 1941 to present survey (SOPAC 1941-

1984; Google Earth 2003-2016; Present UAV Survey 2017) 
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Figure 2.12:   Some of satellite images from 1941 to present survey (SOPAC 1941-

1984; Google Earth 2003-2016; Present UAV Survey 2017) continuous 
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Table 2.6:   Sectional beach area 

Year 
Area of each section (m2) 

A section B section C section D section 

1941 18,210.50 9,718.69 11,018.00 3,816.03 

1943 14,368.90 8,702.61 9,967.17 3,769.30 

1971 9,685.50 8,366.54 9,188.93 2,624.07 

1984 8,555.62 7,966.31 8,971.56 1,407.48 

2003 7,963.07 4,034.89 6,582.45 1,182.35 

2005 3,990.00 2,068.04 3,343.30 988.07 

2007 3,989.02 1,376.52 2,852.29 926.58 

2012 3,865.80 1,306.47 2,679.84 924.98 

2016 24,285.83 32,381.05 14,263.40 4,470.68 

2017 18,403.72 26,100.43 11,053.92 3,818.85 

 

Figure 2.13:   Changes of beach area by sections 
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By comprehending the long-term changes in the coastal area and by analyzing 

the causes of coastal erosion through the examination of satellite images of the 

Fongafale, satellite image analysis was used as a basic data for the planning of erosion 

prevention measures. Satellite images from 1941 to 2017 were collected, and unmanned 

aerial surveys (UAV) were conducted (Fig. 2.9), the results of which were added to 

analyze the sedimentation patterns of the study area. Analysis of the cause of erosion 

was made by dividing the project site into four different sections (A, B, C, and D), as 

shown in Figure 2.11, in consideration of existing facilities and the configuration of the 

beach. Tidal increases – which directly affect the shoreline's retreat and increases in 

wind velocity – a predominant factor in local wave characteristics, were analyzed 

through weather forecast data. On 2015, there was nourishment and reclamation on the 

Tuvaluan coast. After the nourishment in 2015, there was a significant decrease in the 

beach area, which was caused by a damage from the cyclones. From 2015, several 

cyclones hit the Fongafale area. Cyclone Pam occurred in mid-March of 2015; Cyclone 

Ula occurred from late December of 2015 to early 2016, and Cyclone Winston occurred 

in mid-February of 2016. Cyclone Pam showed the strongest wind speed at 14.4m/s on 

March 11, 2015; Cyclone Ula showed the strongest wind speed at 17 m/s on December 

28, 2015. Thus, it was found that around 25% of area were divested between 2016 and 

2017 except the section D where decrease was only 15%. This is because the D section 

is the location with the gravel nourishment designed by JICA. The detailed physical test 

will be discussed in the next chapter. 
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2.4 Bathymetric Survey 

Processing of the data was carried out using HypackTM, validated by the 

International Hydrographic Organization (IHO), to increase the quality and 

compatibility of the data. Location data can vary significantly from the original depth 

value and the location data due to mechanical errors in the acoustic sounder with GPS, 

and from the atmospheric instability. These errors considerably reduce the accuracy of 

the final depth values. Thus, the error data is removed by thoroughly performing the 

measured and position error with SBAS. Bathymetric data is obtained from the sonic 

velocity corresponding water depth and calibrated with sound wave velocity value 

(1,531 m/sec).  

The distribution of water depth in this study area is gently distributed from DL 

(+) 1.0m ~ DL (-) 12.0 m near Catalina ramp, DL (-) 10.0 m ~ DL (-) 18.0 m steeply 

near the rock area. DL (+) 1.0 m ~ DL (-) 15.0 m distribution is shown in the survey 

area. As shown in Figure 2.14, the route section shows a gentle appearance with DL (-) 

32.0 m ~ DL (-) 41.0 m. The bathymetric survey of this task provides high water depth 

data (Koo, 2018) based on precise depth information obtained by comprehensive 

bathymetric and topographic survey throughout the survey area. 
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Figure 2.14:   Bathymetric survey result of Fongafale shore 
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2.5 Grain Size Composition 

Since most of the population is located in the Fongafale area where the most 

protections are needed, gravels from the other area have sufficient to be used in gravel 

nourishment. JICA has conducted gravel nourishment on 2015 before cyclone Ula 

attacks. The survey was conducted after the cyclone's impact on the beach. From the 

measurement of the D section of the Fongafale shore, unlike the typical beach, gravel 

was dominant in onshore of the beach. The analysis of the grain size was conducted on 

this beach, as shown in Figure 2.16. The gravel covering the surface at the beach had a 

particle diameter of 8-15 cm, and bottom of these thick gravel, there was gravel smaller 

than the surface around 2-6 cm. 

 Nonetheless, not all the beach was formed with gravel unlike ordinary 

pebble or gravel beach. By the time measurement was conducted, the beach was more 

like a composite gravel-sand beach where gravel and sand were mixed and formed on 

the beach. This seems to be the reason for the Cyclone Ula's impact since the slope of 

the beach was very steep, as shown in the right photo of Figure 2.15. 

   

Figure 2.15:   Gravel beach on the Catalina Ramp (D section) 
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Figure 2.16:   Grave size measurement at the gravel nourished beach 
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2.6 Simple wind wave test 

Using the obtained data, a simple wave deformation test using SWAN 

(Simulating Waves Nearshore) model has been conducted to determine the wave 

condition when the cyclone Ula impacted. SWAN is a third-generation wave action 

model that uses typical formulations for wave growth by wind, wave dissipation by 

white capping, and four nonlinear wave interactions. It also includes physical processes 

associated with intermediate-depth and shallow water. The governing equation of 

SWAN action balance equations to calculates the random, short-crested wind-generated 

waves in coastal regions and inland waters (Settlelmaier, et al., 2011). 24 years (1993-

2016) of the Tuvalu observation data of the Pacific sea level monitoring provided by 

the Australian Bureau of Meteorology were used as input and verified with the observed 

wave data conducted during the survey. For the model verification, the same time wind 

data from Tuvalu observation and the present wave observation (November 15th, 2017 

– December 6th) were used as input to the model in real time and the output of real time 

wave was obtained to verify at the observation point. Result of the verification on Figure 

2.17 found to be reasonable.  

 

 

Figure 2.17:   Model verification result 
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Numerical simulations were carried out for nine wave directions (S, SSW, SW, 

WSW, W, WNW, NW, NNW, N) in large (grid size ds = 50 m) and detailed (grid size 

ds = 20 m) scales (shown in Figure 2.18) which affect the study site in abnormal and 

normal wind conditions. Non-excess probability of 97.5% was considered as normal 

wind and wave conditions, and that of 99.9% was considered as abnormal wind and 

wave conditions (Ministry of Maritime Affairs and Fisheries, 2005). Table 2.7 and 2.8 

show the test results with maximum wind speed in normal and abnormal conditions, and 

wave height analysis results on nine wave directions.   

As a result of the wind-induced wave test, the WNW wave direction was the 

highest in the study site's vicinity, and the maximum wave heights were 1.76 m and 1.08 

m, respectively. As from the Figure 2.20, when abnormal wind condition on the 

Fongafale coast, sections A, B, C, and D have similar wave heights which confirms the 

gravel nourishment area (section D) protected cyclone damage well compared to the 

other sections.  
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Figure 2.18:   Large and detailed scales of wave deformation test grids and contour 

plots 
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Table 2.7:   Maximum wind speed in normal and abnormal by wind direction 

Wind 

Speed 

(m/sec) 

S SSW SW WSW W WNW NW NNW N 

Normal 

Condition 

(97.5%) 

7.32 7.66 9.02 10.55 11.34 12.09 11.77 9.71 7.32 

Abnormal 

Condition 

(99.9%) 

11.67 11.54 13.56 15.45 15.22 17.05 16.21 13.87 10.95 

Table 2.8:   Wave height analysis result 

Wave 

height  

(m) 

S SSW SW WSW W 
WN

W 
NW NNW N 

Normal 

Condition 

(97.5%) 
0.27 0.40 0.60 0.80 0.98 1.08 0.99 0.71 0.39 

Abnormal 

Condition 

(99.9%) 

0.52 0.72 1.05 1.35 1.52 1.73 1.56 1.15 0.71 
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Figure 2.19:  Summer and winter wind rose diagram  
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Figure 2.20:  Wave height test result for WNW wind direction in abnormal wind 

condition  
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2.7 Conclusions 

General topographic, UAV, bathymetric survey, and wave observation have 

been conducted at the Tuvalu, Funafuti Fongafale area for the basic measurement and 

an understanding of the study area. This area is a lagoon with a distance of around 17 

km, where it is difficult for deep-sea waves to reach. Even with low-wave energy shore 

conditions, Tuvalu was suffering from beach erosion. This was found to be the problem 

of the cyclone damage, which occurs once or twice regularly every year. Thus, it was 

considered that this study area has low-wave energy conditions with a dominant wind. 

A recent cyclone impacted this area was found to be the Cyclone Ula. Ula had a 

maximum wind speed of around 17 m/sec during the period of the cyclone. This 

cyclone’s damage was analyzed by UAV and past satellite image comparisons and was 

observed that on the section with gravel nourishment (section D), cyclone damage was 

less than the other nourishment sections. That being said, on the section with gravel 

nourishment, grain size composition was measured. Using all the data obtained through 

survey, simple wind-wave simulation using the SWAN model was conducted to see if 

the wave height varies by the sections. With the highest wind direction of WNW, all the 

sections (A, B, C, and D) had similar wave height affected at both normal and abnormal 

wind conditions. 
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Chapter 3 

HYDRAULIC MODEL EXPERIMENT 

3.1 Introduction 

This chapter provides an overview of the hydraulic model experiment conducted 

in the wave flume located in the Waterfront and Coastal Research Center. This chapter 

also provides an overview of the experiment setup, beach profiles, and characteristics 

of gravel. The details of this experimental setup were given by Kim et al. (2019). Gravel 

nourishment with different placements were used in the experiment. 

3.2 Experiment Setup 

A hydraulic model experiment using a 2-dimensional wave flume was 

conducted to observe the sediment transport and profile evolution of the different 

nourishment types. The wave flume used in this experiment was 30 m long, 1 m in width, 

and 1.8 m in height (see Figure 3.1). The wavemaker can generate both random and 

regular waves. Furthermore, the wavemaker has a wave height gauge attached to the 

front of the wave paddle to enable reflected wave absorbing control based on the data 

read by the indicator. Also, a wave damper consisting of rubbles, Styrofoam, aluminum 

pieces, and an absorption filter was installed to minimize the generation of reflected 

waves (Kim et al., 2019). 
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Figure 3.1:   Wave flume used in the hydraulic model experiment 

JICA conducted a gravel nourishment project at the Tuvaluan beach (see Figure 

3.2). This cross-section of the gravel nourished Tuvaluan coast in the Fongafale was 

used as an initial profile for the hydraulic model experiment, and the geometric scale 

1/25 was used in the experiment (Figure 3.3). The initial profile had a berm slope of 

1:3.5 and a beach slope of 1:11. Two different still water levels (6 and 8 cm above the 

MSL, i.e., HHWL (+1.42 m from MSL) and ground-level (+1.92 m from MSL)) were 

used throughout the experiment. Beach nourishment can help mitigate the erosion 

process; however, single nourishment is not a long-term solution; the erosion process 

will continue to erode the nourished sand until renourishment is required. Accordingly, 

the aim was to see the erosion tendency when using different grain sizes with varying 

placement methods. 
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Figure 3.2:   Gravel nourishment typical cross section on the Fongafale shore 

    

Figure 3.3:   Experimental cross-sectional beach profile 
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Most parameters of experiments were considered based on the actual conditions 

of the Fongfale shore, Tuvalu. From the field survey, it was observed that the Tuvaluan 

coast is a low -wave energy coast where erosion was accelerated by storm waves. Since 

this experiment was small-scale, reproducing the actual damage was not the main focus. 

Instead, the aim was to see how the gravel nourishment would react to a large external 

force like Cyclone Ula, which impacted the beach, causing severe damage to the 

Tuvaluan coast in 2016, and which morphological changes would occur in these 

situations. Various placement methods were also considered to find economical 

methods by prolonging the period of renourishment without disturbing the aesthetic 

view. From the satellite image comparisons in Chapter 2, Cyclone Ula severely 

impacted the nourished beach; therefore, incident wave characteristics of Cyclone Ula 

were selected as wave characteristics used in the experiment. The wave parameters in 

test cases used prototype significant wave height and the period of 5.2 cm and 1.1 sec 

(actual Hs =1.33m, shown in Figure 3.4) for 2 hours. To scale down the sand grain size 

without scale effect is usually difficult that the grain size (D50) used in the experiment 

for sand and gravel was 0.16 mm and 5.0 mm, respectively.  

 

 

    

Figure 3.4:   Wave height at the lagoon side during the monitoring period (Onaka et 

al., 2017) 
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A total of four test cases with using two still water levels (SWL) in each case 

in the wave flume—one with HHWL (SWL 1, 6 cm above the MSL) and one with 

ground level (SWL 2, 8 cm above the MSL)—were used to examine the damage of each 

test (see Table 3.1). Sand and gravel with different placements were selected as design 

options and used to plan an effective nourishment strategy. A larger grain sized 

nourishment is more resistant to erosion; however, to achieve similitude, mean 

diameters similar to those of local, prototype gravels were chosen. Therefore, four types 

of nourishments with different mean diameters – namely, D50 of 0.16 mm of sand and 

D50 of 5.00 mm of coral gravel – were used for the experiments (see Figure 3.5). 

The initial profiles for each of the four test cases are shown in Figure 3.6. The 

experiments were performed for four test cases with the same wave conditions with 

irregular waves. The spectrum of the irregular wave used in the experiment was 

Modified Bretschneider-Mitsuyasu (Eq. (3.1)) proposed by Goda (1985) for the 

frequency spectrum of wind waves. For each test case, the profile was measured every 

30 minutes and stopped at 120 minutes. Total irregular wave energy EI was computed 

using Eq. (3.2), where Hs and Ts represent the significant wave height and period, 

respectively. 

 

 𝑆(𝑓) = 0.205 𝐻𝑠
2𝑇𝑠

−4𝑓−5exp (−
0.75

(𝑇𝑠𝑓)4)  (3.1) 

 𝐸𝐼 = 𝜌𝑔 ∫ 0.205 𝐻𝑠
2𝑥−5𝑒−0.75𝑥−4

𝑑𝑥 = 0.068𝜌𝑔𝐻𝑠
2+∞

0
  (3.2) 

 

Four test cases with two sea levels for each test cases were conducted and each test case 

consisted 120 minutes and profile were measured in every 30 minutes. 
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Table 3.1:   Four test cases with different sea level  

Test case Condition Sea Level 

Case 1-1 
Sand Only 

EL +3.42 m 

Case 1-2 EL +3.92 m 

Case 2-1 
Gravel Only 

EL +3.42 m 

Case 2-2 EL +3.92 m 

Case 3-1 Sand (Top) 

+ Gravel (Bottom) 

EL +3.42 m 

Case 3-2 EL +3.92 m 

Case 4-1 Sand (Left) 

+ Gravel (Right) 

EL +3.42 m 

Case 4-2 EL +3.92 m 

 

 

 

    

Figure 3.5:   Sand and gravel used in the experiment 
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Figure 3.6:   Four test cases with two SWL tested with 120 minutes runs each 

 

 



 47 

3.3 Hydraulic model test cases 

The first test case with a berm slope of 1:11 and a foreshore slope of 1:3.5 

corresponded to the sand berm and sand beach, SBB test case, without gravel on a berm 

(see Figure 3.7) was tested. The berm was exposed to 120 minutes runs using 5.2 cm 

significant wave heights with 1.1 sec significant wave period using irregular waves. The 

SBB test case with each SWL was tested for 120 minutes, and the same initial profile 

was rebuilt after SWL 1 test. The SBB test case was conducted to see how the other test 

cases would differ from SBB, where only sand was used. Under breaking waves, most 

of the sand on the foreshore was moved onshore as bed loads, and offshore as suspended 

loads. 

 

    

Figure 3.7:   Test Case 1 – Sand Berm and Beach (SBB) initial profile 
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For the test case GBS, gravel berm and sand beach, the initial berm profile was 

rebuilt on the initial profile for case SBB and a berm was replaced with the gravel (see 

Figure 3.8). D50 of 5 mm of the gravel used in the test was replaced on the sand berm 

from SBB. This profile was the same as the profile JICA built on the Tuvaluan coast 

gravel nourishment section. The idea of this profile was to compare with the SBB and 

see how to decrease or protect the erosion from storm waves effectively. As in the SBB 

test case, the gravel berm was exposed to 120 minutes runs using 5.2 cm significant 

wave heights with 1.1 sec significant wave period for irregular waves. The GBS test 

case with each SWL was tested for 120 minutes, and the same initial profile was rebuilt 

after SWL 1 test. 

 

    

Figure 3.8:   Test Case 2- Gravel Berm and Sand Beach (GBS) initial profile 
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Gravel nourishment can disfigure the aesthetic view and adversely affect the 

natural beach. Therefore, using only half amount of the gravel used in GBS, the buried 

gravel layer, was applied to reduce the extent of berm erosion without spoiling the shore 

aesthetics. As shown in Figure 3.9, gravel layer was first placed on the berm, and sand 

was covered on top of the layer. Similarly, to the other two test cases, the BGL test case 

with each SWL was tested for 120 minutes, and the same initial profile was rebuilt after 

SWL 1 test using 5.2 cm significant wave heights with 1.1 sec significant wave period 

for irregular waves. 

 

 

Figure 3.9:   Test Case 3- Buried Gravel Layer (BGL) initial profile 
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The buried gravel sill (BGS) test case had a concept of using the same amount 

of gravel on the test case 3-BGL, but build sill type of gravel on the berm covered with 

sand to look like sand berm but gravel buried inside (see Figure 3.10). After rebuilding 

the berm sill, a mixture of sand and water was poured into the gravel sill to cover the 

gravel and fill its voids. The BGS test case with each SWL was tested for 120 minutes, 

and the same initial profile was rebuilt after SWL 1 test using 5.2 cm significant wave 

heights with 1.1 sec significant wave period for irregular waves. 

 

 

Figure 3.10:   Test Case 4- Buried Gravel Sill (BGS) initial profile 
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3.4 Beach Profile Evolution 

 

Figures 3.11-3.13 and 3.15-3.20 show the measured profiles of test cases 1,2,3 

and 4 at t= 0, 30, 60, 90, and 120 min for all four test cases with the elevation SWL 1 

and 2. For brevity, in Figures 3.11- 3.20, t1= 30 min, t2=60 min, t3=90 min, and t4=120 

min. The profiles were measured along x= 0-200 cm. 

 As can be seen in Figure 3.11 with SBB test case with SWL 1, there was a sand 

dune formation right after t1. Continuous erosion accelerated on the sand berm and after 

t3, deposited sand dune on the backshore disappeared.  

 

 

Figure 3.11:   Case 1, SBB with SWL 1 profile evolution of t1, t2, t3, and t4 
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The SBB test case with SWL 2 caused the trend of foreshore erosion and berm 

erosion during t1 and t2. The pattern of forming the sand dune on the backshore was 

similar to the SBB test case with SWL 1; however, the erosion persisted and created 

deposited sand dune which disappeared quicker with a higher SWL. By comparing two 

profiles in Figured 3.11 and 3.12, it was observed that when using only sand as 

nourishment, the beaches were less sensitive to SWL, and the final profiles for SWL 1 

and SWL 2 seemed similar. 

 

 

Figure 3.12:   Case 1, SBB with SWL 2 profile evolution of t1, t2, t3, and t4 
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For the gravel berm and sand beach test case GBS, Figure 3.13 shows the profile 

evolution of measured profile at t1=30 min, t2=60 min, t3=90 min, and t4=120 min. 

During t1-t2, a gravel dune was formed on top of the berm. This gravel dune protected 

minor waves from overtopping. Gravel dune was formed on the backshore; however, 

since the gravel did not easily move onshore, scouring occurred on the foreshore. As 

time passes, the gravel dune migrated backshore, and the size of the dune increased. 

Scour trench was created landward of the berm and the seaward slope, and the crest of 

the berm was eroded. In the case of SWL 2 (Figure 3.15), berm became saturated with 

an increase in the water level. Accordingly, the results confirmed that a large amount of 

erosion occurred within a short time. Compared to the results of SWL 1 in Figure 3.11, 

the erosion pattern showed a marked difference.  



 54 

 

Figure 3.13:   Case 2, GBS with SWL 1 profile evolution of t1, t2, t3, and t4 

   

Figure 3.14:   Southern part of Catalina Ramp with gravel nourishment 
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Figure 3.15:   Case 2, GBS with SWL 2 profile evolution of t1, t2, t3, and t4 

In the case of the GBS, for the SWL 1, the deposition of the berm appeared over 

the time and the deposited gravel-sand tends to retreat. This test case was found to have 

a good result as a countermeasure against erosion.    

 From the photo taken before and after the cyclone Ula at the southern part of 

Catalina Ramp where the gravel nourishment was conducted (Figure 3.14), one on the 

left was taken after the gravel nourishment and before the damage of cyclone Ula. The 

photo on the right was taken in December 2017 after the cyclone Ula invasion, where a 
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large amount of the gravel dune with steep slope was formed, similarly to the 

experimental results. According to Shim et al. (2019) and Muhajjir et al. (2019), the 

gravel on the beach tended to create a gravel dune after the induced high waves. Figure 

3.16 shows the results reported by Shim et al. (2019). These results cannot be 

quantitatively compared to those of the present study due to the differences in the 

experimental conditions such as incident waves, beach profile, range of beach 

nourishment and generation of the wind (U). However, the experimental results for a 

similar particle size can be compared qualitatively. Erosion occurred at the beginning 

of the experiment, but a large-scale accretion occurred on the rear side of the shoreline 

after a certain period. Overall, comparing the tendencies of profile evolutions, it was 

observed that the results were similar to those of the GBS study case by forming the 

gravel dune and foreshore erosion. 

 

 

 

Figure 3.16:   Experiment of gravel nourished beach (Shim et al., 2019) 



 57 

Nonetheless, unlike the SWL 1, SWL 2 showed the erosion of the berm caused 

by the sea level rise in the case of GBS. The erosion problem was more pronounced in 

the saturated and unsaturated state than in the sand or gravel problem. Erosion pattern 

was almost the same for both sand berm from SBB and gravel berm from GBS, and 

only the pattern of deposition behind the berm was different.   

With an increase of the still water level to SWL 2, gravel dune formed in 

different locations (Figure 3.15), and the formation of gravel dune was located more on 

the far backshore. Scour continued and created the sand dune between the berm and 

foreshore at t2.  These gravel dunes seemed to protect from the wave overtopping as 

well as wave overwash. Unlike in the SBB test case, gravel deposition and landward 

migration were sensitive to SWL, as wave run-up on gravel is sensitive to SWL. The 

results of this test case with SWL 2 suggest that the gravel nourishment perform at the 

Tuvaluan coast with a higher cyclone surge more than in the case of Cyclone Ula. 
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The profile evolution in the case of buried gravel layer, BGL, is shown in Figure 

3.17. As demonstrated by the initial profile with a bird’s eye view, gravel was hidden 

so that the initial profile looked the same as the test case of SBB; however, the gravel 

layer was placed underneath of the berm. Only half the amount of the gravel from GBS 

was applied in this test case. By the end of the t1, a similar tendency with SBB was 

observed; however, once the gravel layer was exposed, gravel protected the erosion and 

created a gravel composite sand dune on the backshore. As time passes, the beach 

became equilibrium; however, it was found that the composite gravel sand protected the 

beach from slowing down the erosion. After t3, beach profile evolution became similar 

to the SBB test cases. 

 

Figure 3.17:   Case 3, BGL with SWL 1 profile evolution of t1, t2, t3, and t4 
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BGL is a type where gravel exists inside the berm to form a permeable layer. 

The gravel layer inside the sand berm acts as a water-permeable filter, and, unlike SBB 

in the case of only a sand berm, it has the effect of slowing the erosion rate in the area 

behind the gravel. This can be seen that it acts as a filter for the permeable layer of 

gravel and keeps the sand inside the rear section unsaturated for a certain period of time.  

For the SWL 2 (Figure 3.18), erosion accelerated; however, as compared to the 

test case 1 with SWL 2, the gravel layer protected from the scour. In the overall 

comparison with SWL 1, the landward edge of the gravel layer was eroded after the 

berm erosion progressed landward, and the thin layer of gravel provided some 

protection for the sand below the gravel layer.  

 

Figure 3.18:   Case 3, BGL with SWL 2 profile evolution of t1, t2, t3, and t4 
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The profile evolution of buried gravel sill, BGS, is shown in Figure 3.19. 

Similarly, to the BGL test case, gravel was hidden underneath the sand berm with sill 

shape. The same amount of the gravel was used as test case 3, BGL. Due to the gravel 

sill, when gravel was exposed, scour occurred on the sand berm. The sill’s effect became 

noticeable only after the sill’s crest was exposed, but wave breaking over the exposed 

crest created a scour hole landward of the sill. Even in the case of BGS, the results 

confirmed that the role of the gravel filter permeable layer shown in SLW 1 was not 

exerted at the water level of SWL 2. 

 

 

Figure 3.19:   Case 4, BGS with SWL 1 profile evolution of t1, t2, t3, and t4 
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 In the case of buried gravel sill with SWL 2 (Figure 3.20), the scour hole 

occurred after t1, as wave breaking accelerated the erosion on the sand. Therefore, a 

dune was not formed on the landward, and the scour hole became larger on the berm; 

however, the scour hole on the berm recovered with the sand after t2.   

 

 

Figure 3.20:   Case 4, BGS with SWL 2 profile evolution of t1, t2, t3, and t4 
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3.5 Extra test case using gravel bag 

Although Case 3 with gravel layer can initially cover the gravel, and the layer 

provided some protection to slow down the erosion, the results showed that, when gravel 

was used in nourishment, there was a problem of gravel moving onshore and, therefore, 

gravel nourishment can impact on the aesthetic view of the sand beach (see Figure 3.21), 

as gravel will move onshore. 

Therefore, there emerges a question of how to prevent the gravel’s moving 

onshore without changes in the gravel’s performance used as nourishment. Accordingly, 

a gravel filled bag was applied to see whether the usage of the gravel-filled bags could 

measure the problem. In test case 5, the gravel bag layer (GBL) used the gravel-filled 

net made of synthetic fiber to substitute the gravel layer from the BGL test case. Usually, 

such gravel bags are used to protect the foundations of large bridges and are applied in 

civil engineering for rivers and coastal works.  

Gravel-filled bags are a type of fill-containing geosystems (bags, mattresses, 

geotubes) where the units are filled with sand, gravel, or mortar. Examples of these 

systems include bags, mattresses, tubes, containers, and open bags filled with gravel, 

stones, or asphalt. These systems have been extensively used various coastal 

engineering applications (Havelin, 2012). One of the first applications was in the scope 

of the Delta Works in the Netherlands in the 1960s and 1970s. However, more rapid 

developments all over the world took place in the 1980s (Pilarczyk, 2012).  

Among various types of sand or gravel-filled bags used for the coastal protection, 

a gravel bag can be used as a berm and placed along a level contour where sheet flow 

may be detained and ponded, promoting sedimentation. This gravel bag filters may be 

used to trap sedimentation or reduce velocity. They have also been used in places where 

flows are moderately concentrated, such as ditches, swales, and storm drain inlets to 
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divert and detain currents. A gravel berm consists of a single row of gravel bags installed 

end to end to form a barrier across a slope to intercept runoff, reduce runoff velocity, 

release runoff as sheet flow, and provide some sediment removal. Another example is a 

Grout-filled bag. A major advantage of this bag is that the units hold their shape after 

the fabric deteriorates or is torn. Sand-filled bag breakwaters are constructed of stacked 

bags in a staggered pattern. The integrity of the structure depends on the individual bags 

remaining in place and intact. Among many types of gravel bags, in the experiment, the 

filter unit, manufactured by Kyowa (Sumitomo Corp., 2017) shown in Figure 3.22 was 

applied using the same initial profile and the same amount of gravel used in the BGL 

test case.  (see Figure 3.23 -3.24). 
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Figure 3.21:   End of the test case 3 test 

 

Figure 3.22:   Kyowa’s Filter Unit (Gravel-filled bag) 
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Figure 3.23:   Test Case 5 Gravel Bag Layer (GBL) initial profile 

 

 

Figure 3.24:   Hydraulic model experiment using gravel bags 
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Due to the interaction among gravel bags using the hydraulic model experiment 

conducted using SWL 1, no considerable difference was observed compared to the 

buried gravel layer, test case 3, except for the mixture of composite gravel sand moving 

onshore was not observed in this test case (Figure 3.25). This was so because gravel tied 

in a synthetic fiber mesh, and no movement of the filter unit was detected throughout 

the experiment. 

 

Figure 3.25:   Case 5, GBL with SWL 1 profile evolution of t1, t2, t3, and t4 
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For the GBL with SWL2, as time passed, the erosion persisted; however, the 

filter unit did not move; therefore, there was no movement of gravel (see Figure 3.26). 

 

Figure 3.26:   Case 5, GBL with SWL 2 profile evolution of t1, t2, t3, and t4 
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The overall tendency was similar; however, while BGL created a berm at the 

initial landward, it also created scouring at the gravel layer and caused gravel moving 

onshore. Unlike in the case of BGL, the GBL test case was more stable and created no 

gravel movement. 

The results of comparison of the erosion tendencies for case 3 and case 5 at the 

water level of SWL 1 showed that, when the gravel of GBL was replaced with the gravel 

bag, there was no significant difference in the profile between them. As shown in Figure 

3.27, the rear of the berm showed different sedimentation patterns in the time condition 

of t2, where in case 5, the gravel bag could not be installed to the ground, which caused 

erosion faster than in case 3. 
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Figure 3.27:   Case 3 and 5 SWL 1 comparison of t1, t2, t3, and t4 
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In SWL 1, overall erosion and deposition patterns of case 3 and case 5 were 

similar; however, in SWL 2, case 5 was found to have superior erosion control ability 

as compared to case 3. This was so because, in the case of test case 3, as time passed, 

the role of the gravel permeable layer was reduced by the scattering of some moving 

gravel into the surface layer. On the other hand, the results confirmed that the gravel 

bag of case 5 demonstrated the ability to control erosion for a long time by sufficiently 

exerting the permeable layer's role despite the passage of time. 

When SWL increased, the difference was considerable. Since the gravel bag 

protected the berm from forming the scour hole, erosion persisted. By the end of t1, 

unlike in test case 3, a large amount of sand dune formed on the backshore. When test 

case 3 has eroded dune on the backshore, in test case 5, a sand dune formed even higher. 

This dune slowly eroded after t2; however, not much erosion was observed on the 

backshore as compared to the other test case. Erosion on the berm on top of the gravel 

and the gravel bag layer appeared similar; however, after t3, in test case 5, the formation 

of the scour hole was prevented. This method is effective in the event of high waves 

such as hurricanes, and the results confirmed that sedimentation was trapped by gravel 

bags to prevent erosion. Besides, due to their low cost, simple processing, and the 

possibility of being tailor-made, gravel bags are considered as a great countermeasure 

to be used with nourishment. 
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Figure 3.28:   Case 3 and 5 SWL 2 comparison of t1, t2, t3, and t4 
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Thus, by looking at the Figure 3.29, A comparison of the outcomes of test cases 

3 and 5 showed that, in the latter case, due to gravel’s being tied in synthetic fiber mesh, 

no movement of filter unit was detected throughout the experiment (see Figure 3.29).  

 

Figure 3.29:   Top view of the end of test cases 5 and 3. 
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3.6 Conclusions 

 

In this chapter, beach profile evolution and sediment transport were 

experimentally investigated using gravel to reinforce a nourished sand beach for low 

wave energy shores with limited sediment availability. Porous gravel berm interacted 

with wave action in the swash zone and reduced wave overtopping and berm erosion. 

Sand particles moved as bedload and suspended load, whereas gravel particles moved 

as bed load only. When gravel bags substituted the gravel layer, gravel particles did not 

move, and only sand particles moved as bedload and suspended load. Therefore, it can 

be concluded that, for the purposes of both aesthetic value and effectiveness in low wave 

energy shores, gravel nourishment can be replaced by gravel bags.  
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Chapter 4 

NUMERICAL SIMULATIONS AND ARTIFICIAL INTELLIGENCE 

This chapter explains the numerical simulation models to compute beach profile 

evolution and sediment transport of four different test cases conducted through 

hydraulic model experiments. Since the current numerical simulation models cannot 

simultaneously reproduce the gravel and sand, artificial intelligence that uses the neural 

networks was applied as a new way to cluster and classify sediment transport. The 

efficiency of application back-propagation neural network with three hidden layers to 

emitter identification was examined. This chapter reports the results obtained through 

ANN model. 

4.1 Introduction 

Most shorelines worldwide are experiencing some form of erosion, and this 

trend can aggravate if the mean sea level rise accelerates due to the greenhouse effect 

(Nicholas and Cazenave, 2010). The recent increase of coastal storm damage 

necessitates the development of numerical models to predict the damage progression 

and breaching of beaches, coastal stone structures, and earthen leaves during extreme 

storms. In this context, in order to quantitatively understand the beach morphology and 

damage progression, robust and straightforward models to reproduce the phenomenon 

are necessary. Unfortunately, current models cannot calculate the damage while 

simultaneously using different grain sizes.  

Current models are based on the combinations of many physical equations (e.g., 

the wave energy equation) and are calibrated and verified using small-scale hydraulic 

model experiments. Throughout the experiment, test case 1 was the only sediment of 

sand with D50 0.16 mm used, compared with various 2D numerical simulations. 
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Numerical models CSHORE, SBEACH, and XBEACH were tested and compared with 

the results of the hydraulic model experiment. Moreover, the results of the artificial 

model were compared with the results of numerical simulations. 

Other than test case 1, hydraulic model experiments of test case 2,3, and 4 with 

different SWL were compared with the AI model prediction. In this chapter, the aim is 

to explore the possibility of reproducing the AI convergence and application on 

sediment transport. Since only the data obtained from the current hydraulic model 

experiment were used in the AI prediction, the results may not be entirely reliable; 

however, they can show the application's possibility. 
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4.2 Numerical Simulations 

This chapter aims to validate the ability of three cross-shore numerical models 

(CSHORE, SBEACH, and XBEACH-G), and artificial neural network model 

developed in this study to overcome the shortcomings of other numerical simulations. 

Due to dramatic advances in the capabilities of personal computers, the usage of 

numerical model tests for coastal regions has become increasingly popular. Combining 

numerical and hydraulic model plays a vital role in quantifying the natural processes, 

such as beach profile performance or sediment transport behavior. Such a relationship 

produces the potential capacity to replicate complex features that cannot be obtained in 

the field. Moreover, soft techniques such as beach nourishment should be tested before 

actual nourishment; furthermore, to be nourished in the best placement, numerical 

simulation can be simply and quickly applied.  

With regard to the sediment transport profile behavior, in the literature, 

numerous numerical models for the littoral zone have been proposed (Yuan, 2017). For 

instance, in a pioneering study on the beaches along the Danish North Sea coast and the 

California coast, Bruun (1954) developed a predictive equation for the equilibrium 

beach profile. Furthermore, using the wave energy approach and differentiation between 

bedload and suspended load, Bagnold (1966) developed formulas to calculate sediment 

transport rates, including cross-shore transport. Several subsequent studies, including 

Bailard (1982), and Stive and De Vriend (1987) refined Bagnold’s (1966) work. Using 

a combination of theory and field observation, Larson (1996) proposed the SEBACH 

model to predict profile changes due to storms; similarly, the CSHORE model was used 

to predict such changes in response to the interactions between waves and currents. 

Finally, the XBEACH-G model was proposed that uses non-linear shallow water 

equations, such as a non-hydrostatic pressure term and a source term for the exchange 
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with groundwater. However, a limitation of all aforementioned models is that all of them 

reply to the equilibrium profile assumption to estimated profile and sediment transport. 

The initial version of the CSHORE model, developed by Kobayashi and his 

colleagues at the University of Delaware, was based on irregular nonlinear wave theory 

which uses the time-averaged continuity, momentum, and wave energy equation 

together with a non-Gaussian probability distribution of the free surface elevation 

(Kobayashi and Kim, 2017; Kim et al., 2016). However, due to complex natural 

environments and the limitations of empirical formulas, this model has several 

limitations. Therefore, in the present study, for the case of alongshore uniformity, the 

model was developed based on the equilibrium profile and linear wave theory combined 

with the current. The sediment transport rate was computed based on a combination of 

cross-shore and longshore suspended load and bedload in the surf zone. The calculation 

of the wave and current model was based on the time-averaged continuity equation, the 

cross-shore and longshore momentum equation, and the wave action equation in the surf 

zone. Given that the CSHORE is a time-averaged probabilistic model, the sediment 

transport model formulation involved predicting both suspended load and bedload 

transport rate. For the CSHORE sediment transport, the time-averaged bedload 

transport rate qbx was estimated using Eq. (4.1), and time-averaged cross-shore 

suspended sediment transport rate qsx was computed based on Eq. (4.2). 

 

 𝑞𝑏𝑥 =
𝑏𝑃𝑏𝜎𝑈

3

𝑔(𝑠−1)
𝐺𝑠(𝑆𝑏𝑥)  (4.1) 

 𝑞𝑠𝑥 = 𝑎𝑈̅𝑉𝑠  ;   𝑎𝑥 = [𝑎 + (𝑆𝑏𝑥/tan ∅)0.5] ≥ 𝑎  (4.2) 
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where b is the empirical bed load parameter with the value in the range of 0.001-

0.004, 𝑆𝑏𝑥  is the cross-shore slope, and 𝐺𝑠  is the bottom slope function where 𝐺𝑠 =

(1 −
𝑆𝑏𝑥

𝑡𝑎𝑛𝜙
), 𝑡𝑎𝑛𝜙  is the avalanching angle, s is the sediment specific gravity, 𝑎 =

(0.2 +  √𝑆𝑏𝑥/0.63) is the suspended load parameter of the order of 0.2 under the action 

of waves and wave-induced currents for upward slopes, Pb is the sediment movement 

probability, 𝑈0 is the onshore current due to the wave overtopping rate 𝑞0, 𝑈̅ is given in 

Eq. (4.3), Ce is an empirical coefficient, 𝑉𝑠 is the suspended sediment volume per unit 

horizontal area in Eq. (4.4), 𝑉𝐵𝑓  is the potential suspended sediment volume on a 

horizontal bottom (see Eq. (4.5)). Overbar indicates time-averaged values.  

 

 𝑈̅ = −
𝑔ℎ̅

𝐶𝑒
2 𝜎𝑈𝜎 ∗  (1 +

𝐶𝑒𝑞𝑟

𝑔𝜎𝜂
2 ) +

𝑄𝑥

ℎ̅
  (4.3) 

 𝑉𝑠 = 𝑃𝑠𝑉𝐵𝑓(1 + 𝑆𝑏𝑥
2 )0.5(1 + 𝑆𝑏𝑦

2 )0.5 ;  𝑆𝑏𝑥 =
𝜕𝑧𝑏

𝜕𝑥
;  𝑆𝑏𝑦 =

𝜕𝑧𝑏

𝜕𝑦
  (4.4) 

 𝑉𝐵𝑓 =
𝑒𝐵𝐷𝑟+𝑒𝑓𝐷𝑓

𝜌𝑔(𝑆−1)𝑤𝑠
 (4.5) 

 

where eb = 0.005, ef = 0.01, and ws is the sediment fall velocity. Ps, the probability 

of sediment suspension, was included in Eq. (4.4). The sediment transport direction was 

assessed by both suspended qsx and bed load transport rate qbx. The following cross-

shore equilibrium profile concept proposed by Dean (1991) was used: qsx + qbx = 0. 

When qsx was negative, the transport direction was offshore, as the return current 𝑈̅ was 

negative (offshore). Alternatively, when qbx was positive, the transport direction was 

onshore for Sbx < (𝑡𝑎𝑛𝜙)/2, and when qbx was negative, transport was offshore for Sbx> 

(𝑡𝑎𝑛𝜙)/2 (Kobayashi, 2016). Although equations used in the CSHORE model pertain 

to various sectors, only the sediment transport part was reviewed. 
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The SBEACH model, originally developed by the US Army Corps of Engineers, 

is a numerical model for simulating cross-shore storm-induced beach transport that can 

simulate long-term recession processes with empirical coefficients derived from 

process-based models (Roelvink et al., 2009). The SBEACH model simulates beach 

profile changes, such as the formation and movements of significant morphologic 

features (e.g., berms and bars) for various parameters of storm waves and water levels. 

Breaking waves and changes in the sea level are the major parameters accounted for by 

the SBEACH model. This model is based on the equation of mass conservation that 

requires the mathematical expression for the cross-shore transport rate. The transport 

direction and the rate of transport equations are developed separately for 

monochromatic waves and irregular waves. The model enables determining the 

direction of net cross-shore transport based on the deep-water wave steepness (Ho/Lo) 

and sediment fall velocity (ws). Eq. (4.6) is the transport direction equation for 

monochromatic wave types. 

 
𝐻𝑜

𝐿𝑜
= 𝑀 (

𝐻𝑜

𝑤𝑠𝑇
)

3

, 𝑀 = 0.00070  (4.6) 

 

where 
𝐻𝑜

𝐿𝑜
 > M (

𝐻𝑜

𝐿𝑜
)

3

is accretion, while 
𝐻𝑜

𝐿𝑜
 < M (

𝐻𝑜

𝐿𝑜
)

3

 is erosion. Ho is deep water wave 

height, T is the wave period, and Lo is the deep water wave length. The monochromatic 

wave transport equation under broken waves is shown in Eq. (4.4), where q is the net 

cross-shore transport rate, 
𝑚3

𝑠𝑒𝑐∗𝑚
, 𝜖 is the slope related transport rate coefficient 

𝑚2

𝑠𝑒𝑐
 , K 

is the sand transport rate coefficient 
𝑚4

𝑁
, and h is the still water level in m. x is the cross-

shore coordinate directed positive offshore in m, D is the wave energy dissipation per 

unit water volume (
𝑁𝑚

𝑚3𝑠𝑒𝑐
), and Deq is the equilibrium wave energy dissipation per unit 

water volume (
𝑁𝑚

𝑚3𝑠𝑒𝑐
). ∈ is slope related transport rate coefficient. 
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 𝑞 = (
𝐾 [𝐷 − (𝐷𝑒𝑞 −

∈

𝐾

𝑑ℎ

𝑑𝑥
)] 𝐷 > 𝐷𝑒𝑞 −

∈

𝐾

𝑑ℎ

𝑑𝑥

0 𝐷 ≤ 𝐷𝑒𝑞 −
∈

𝐾

𝑑ℎ

𝑑𝑥

)  (4.7) 

 

where D= 
1

ℎ

𝑑𝑓

𝑑𝑥
 , Deq = 

5

24
𝜌𝑔3/2𝛾2𝐴3/2, and the energy flux = 

1

8
𝜌𝑔𝐻2√𝑔ℎ (A is dean’s 

scaling parameter, and 𝛾 is a wave breaker index). 

For irregular wave types, the transport direction is determined as follows (see Eq. (4.8)): 

 𝜉 = 2
𝑒

−
1
𝑀

𝐻𝑟𝑚𝑠𝑜
𝐿𝑜

(
𝑤𝑠𝑇

𝐻𝑟𝑚𝑠𝑜
)

3

𝑒
−(

𝐻𝑏𝑜
𝐻𝑟𝑚𝑠𝑜

)
2 − 1,   − 1 ≤ 𝜉 ≤ 1  (4.8) 

In Eq. (4.3), 𝜉 represents the net transport direction, Hrmso is the deep-water root mean 

square (rms) wave height and Hbo is the wave height at incipient breaking transformed 

seaward to deep water, M=0.0007. Net erosion occurs when 𝜉 is positive, whereas net 

accretion is predicted when 𝜉 is negative. 

The transport rate equation for random wave types is shown in Eq. (4.9). 

 

 𝑞 = 𝐾𝜉 [𝐷 − 𝛼 (𝐷𝑒𝑞 −
𝜖

𝐾

𝑑ℎ

𝑑𝑥
)]  (4.9) 

 

where D is the average energy dissipation per unit water volume, K is the sand transport 

rate coefficient 𝜉 that weights the influence of erosion versus accretion waves on the 

transport rate and determines the net direction of transport. In Eq. (4.9), 𝛼 (𝐷𝑒𝑞 −
𝜖

𝐾

𝑑ℎ

𝑑𝑥
) 

part must be in positive in order to make the transport to occur; otherwise, the transport 

is set to zero (Wise et al., 1996). Furthermore, transport rate is set to zero when the 
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sections where 
𝑑ℎ

𝑑𝑥
 < 0 as the computations progress up the foreshore (Larson, 1996). 

Therefore, SBEACH is unable to model the accretion process under irregular waves.  

XBEACH—a model used to model the nearshore processes, such as wave 

breaking, surf and swash zone processes—was originally proposed by Reolvink et al. 

(2007). A powerful tool to reproduce the erosion for sediment transport, the XBEACH 

model includes long wave transformation, short wave transformation (refraction, 

shoaling, and breaking), time-varying depth-averaged currents, wave-induced setup and 

run-up, wave-current interaction, roller momentum exchange, over-wash, as well as 

inundation and hard structures. . A limitation of this model is that it requires extensive 

modelling input and running time. Reviewing the significant sediment transport formula, 

the sediment transport is modelled with a depth-averaged advection-diffusion equation 

(see Eq. (4.10); Galappatii and Vreugdenhil, 1985). 

 

 
𝜕ℎ𝐶

𝜕𝑡
+

𝜕ℎ𝐶𝑢𝐸

𝜕𝑥
+

𝜕ℎ𝐶𝑣𝐸

𝜕𝑦
+

𝜕

𝜕𝑥
[𝐷ℎℎ

𝜕𝐶

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝐷ℎℎ

𝜕𝐶

𝜕𝑦
] =

ℎ𝐶𝑒𝑞−ℎ𝐶

𝑇𝑠
  (4.10) 

 

where C, which varies on the wave group time scale, is the depth-averaged sediment 

concentration, Ceq is the equilibrium concentration computed as shown in Eq. (4.11), 

and Dh is the sediment diffusion coefficient. Furthermore, Ts is an adaptation time based 

on the local water depth h and sediment fall velocity ws, representing the entrainment of 

the sediment. The continuity equation, which indicates bed-updating, is shown in Eq. 

(4.12). 

 𝐶𝑒𝑞 =
𝐴𝑠𝑏+𝐴𝑠𝑠

ℎ
((|𝑢𝐸|2 + 0.018

𝑢𝑟𝑚𝑠
2

𝐶𝑑
) − 𝑢𝑐𝑟)

2.4

(1 − 𝛼𝑏𝑚)  (4.11) 
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𝜕𝑧𝑏

𝜕𝑡
+

𝑓𝑚𝑜𝑟

1−𝑝
(

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
) = 0  (4.12) 

 

where Asb is a bed load coefficient, Ass is a suspended sediment coefficient, 𝑢𝑐𝑟 is critical 

velocity for sediment to move, and Cd is drag coefficient. To account for bed-slope 

effects on the equilibrium sediment concentration a bed-slope correction factor is 

introduced, where the bed slope is denoted by m and 𝛼𝑏 represents a calibration factor. 

fmor is a morphological acceleration factor of order (1-10), p is the porosity, while qx and 

qy are the sediment transport rates in x and y direction, respectively (see Eq. (4.13)- 

(4.14)).   

 

 𝑞𝑥(𝑥, 𝑦, 𝑡) = [
𝜕ℎ𝐶𝑢𝐸

𝜕𝑥
] + [

𝜕

𝜕𝑥
[𝐷ℎℎ

𝜕𝐶

𝜕𝑥
]] (4.13) 

 𝑞𝑦(𝑥, 𝑦, 𝑡) = [
𝜕ℎ𝐶𝑢𝐸

𝜕𝑦
] + [

𝜕

𝜕𝑦
[𝐷ℎℎ

𝜕𝐶

𝜕𝑦
]]  (4.14) 

 

The formulation in XBEACH uses the Soulsby-Van Rijin transport concept (Roelvink 

et al., 2009) and the avalanching approach to update the morphology. XBEACH-G, 

which was used in this study is based on the XBEACH model for sandy coasts, which 

has previously been modified to solve intra-wave flow and surface elevation variations 

for waves in intermediate and shallow water depths by means of a one-layer, depth-

averaged, non-hydrostatic flow model (McCall, et al., 2015). 
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4.3 Numerical Simulation Results  

Sandy beaches without any protection are vulnerable to storm waves and cause 

a large amount of erosion. Similarly, to the results of test case 1, when only sand was 

used in the nourishment, beach acquired equilibrium soon after the storm wave attacks. 

As current numerical models cannot reproduce test case 2, 3, and 4 with gravel 

nourishment, only test case 1 was compared among other numerical models. 

The aim of this section is not to compare and see which model is the best, but to 

see whether AI model can reproduce the reasonable prediction like the other numerical 

simulations as will be discussed in section 4.7. For all three numerical models used 0.16 

mm for the D50 and used irregular waves with same wave heights and wave period used 

in hydraulic model experiment. Since SBEACH and XBEACH-G models are made with 

GUI, all the input factors were easily set as same as the hydraulic model experiments. 

All the models used number of calculation cells or grid sizes smallest as possible. For 

the different parameters each model requires, 30 degrees were used for maximum slope 

prior to avalanching in SBEACH, and 30 degrees were used for angle of repose in 

XBEACH-G. For the sediment friction factor, default value of 0.025, and for the 

hydraulic conductivity, K, 0.1 m/s was used. For the CSHORE, version developed in 

2017 (Kobayashi and Kim, 2017) was used throughout the test; however, among many 

parameters, only parameters calculate sediment transport were selected and used as 

same as the hydraulic model experiments. SBEACH and CSHORE computational 

running time was short, unlike XBEACH requires extensive computational running time.  

Again, the focus of this section is to see numerical simulations can reasonably 

generate equilibrium beach profile like hydraulic model experiment did and later 

compare it with AI model results to see whether AI model is comparable with these 

numerical models. Therefore, after runtime of 120 minutes, beach profile was compared 
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as shown in Figure 4.1 and Figure 4.2. Using SWL 1 with the same wave conditions, it 

was found that the results of CSHORE showed the most similar profile evolution as 

compared to that of the measured profile. XBEACH created the dune on the backshore; 

however, a relatively good agreement was observed. On the other hand, the results of 

SBEACH showed too much deposition on the foreshore. Overall, all the numerical 

simulations could reproduce the equilibrium beach profile with SWL 1. 

 

 

Figure 4.1:   Case 1 SBB, SWL1 numerical simulations and measured comparison 

When SWL was increased to SWL 2, the results varied. Soon after the SWL 

increased, the final profile of SBEACH, which is sensitive to water level changes, 

became parallel to the ground. SBEACH is sensitive to both wave climate and water 

level changes, which is an advantage of the model; however, in this case, when SWL 

increased to almost the same as the ground level, an accurate calculation could not be 

performed. On the other hand, the final profile of CSHORE showed extensive erosion 

on the backshore; however, the general profile looked most similar to that of the 

measured profile. XBEACH showed extensive erosion both on the berm and foreshore. 
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By examining each model's formulations, it can be seen that the empirical models with 

equilibrium profile concepts were more economical; however, this computation is not 

always accurate compared to energetic models, especially with high seawater level (see 

Figure 4.2). Energetic models have an advantage in accuracy and theory of formulation, 

but are time-consuming and not suitable for the long-term simulation. 

 

 

Figure 4.2:   Case 1 SBB, SWL2 numerical simulations and measured comparison 
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4.4 Artificial Neural Networks (ANN) 

Artificial neural networks (ANN), a major tool in deep learning computing, are 

widely used across all coastal and ocean engineering disciplines, including offshore, 

deep-ocean, and marine engineering. ANN are being used in the areas of prediction and 

classification, areas where regression and other related statistical techniques have 

traditionally been used (Abambres et al., 2017; Banihabib et al., 2020). ANN, in general, 

have provided either substitutive or complementary options to traditional computational 

schemes of statistical regression, time series analysis, pattern recognition, and numerical 

methods (Chaudhuri et al., 2016; Konate, 2019; Tealab, 2018). Due to the limitations of 

numerical simulation reproducing the gravel nourishment, in this chapter, ANN were 

used to try to predict the future profile evolution of test cases 1, 2, 3 and 4 using the 

hydraulic model experiment data as a training dataset. Recently, ANN have been studied 

as an alternative to the non-linear model-driven approaches. ANN rely on a data-driven 

approach where the analysis depends on the available data, with little a 

priori rationalization about the relationships between variables and about the models. 

The process of constructing the relationship between the input and output variables is 

addressed by a certain general-purpose learning algorithm.  

In the present study, the ANN were inspired by information processing and 

communication nodes in biological systems (Salahudeen et al., 2018). ANN follow the 

cognition process of the biological neurons of a brain and develop the intelligence from 

communications between different artificial neurons. An ANN are basically composed 

of a set of interconnected artificial neurons, nodes or a group of processing units that 

process and transmit information through activation functions. 
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Figure 4.3:   Activation functions tanh, sigmoid, ReLU, and linear functions 
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The most frequently used activation functions are the linear and non-linear 

functions- the logistic, ReLU, hyperbolic tangent functions, and others, all of which 

define the output of that node given an input or set of inputs.  

 

 𝑓(𝑥) = tanh(𝑥) =
(𝑒𝑥− 𝑒−𝑥)

(𝑒𝑥+ 𝑒−𝑥)
 (𝑡𝑎𝑛ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)   (4.15) 

 𝑓(𝑥) = σ(𝑥) =
1

1+ 𝑒−𝑥  (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)   (4.16) 

 𝑓(𝑥) = {
0 𝑓𝑜𝑟 𝑥 ≤  0 
𝑥 𝑓𝑜𝑟 𝑥 >  0

 (𝑅𝑒𝐿𝑈 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  (4.17) 

 

In recent years, the Rectified Linear Unit (LeLU) has become very popular. It 

outputs the function f(x)=max(0,x). In other words, the activation is simply thresholds 

at zero. Comparing with tanh or sigmoid neurons that involve exponentials, the ReLU 

can be implemented by simply thresholding a matrix of activations at zero. The neurons 

of a network are structured in a single or multi-layer. The most frequently used 

perception for deep learning is the multi-layer perceptron or MLP (Matuszewski et al., 

2017). The nodes of one layer are connected to the next layer's nodes to which they can 

send information. More precisely, ANN consist of neurons that have learnable weights 

and biases. Each neuron receives inputs, performs a dot product, and optionally follows 

it with non-linearity. ANN receive the input and transform it through a series of hidden 

layers. As shown in Figure 4.4, the last connected layer is called the output layer.  
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Figure 4.4:   Structure of neurons of network 
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Here, ANN with 𝑂 =   𝑓(∑ 𝑤𝑖𝑥𝑖  +  𝑏𝑑
𝑖=0 )  where 𝑥0, 𝑥2, 𝑥3, . . . , 𝑥𝑑 and output 

is 𝑂 . Every activation function takes a single number and performs a certain fixed 

mathematical operation on it. 

The advantage of a multi-layer perceptron is that both input and output data can 

be processed in a continuous or discrete format. It has good predictability in general or 

is always compared to other algorithms. It is powerful and useful when the relationship 

between attributes or features is more complex. However, it is difficult to describe the 

structure and relatively difficult to derive the optimal model, since it is composed of a 

model close to the black box.  

Predictive analytics deals with information retrieval to predict an unknown event 

of interest, typically a future event. In the present study, sediment transport and profile 

evolution were intended for the prediction. Using technology that learns from data to 

predict these unknown events could drive better decisions. Usually, these predictive 

analytics include readily available data like age, income, marital status, or other open-

text types. Using various data, predictive models can uncover patterns and relationships, 

which allow organizations to anticipate outcomes based on more concrete information 

than an assumption. The advantage of the ANN is the feedforward networking and back 

propagation of error (Fine, 1999; Matuszewski et al., 2017), by which the network can 

be trained to minimize the error up to an acceptable accuracy. The training procedure of 

the network can select to fit the purpose of supervised and unsupervised training types. 

In the present study, the back-propagation algorithm with supervised learning was used. 
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4.5 Dataset and Architecture 

Each hidden layer consists of a set of neurons. Each neuron is fully connected 

to all neurons in the previous layer, and where neurons in a single layer function entirely 

independently and do not share any connections. The last fully-connected layer is called 

the output layer. The architecture of this research is based on a three-layer perceptron 

(see Figure 4.5). Seven nodes with the input layer and three hidden layers with 254 

nodes were used. These nodes from the hidden layer can be made up infinitely. Here, 

after using more than 254 nodes, results changed minimal that 254 nodes were used. 

 The intention was to obtain the final predicted profile; therefore, the node of the 

output layer was set to one. The aim was to predict the future profile and to compare it 

with the measured data obtained from the hydraulic model experiments. Thus, beach 

profile evolution with t1, t2, and t3 was used for the training, and t4 was tested with the 

output from the prediction.  

As the architecture of the ANN model in Table 4.1, seven input parameters were 

used for both training and testing. Profiles of Case 1, 2, 3, and 4 with SWL 1 and 2 for 

time t1, t2, t3 were trained. Seven input parameters include cross-shore distance, initial 

profile, time, height, period, case, and seawater levels with the output (profile evolution) 

were used in training. For the testing (t4 of each test case), the same input parameters 

were used to get a final profile evolution as an output. Later, tested outputs were 

compared with the measured profiles, and the differences were analyzed to see the 

performances of ANN model in Table 4.2-4.4.  
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Figure 4.5:   Neural network architecture used in the present study 
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Table 4.1:   Architecture of the present study  

Parameter LAF case RAF case SAF case 

Model Deep Neural Network 

Input parameter 

Cross-shore distance 

Initial profile 

Time 

Height 

Period 

Case 

Sea Water Level 

Activation function Linear ReLU sigmoid 

Hidden layer 3 

Hidden layer’s node 254 

Output node 1 

Target Changed Profile (Profile evolution) 
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For the parameter of each activation function, Linear activation function (LAF), 

ReLU activation function (RAF), and sigmoid activation function (SAF) cases were 

compared. The developed ANN model's performance was evaluated to ensure that the 

model was able to perform within the pre-defined limits set by the data used for training 

generally. The conventional approach was used to evaluate the model performance on 

an independent validation set of data not used in the training process. Root mean square 

error (RMSE), mean absolute error (MAE), and mean squared error (MSE) were used as 

evaluation metrics to gauge the prediction accuracy. The RMSE, MAE, 

and MSE evaluation matrices were defined as follows (see Eq. (4.18) -(4.20)): 

 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖−𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑛

𝑖

𝑛
  (4.18) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖|

𝑛
𝑖   (4.19) 

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)

2𝑛
𝑖   (4.20) 

 

where n is the number of test samples; predicted is the predicted beach profile change 

at t4=120 min, and actual denotes the measured t4 from the hydraulic model experiment. 

From the prediction accuracy comparison of using the activation function of 

LAF, RAF, and SAF cases, all three activation functions have not much differences of 

error since amount of the training data is not too much (Table 4.2-4.4); however ReLU 

activation function was chosen since ReLU is a faster learning AF, which has proved to 

be the most successful and widely used function (Ramachandran et al., 2017) and it’s 

data sparsity which reduces the likelihood of the gradient to vanish. 
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Table 4.2:   Results in RMSE, MAE, MSE (Linear activation function) 

SWL CASE RMSE MAE MSE 

SWL1 

1 0.6663 0.6663 0.8736 

2 1.2512 1.2512 3.4243 

3 0.8655 0.8655 1.4636 

4 0.7411 0.7411 1.3602 

SWL2 

1 0.7467 0.7467 0.8849 

2 0.7956 0.7956 1.1911 

3 0.4788 0.4788 0.3683 

4 0.6418 0.6418 0.6751 

Table 4.3:   Results in RMSE, MAE, MSE (ReLU activation function) 

SWL CASE RMSE MAE MSE 

SWL 1 

1 0.6141 0.6141 0.7235 

2 1.3004 1.3004 3.9409 

3 0.9777 0.9777 1.9097 

4 0.8903 0.8903 1.9033 

SWL 2 

1 0.7559 0.7559 0.9443 

2 0.8308 0.8308 1.2265 

3 0.5345 0.5345 0.4829 

4 0.6398 0.6398 0.7698 

Table 4.4:   Results in RMSE, MAE, MSE (Sigmoid activation function) 

SWL CASE RMSE MAE MSE 

SWL 1 

1 0.6098 0.6098 0.6909 

2 1.2353 1.2353 3.6859 

3 0.9431 0.9431 1.9205 

4 0.8769 0.8769 1.7792 

SWL 2 

1 0.7633 0.7633 0.9537 

2 0.9091 0.9091 1.6425 

3 0.5691 0.5691 0.5491 

4 0.6394 0.6394 0.7830 
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4.6 Artificial Intelligence (ANN) model results 

In this chapter, ANN was used to predict the future profile evolution of the 

sediment transport of the sand and gravel nourishment of test cases with sand berm and 

beach, gravel berm and sand beach, buried gravel layer, and buried gravel sill. After 

deciding to use the ReLU activation function for the final output, the final beach profile 

for t4=120 min was compared with that of the hydraulic model experiment. Some 

drawbacks associated with the practical use of ANN include the possibly long time of 

the modeling process and the large amount of data required. Figure 4.6 shows the initial 

profile with SWL for each test cases. Figures 4.7- 4.14 show the predicted beach profile 

evolution compared to the measured profile from the hydraulic model experiment.  

 

Figure 4.6:   Case 1, 2, 3, and 4 initial profile 

As shown in Figures 4.7 and 4.8, in test case 1, using only sand nourishment, 

with SWL 1 and SWL 2 were compared. This profile is the equilibrium beach profile 

where the ANN model predicted the foreshore very well; however, erosion on the 

backshore was not accurately predicted on SWL 1. For SWL 2, there was a scour hole 
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that occurred during t2, and ANN used the previous training data to reproduce the scour. 

This was due to the lack of data to be trained except three-time steps t1, t2, and t3. 

However, the overall profile appeared to be reasonable. 

 

Figure 4.7:   Case 1 SWL 1 comparison of ANN prediction and measured from the 

physical test 

 

Figure 4.8:   Case 1 SWL 2 comparison of ANN prediction and measured from the 

physical test 
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Typical gravel nourishment of Tuvalu was reproduced and tested through test 

case 2 with SWL 1 and SWL 2. Figures 4.9 and 4.10 show the results of the ANN model 

and compared with the measured profiles. From SWL 1, the ANN model produced the 

dune on top of the berm like the measured profile; however, the shape and location were 

not in the exact location. Nonetheless, for the tendency wise, creating the dune on top 

of the berm, and foreshore erosion were accurately reproduced through ANN. Measured 

profile of test case 2 with SWL 2 showed the dune forming on the backshore, and the 

ANN model also predicted the berm shape profile on the backshore. Although, overall 

tendency appeared to be reasonable, size and location of the dune were not precisely 

reproduced. One of the main reasons for this inaccuracy may be the lack of the data 

since only 8 test cases with t1, t2, and t3 were used as the training dataset.  
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Figure 4.9:   Case 2 SWL 1 comparison of ANN prediction and measured from the 

physical test 

 

 

Figure 4.10:   Case 2 SWL 2 comparison of ANN prediction and measured from the 

physical test 
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In test case 3 with SWL 1 shown in Figure 4.11, the ANN model predicted less 

erosion on the backshore compared to the measured profile evolution. Even though the 

overall tendency of beach profile becoming equilibrium was predicted, the amount of 

erosion was not precisely predicted. Nonetheless, the prediction of ANN on test case 3 

with SWL2 in Figure 4.12 was accurate as compared to the measured data. Erosion was 

accurately predicted on both the berm and the foreshore. 
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Figure 4.11:   Case 3 SWL 1 comparison of ANN prediction and measured from the 

physical test 

 

 

Figure 4.12:   Case 3 SWL 2 comparison of ANN prediction and measured from the 

physical test 
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Finally, for the test case 4 with SWL 1, similarly to test case 2 with SWL2 in 

Figure 4.10, the scour hole was predicted on the berm, and less erosion was predicted 

on the backshore of the beach. As shown in Figure 4.14, foreshore prediction of cross-

shore 60 to 180 cm prediction was accurate. Gravel sill did not move so much on the 

cross-shore 40 – 64 cm in the measured data; however, the tendency of ANN prediction 

on this section predicted well. The prediction had a dune shape formed on this section 

unlike measured data. Cross-shore 0 to 40 cm had a reasonable prediction as compared 

to the measured data.  

  



 103 

 

 

Figure 4.13:   Case 4 SWL 1 comparison of ANN prediction and measured from the 

physical test. 

 

 

Figure 4.14:   Case 4 SWL 2 comparison of ANN prediction and measured from the 

physical test 
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Artificial neural networks were used to predict the final profile of test cases 1, 

2, 3, and 4 with SWL 1 and 2 (a total of 8 test cases) by training the test cases with time 

intervals 30 minutes (t1=30 min, t2=60 min, and t3=90 min). For the activation function, 

the ReLU function was used for the prediction. Throughout the profile comparisons of 

ANN model and measured data for t4 = 120 min, the ANN model was able to predict 

the tendency of the erosion quite well with forming the dune on the backshore when 

using gravel nourishment. However, the ANN model's prediction about the erosion 

amount of the measured data was reasonable but not precisely accurate. This limitation 

could have been caused by lack of the dataset used for model training. In the future 

analysis, more datasets with shorter timesteps should be trained on the model to increase 

the accuracy of the prediction. Moreover, various types of the initial profile should be 

trained in order to make the ANN model more robust and accurate. Further researches 

should be conducted in order to use the model practically. 
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4.7 Data Comparisons 

Since the comparison of ANN model can be made with numerical simulation on 

only test case 1 using only the sand beach profile, three numerical simulation models 

(CSHORE, SBEACH, and XBEACH-G) were compared with the ANN model. As 

mentioned in Section 4.3.3, CSHORE most accurately predicted the profile evolution 

for measured profile at t4=120 min. When comparing the result of CSHORE with that 

of the ANN model prediction (Figure 4.15), ANN model prediction was more accurate 

with same tendency of becoming equilibrium profile; however, on the backshore, less 

erosion has been predicted, and the tendency of the backshore erosion was similar to 

that of the XBEACH-G.  

When the SWL increased to SWL 2 (Figure 4.16), the prediction of the 

numerical simulation was not very accurate. The ANN model prediction was not very 

precise as compared to CSHORE. The erosion was overestimated for the CSHORE; 

however, the ANN model less accurately estimated the erosion. XBEACH-G and 

SBEACH predictions on SWL 2 were not very accurate. SBEACH predicted too much 

deposition on the foreshore, while XBEACH-G predicted too much erosion as 

compared to other models. This may be a problem when the SWL is too high. The ANN 

model prediction's main focus is that it can be used in any profile without any limitations 

(e.g., gravel nourishment) so that ANN can be applied and compared with the test cases 

2, 3, and 4. Using large amounts of small and field-scale data will increase the accuracy 

of the current ANN model, highlighting the potential of artificial intelligence 

applications on the sediment transport prediction of beaches where the numerical 

simulation cannot predict. 
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Figure 4.15:   Case 1 SWL 1 comparison of numerical simulations and the ANN 

model 

 

 

Figure 4.16:   Case 1 SWL 2 comparison of numerical simulations and the ANN 

model 
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4.8 Conclusions 

In this chapter, modeling and prediction of beach profile evolution on beaches 

with gravel nourishments using an artificial intelligence model was performed. The 

level of reflectivity of the beach is an important parameter to control the magnitude and 

distribution of the undertow velocity. Throughout the profile, the AI model less 

accurately estimated the erosion on the backshore; however, in some test cases, the 

prediction was noticeably accurate. Overall, the tendency for sediment transport was 

accurately predicted. Training limited dataset can cause less accurate predictions, as 

neural networks work better with a large amount of data. Therefore, training large 

amounts of both small- and large-scale data will increase the accuracy of the profile 

evolution prediction, which can then be applied to many beaches where numerical 

simulation cannot produce accurate predictions.  

Despite the availability of useful numerical simulations, a novel insight provided 

in this chapter is supplementing the shortcomings of these numerical models by using 

artificial intelligence. Although the results were obtained through the use of a basic 

artificial deep learning model, in the future, the model can be upgraded by a comparative 

review of various artificial intelligence models to make a robust model using more data 

to be trained. Also, the importance of explainable AI, which can tell what the results 

mean, as well as create complex and good models, is increasing. At present, it remains 

challenging to explain what correlations exist and how these results are obtained in 

analyzing and predicting data using artificial neural networks. Therefore, future studies 

should contain Explainable AI so that the model can be practically used in coastal 

engineering. 
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Chapter 5 

CONCLUSIONS 

5.1 Experimental Findings 

A laboratory experiment consisting of four test series: SBB, GBS, BGL, BGS 

and GBL with 40 runs in total (each run consist 30 min) was conducted in a wave flume 

with a sand beach and a nourished berm to compare the effectiveness of a sand berm 

and beach (SBB), a gravel berm and sand beach (GBS), a buried gravel layer (BGL), 

and a buried gravel sill (BGS). The still water level was increased to generate extreme 

conditions to create accretional profile changes on the foreshore and berm. While SBB 

test case was vulnerable to the extreme wave conditions and quickly become an 

equilibrium profile, GBS shows deposition of the berm appeared over time and found 

to have a good result as a countermeasure against erosion. For the aesthetic and 

environmental purposes, BGL and BGS cases were tested. Gravel underneath the berm 

acts as a filter for the permeable layer of gravel and keeps the sand inside the rear section 

unsaturated for a certain period of time. Scour appeared on BGS, and found to be less 

efficient compared to BGL. Although it is known fact that the water permeable layer is 

effective when there is no sea level rise, the gravel water permeable layer has a similar 

effect even when the sea level rises was confirmed through this research. 

 BGL was found to be an efficient method in slowing down erosion; however, if 

the duration of the high wave in an abnormal tide condition becomes longer, eventually, 

buried gravels were moving onshore and could interrupt the aesthetic view of the beach. 

Thus, gravel bags were substituted for the gravel layer from BGL, and the gravel bag 

layer (GBL) was tested to see the difference. No considerable difference was observed 

for SWL 1 (HHWL condition); however, when the still water level was increased, gravel 
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bag protected the berm from forming the scour hole, and In SWL 1, the erosion and 

deposition patterns of case 3 and case 5 were similar; however, in SWL 2 (abnormal 

tide condition), gravel bag layer was found to have superior erosion control ability as 

compared to buried gravel layer. This was so because, in the case of test case BGL, as 

time passed, the role of the gravel permeable layer was reduced by the scattering of 

some moving gravel into the surface layer. On the other hand, the results confirmed that 

the gravel bag demonstrated the ability to control erosion for a long time by sufficiently 

exerting the permeable layer's role despite the passage of time and preserve the aesthetic 

view at the same time. 

 

5.2 Artificial Intelligence 

Artificial neural networks were used to predict the final profile. For the 

activation function, the ReLU function was used for the prediction. Throughout the 

profile comparisons of artificial neural networks and measured data for the final profile, 

the artificial neural networks model was able to predict the tendency of the erosion quite 

well with forming the dune on the backshore even when using gravel nourishment.  

When gravel and sand are mixed, such as gravel nourishment, it is challenging 

to draw results other than the hydraulic model experiment. Throughout the research, 

application of artificial intelligence in coastal engineering started with the question, ‘if 

one can create a robust artificial intelligence model by using various hydraulic model 

experiments and field data as big data, can it be possible to replace the limitations of the 

numerical simulations composed of mathematical formulas?’. The results showed in 

this study may be minimal; however, the results were good enough and thought to be 

the excellent baby step to deepen the convergence of artificial intelligence in coastal 
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engineering. However, the something to keep in mind is that artificial intelligence is a 

data-based predictive analyst, so it is essential to use enough data. The more data, the 

more accurate the prediction. Although, it is vital to verify availability through various 

model verification before being used practically.  

The prediction of the artificial neural networks model about the erosion trend 

was accurate, but the amount was not so precise. This limitation could have been caused 

by a lack of the dataset used for model training. In the future analysis, more datasets 

with shorter timesteps, small- and large-scale experiments should be trained on the 

model to increase the accuracy of the prediction. Moreover, various tests with various 

types of beach profiles should be trained to make the AI model more robust and accurate 

to be used practically. 
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