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ABSTRACT

Global warming causes a rise in the sea level, thereby aggravating beach erosion
and overtopping on many beaches. When erosion occurs, sand beaches cannot maintain
sufficient sand width, and foreshore slopes become steeper from frequent erosion effects,
and beaches are trapped in a vicious circle of becoming vulnerable due to incident waves.
For this reason, beach nourishment can be used as a countermeasure which
simultaneously minimizes environmental impacts. However, beach nourishment is not
a permanent solution and requires periodic renourishment after several years. To address
this problem, minimizing the period of renourishment must be an economical alternative.
In this respect, selecting the optimum grain size of the sand of the beach nourishment is
essential.

Numerous previous studies have found that larger grain-sized sand is more
resistant to the erosion that using gravel for the nourishment and can extend the period
of renourishment. In addition to selecting the optimum grain size of the sand
nourishment, determining the durability and maintaining the familiarity of the native
sand users should also be considered. Thus, the gravel nourishment can be an optimum
method.

Among many gravel nourished beaches, Tuvalu (one of the Pacific island
nations facing the threat of disappearing from erosion) is a great example of reducing
erosion from storm waves. Under extreme wave conditions, other parts of the Tuvaluan
coast massively lost their shoreline; however, the section with gravel nourishment had
its damage appreciably less as compared to other nourished areas. In the present study,
using the Tuvaluan coast with its cross-sectional of gravel nourishment site, four

different test cases with one extra test case were selected for the hydraulic model



experiment aimed at discovering an effective nourishment strategy find the effective
alternative methods. Two types with different mean diameters, sand and coral gravel,
were used throughout the experiments in a wave flume.

Numerical simulations were performed to reproduce the gravel nourishment;
however, none of such models simultaneously simulate the sediment transport of gravel
and sand. Thus, the artificial neural networks (ANN), a deep-learning model, was
developed throughout the study using hydraulic model experiments as training datasets
to analyze its possibility to simultaneously accomplish the sediment transport of the

sand and gravel and supplement the shortcomings of the numerical models.
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Chapter 1

INTRODUCTION

1.1 Background

Coastal erosion has natural causes such as sea-level rise and wave energy
increase; however, it is accelerated by changes in the natural environment from various
artificial structures installed on the coast. Coastal zones are significant for society's
development; however, they are particularly vulnerable to the impacts of nature and
man and are physically very unstable. Erosion and associated loss of land is the most
evident sign of this instability. Negative shoreline trends cause secondary effects that
affect society through threats to human settlement. However, most of the natural sandy
beach is not sufficient to protect the beach itself against extreme wave and storm surge
from the beach erosion. Thus, coastal structures can be used in these erosive beaches.

Coastal structures are generally built at the locations where beach erosion causes
a severe problem. The decision to build a coastal structure should be based on a thorough
analysis of the shoreline developments in the past and estimated events in the future.
The physical processes causing erosion should be properly identified. For the coastal
protections, there are mainly two categories: hard techniques and soft techniques. Hard
methods include seawalls, revetments, or jetties that can be effective, which intercept
and dissipate the wave energy and currents and associated sand transport.

Nonetheless, these hard structures may enhance erosion in such areas and
collapse, which results in high construction and maintenance costs. On the other hand,

soft methods aim to dissipate wave energy using natural coastal processes. In this way,



coastal defense works in sympathy with natural means of sediment erosion, storage, and
transport. This results in a low maintenance coastal system that can respond to external
forcing factors such as storms and sea-level rise.

The erosion of the world’s coasts and sand storage to mitigate beach erosion are
leading to the increasingly common use of gravel for coastal protection and beach
nourishment (Lopez et al., 2017). Beach nourishment, as a soft technique, can be used
as a countermeasure for the erosion problem while minimizing the environmental
impacts. However, beach nourishment is not a permanent solution like most soft
techniques and needs periodic renourishment after several years. Beach nourishment
incorporates a series of beach renourishment over a long-time horizon or life cycle of
an application. This fact poses difficulties in predicting benefits and costs because of
both uncertain project performance and future markets for necessary inputs. Sand is the
most critical input. And with demand for sand increasing, it is difficult to predict the
cost of sand a decade or more into the future (National Research Council, 1995; Davison
et al., 1992; Houston, 1991). Thus, reducing the period of renourishment is essential,
and therefore, it is crucial to slow down the erosion by careful planning of the
nourishment to remain prolonged period. That being said, larger grain-sized sand is
more resistant to erosion (Wieser, 1953), and many beaches around the world proved
the usage of these gravels as a nourishment material to a lengthen the period of
renourishment.

Jinkoji coast in Japan (Figure 1.1) had gravel nourishment in April 2008, using
87,000 m? of gravel size between 2.5 to 13 mm. It was found that the nourishment gravel
was deposited with a slope of 1:8 at the foot of the seawall, and provided some

protection from the erosion, effective in widening the foreshore and nourishment gravel



was stably deposited without offshore discharge (Kumada et al., 2010). Another beach,
Marina di Pisa, Tuscany in Italy (Figure 1.2), gravel nourishment was used in 2002 as
a countermeasure to protect a seawall and provide a beach on an eroding, developed,
sandy shore. Gravel beach could protect coastal infrastructure and produce a surface
usable for tourist activity. The movement of gravel offshore was not likely observed;
however, the beach may become re-oriented toward the direction of high-energy wave
approach, resulting in a narrowing of the berm in one segment, causing waves to overtop
the seawall and deposit gravel landward of it (Cammelli et al., 2006). While gravel
nourishment act as a significant role as beach protection, it can be inefficient if the
phenomena prediction of the gravel nourishment was not analyzed well before the
nourishment like Nice bay in France (Figure 1.3). On this beach, very little significant
change over the last 30 years despite massive gravel nourishment amounting to 558,000
m?. It was not possible to lengthen the foreshore; however, gravel nourishment in Nice
beach is an essential means of containing the beach erosion hazard, at least contributing
to stabilizing the beach widths (Cohen and Anthony, 2007). Lastly, Fongafale shore in
Funafuti, Tuvalu (Figure 1.4), used gravel nourishment to protect the coast from erosion.
Since Tuvalu is a Pacific island nation, locally available coral gravel was procured as a
nourishment material. This was the first trial of a user- and eco-friendly type of coastal
conservation measure in Pacific Island nations. The executed gravel beach nourishment
could maintain stability under seasonal and extreme conditions of wave actions (Onaka

et al., 2017).



Figure 1.1: Gravel nourished Jinkoji coast in Japan (Kumada et al., 2010)
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Figure 1.2: Gravel nourished Marina Di Pisa beach in Italy (Cammeli et al., 2010)
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Figure 1.3: Gravel nourished Nice bay in France (Cohen and Anthony, 2007)

Figure 1.4: Gravel nourished Funafuti shore in Tuvalu (Onaka et al., 2017)
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Although there are many successful cases using gravel nourishment as good
protection, the gravel nourishment cannot be the permanent solution for the erosion
(Daves et al., 2000; Ishikawa et al., 2012). The periodic renourishment is needed;
however, lengthening the period is essential for both economic and environmental
purposes. Throughout this paper, gravel nourishment will be discussed, and different
placement methods and numerical simulations were used to simulate the beach profile
evolution and sediment transport. Because current models cannot accurately predict the
two or more-sediment usage (like gravel nourishment), these shortcomings were tried
to overcome by using artificial deep learning neural networks. Thus, throughout the
study, artificial neural networks have been used to simulate the nourished gravel beach
with different test cases using the datasets obtained from the hydraulic model

experiments to remedy numerical simulations’ shortcomings.



1.2 Goals and objectives of the study

The flow of the research is described in this section. This thesis consists of five
different chapters, chapter 1. Introduction, chapter 2. Field measurement and necessary
data investigation, chapter 3. Experiment, chapter 4. Numerical simulations and
artificial intelligence, and lastly, chapter 5 with conclusions and discussions.

In chapter 2, the study site was described with historical background. To
understand the underlying causes of beach erosion and site-specific morphology after
the nourishments to quantify the nourishment performance, bathymetric survey,
topographic survey, and wave observation were conducted in the study site, Funafuti,
Tuvalu. Gravel nourished areas found to be the protective sections among other sand
nourished sections, and from the simple wave test using SWAN, all the sections affect
similar wave heights during abnormal wind conditions (e.g., cyclones).

To elucidate the interaction processes, a hydraulic model experiment was
conducted, as explained in detail in Chapter 3. Overview of experiment setup, sand
profiles, and characteristics of gravel used in the experiment was explained. Four
different nourishment styles (Sand berm and beach (SBB), Gravel berm and sand beach
(GBS), Buried gravel layer (BGL), and Buried gravel sill (BGS)) with one extra test
case (Gravel bag layer (GBL)) were conducted to find out best methods amongst.

Chapter 4 introduces existing cross-shore numerical models (CSHORE,
SBEACH, and XBEACH-G) and predict sand transport in the swash zone. Because of
the current model’s limitation, the artificial neural networks model was introduced and
developed to make it suitable to beach profile evolution prediction using various
features with datasets obtained from chapter 3.

Lastly, in chapter 5, the results of the overall experimental findings and

discussions were briefly summarized.



Chapter 2

FIELD MEASUREMENT AND BASIC DATA INVESTIGATION

2.1 Introduction

Tuvalu has been chosen as a study site. Sea-level rise has become increasingly
evident in the Pacific, with the southwestern Pacific regarded as one of the region’s
most vulnerable to contemporary and future changes (Nicholls and Cazenave, 2010).
Tuvalu, as shown in Figure 2.1, is one of these pacific island nations suffer from rising
sea levels, which aggravate beach erosion and wave overtopping. Nonetheless, this
country is faced with the threat of disappearing as rising sea levels cause beach erosion;
however, it is challenging to build study constructions on Pacific islands due to their
locations far from developed countries, making installation difficult. For this reason,
Tuvalu has been chosen as a study site. Moreover, this country does the nourishment
constantly to prevent erosion, and thus, finding the phenomena of the nourishment was
one of the keys to this study.

To gain more complete understanding of the underlying causes of beach erosion
and site-specific morphology after the nourishments to quantify the nourishment
performance, bathymetric, topographic survey along with UAV survey have been
conducted. To understand the normal conditions of wave characteristics, wave and tidal
observation have been conducted as well. It is important to conduct a survey to obtain
the latest information on study site to observe the recent erosion status as well as use
them as input of a numerical simulation to find the erosive wave conditions (10 or 50
year return period waves) and use the wave conditions on hydraulic model experiments
to reproduce the erosive wave conditions to compare each nourishment placement
methods for efficiency. Surveys were conducted during November 2017 to December

2017. As shown in a Table 2.1, the scope of each survey and observation are listed.
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Figure 2.1: Survey location, Funafuti in Tuvalu

Table 2.1: Scope of the survey

Fongafale

Funafuti

Division Target of survey Scope Note
Leveling and GCP survey Fongafale shore 10 EA Dlrept
Leveling
Status Fongafale region | A=250,000 m’ Ground
. Survey survey
Topographic
Survey
UAV Fongafale A=250,000 m?
Survey
Bathymetric Surve Fongafale shore L=280 km Detailed:
Y Y & 20 m pitch
Wave and Tide Observation | Fongafale shore 20 day's
observation




2.2 Wave and Tide Observation

The wave and tide observations aim to verify the existing tidal data observed at
the study site and analyze the characteristics of the wave at the lagoon area of Fongafale
shore. Later in this chapter, results were used in SWAN model to see the normal and
abnormal wave conditions (wave height and period) and its deformation. For the
observations, wave pressure gauge was installed in a point located in Figure 2.2 around
2 km from the Fongafale shore on lagoon side from November 16th to December 5th,
total 20 days. Throughout the observation, the wave pressure gauge manufactured by
AAT in Korea was used (WTG-IC256), which is based on the IC pressure sensor. The
observed data were acquired for 20 days with 30 min intervals.

Collected data were analyzed by Zerocross analysis to yield significant wave
height (Hus), significant wave period (Tws), 1/10 maximum wave height (Huo),
maximum wave period (T110), mean wave height (Hmean), mean wave period (Tmean),
and peak wave directions (Dp). The observation location's significant wave height was
in the range of 0.09~0.25m, with an average value of 0.13m. The maximum wave height
(Hmax) was in the range of 0.13~0.91m, with an average value of 0.31m. The significant
wave period (T13) was in the range of 5.25~14.03sec with an average value of 7.77sec,
and the maximum wave period (Tmax) Was in the range of 3.00~13.73sec with an average

value 5.28 sec as shown in Table.2.3.
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Figure 2.2: Wave and tide observation
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Table 2.2: Specifications of the wave and tide observation

Depth

Site (WGS84) Duration (DL(-)m) Device
8°30'36" S 2017. 11. 16~
1790 11' 08" E 2017. 12. 05 2.34 WTG-256

Table 2.3: Observed wave characteristics in Fongafale

His Hio | Hmean | Hmax T3 T110 | Tmean | Tmax
Specifications
(m) (sec)
Max 0.25 0.44 0.14 0.91 14.03 | 10.34 | 13.83 | 13.73
Min 0.09 0.11 0.04 0.13 5.25 4.29 5.26 3.00
Mean 0.13 0.20 0.07 0.31 7.77 5.75 8.37 5.28

12



The wind data of Fongafale from the Australian Bureau of Meteorology during
the same period was in the range of 0.2~8.2 m/s, and the data were compared with the
observed data. By comparing the two results, a similar trend was observed. The wave
characteristics of the study area surrounded by the atoll were analyzed to be strongly
affected by the wind. This area is lagoon area where it is difficult for deep-sea waves to
reach, and the lagoon has a distance of 17 km which makes harder for deep-sea waves
affecting the shoreline without having wind waves. Wind speed during November 16"
to December 5" is observed and analyzed in Figure 2.3 and wave characteristics are

observed and analyzed in Figure 2.4.
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Figure 2.3: Wind data during the observation
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As a result of analyzing wind data observed for 24 years by the Australian
Bureau of Meteorology from 1993 to 2017 at the Funafuti, Tuvalu (Figure 2.5), Tuvalu's
lowest annual average wind speed was 2.8m/sec, and the highest annual average wind
speed was 4.3m/sec. The yearly average wind speed during the observation period was
3.3 m/sec, and the annual average wind speed was increased by 2.8 cm/sec every year
and was increased by 60 cm/sec for 24 years.

Tropical cyclones do not occur much in equatorial regions within 5 degrees of
latitude; however, Tuvalu is located in 8-degree latitude that the number of invasions of
a cyclone which is directly affected is less than once per year. Due to Tuvalu’s low and
narrow topographical characteristics, it is very vulnerable to storm wave and has a great
deal of damage. Recent cyclones (shown in Table 2.4) affected Tuvaluan coast which
caused beach erosion and flooding problems. Because of having wind dominant wave

conditions, these storms cause tremendous damages to the Tuvaluan coast.
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Table 2.4: Recent cyclones impacted Tuvalu

Cyclone Category Dates Affected area
. Category 5 Severe Feb 7, 2016~ Fiji, Vanuatu,
Winston . March 3,
Tropical Cyclone 2016 Tonga, Queensland
New Zealand, Fiji,
Category 5 Mar 7, 2015~ Papua New Guinea,
Pam 4 ’ New Caledonia, Vanuatu,
Hurricane Mar 20, 2015 o
Tuvalu, Kiribati,
Solomon Island
Category 4 Severe Feb 26, Tonga, Tuvalu,
Ula Tropical Cyclone 2015~ American Samoa
preatty Jan 16, 2016
New Zealand, Fiji,
Gitta Category 5 Severe | Feb 3,2018~ | Samoa, Tonga, Vanuatu,
Tropical Cyclone | Feb 22,2018 Queensland,
American Samoa
45
4.3
4.1
39
"g 3.7
E a5
& — V'
2 33
E
3.1 \
2.9
2.7
2.5
1990 1095 2000 2005 2010 2015 2020

Year

Figure 2.5: Average annual wind speed in Tuvalu (1993~2017)
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To compare the observed tide data with obtained tide data from the Australian
Bureau of Meteorology, tide observation was conducted from November 16th to
December 5th, 2017, with the same period of wave observation. Observed tide data
shows a minimum of -0.92 m and a maximum of +1.21 m with the tide difference of
0.29 m. For the same duration, the Australian Bureau of Meteorology data shows a
minimum of -0.96 m and a maximum of +1.12 m and difference of 0.26 m as shown in
Figure 2.6 with the tide elevation time series. By comparing the two data, it was
considered that the existing tide observation data could be applied in the numerical

simulations since the difference was minimal.
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Figure 2.6: Observed tide comparison with that of the Australian Bureau of
Meteorology

Again, from the observed data, Fongafale shore, surrounded by atoll, has less
impact on deep-sea water waves and mostly affected by the wind wave. That being said,
the Tuvaluan coast is considered as a low-wave energy coast that the beaches would be

vulnerable to the storm sized wind wave.
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2.3 Topographic Survey

A topographic survey was performed by a 3D station using Total Station, GPS
instrument RTK (GNSS), and used to survey geographical features, boundary exposed
in the area to observe the coordinate information, and produce it in the form of numerical
data. RTK survey used a combination measurement of station’s GPS receiver, and two
mobile station’s GPS receiver with one controller. Coordinates and heights were
determined using control points directly provided by the Tuvalu Government’s PMU
project manager, and the drawing elements could be edited freely. Drawing display
functions enable marking of geographical features, and prevents overlapping of the
current line and contour lines.

Total Station and RTK(GNSS) were used for the topographic survey, and terrain
composition was created. A drone measurement was carried out outside the task area
and marked on the drawings to identify the surrounding topography. All the conducted
survey areas were larger than a task area to improve the survey performances. The
maximum elevation of the topographic survey result was (+) 8.72m, measured from the
east side of Fongafale to the north side of runway near the Mainaga Fou Church, where
the runway was composed with the dunes. Moreover, the lagoon side zone has (+) 4.53m
elevation near the community church, and the ocean side zone has (+)5.17m elevation
near the harbor container.

UAV survey and comparison with past satellite images have been conducted in
this section. DJI Phantom 4 Pro was used for the UAV survey, and Pix 4D Mapper pro
(Rossi et al., 2017) was used for data processing. A topographic survey using UAV was

performed, and the GCP (Ground control point) survey results were used to correct the
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distorted images. The result of the UAV image was compared with past satellite images
to examine the erosion analysis.

Uniform results were derived using unified values for each step configuration,
including initial processing, point cloud, mesh generation, ortho-image, and DSM
extraction. Form a grouping of points (Point Cloud) with the Pix 4D program and model
it in exact contact with the location of ground control points taken on each photo and
identified the QC errors recorded on the verification reports' results.

UAV survey for the GCP survey at the Fongafale was conducted by installing a
reference station based on existing control points (FUN42, FUN43, FUN48), as shown
in Figure 2.7 with the coordinates on table 2.5. UAV survey can be used to view the
entire area of the Fongafale at a glance. Also, it was confirmed that the error value is
within the range compared to the land survey and confirmed the error value by
comparing the location and altitude information of the GCP point generated by UAV
and survey results conducted by RTK GPS. Using UAV surveys, it was possible to
compare and analyze with Google images and continuously monitor the erosion of

nourished areas.
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Table 2.5: Coordinates of control points

WGS4 ellipsoid

(UTM coordinates)
No. H (DL) note
X (Norhting) Y (Easting)
FUN 43 9057957.56 742099.76 4.472
FUN 42 9057816.17 742062.06 4.821 unit : m
FUN 48 9056444.91 741181.28 3.715
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Gravel nourishment area

Figure 2.7: Fongafale GCP points with some of measured locations
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The accuracy verification of UAV survey performance can be confirmed by the
performance of the Ground control Point (GCP), which is used for the positioning and
altitude calibration and the DSM (Figure 2.8). The accuracy of data generated by the
program can be verified by checking the error values of each ground control point
recorded in the QC report are formed within the tolerances.

Fongafale has a narrow and long shape, about 20m to 70m wide, and has major
facilities such as airports, hotels, government buildings, hospitals, and schools. As a
result of creating a topographical survey (Figure 2.9, and Figure 2.10), the ocean side
datum level was higher with DL.(+) 4.5m to 5m, than the lagoon side datum level with

DL.(+) 4mto 4.5m.

742po0 742500

Figure 2.8: Combining UAV survey result and field survey data (left: visual
inspection result, right: DSM result)
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Figure 2.9: Cross-section of Fongafale Atoll in Tuvalu
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Figure 2.10: Cross-section of Fongafale Atoll in Tuvalu

Past satellite images from 1941 to 1984 were collected from the SOPAC report
(SOPAC, 2006), and satellite images from Google Earth (2003, 2005, 2007, 2012, and
2016) have been used as the past satellite images to compare with the present UAV
survey result (Figure 2.12). Using past and present satellite images, the approximate

beach area has been compared, as shown in Figure 2.12 and Table. 2.6.

|| ASection
[T B Section
C Section
| | DSection

Figure 2.11: Sections of nourishment conducted in Fongafale
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Figure 2.12: Some of satellite images from 1941 to present survey (SOPAC 1941-
1984; Google Earth 2003-2016; Present UAV Survey 2017)
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Figure 2.12: Some of satellite images from 1941 to present survey (SOPAC 1941-
1984; Google Earth 2003-2016; Present UAV Survey 2017) continuous
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Table 2.6: Sectional beach area

Area of each section (m?)

Year
A section B section C section D section
1941 18,210.50 9,718.69 11,018.00 3,816.03
1943 14,368.90 8,702.61 9,967.17 3,769.30
1971 9,685.50 8,366.54 9,188.93 2,624.07
1984 8,555.62 7,966.31 8,971.56 1,407.48
2003 7,963.07 4,034.89 6,582.45 1,182.35
2005 3,990.00 2,068.04 3,343.30 988.07
2007 3,989.02 1,376.52 2,852.29 926.58
2012 3,865.80 1,306.47 2,679.84 924.98
2016 24,285.83 32,381.05 14,263.40 4,470.68
2017 18,403.72 26,100.43 11,053.92 3,818.85
35,000
30,000
Nourishment 81941
25,000 m1943
& 11971
g 20008 1984
s W 2003.06
= 15,000
< m 2005.11
m 2007.10
10,000
m2012.07
m2016.11
5,000
m2017.11
0 m '-LJ After Nourishment
A Section B Section C Section D Section
Sections
Figure 2.13: Changes of beach area by sections
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By comprehending the long-term changes in the coastal area and by analyzing
the causes of coastal erosion through the examination of satellite images of the
Fongafale, satellite image analysis was used as a basic data for the planning of erosion
prevention measures. Satellite images from 1941 to 2017 were collected, and unmanned
aerial surveys (UAV) were conducted (Fig. 2.9), the results of which were added to
analyze the sedimentation patterns of the study area. Analysis of the cause of erosion
was made by dividing the project site into four different sections (A, B, C, and D), as
shown in Figure 2.11, in consideration of existing facilities and the configuration of the
beach. Tidal increases — which directly affect the shoreline's retreat and increases in
wind velocity — a predominant factor in local wave characteristics, were analyzed
through weather forecast data. On 2015, there was nourishment and reclamation on the
Tuvaluan coast. After the nourishment in 2015, there was a significant decrease in the
beach area, which was caused by a damage from the cyclones. From 2015, several
cyclones hit the Fongafale area. Cyclone Pam occurred in mid-March of 2015; Cyclone
Ula occurred from late December of 2015 to early 2016, and Cyclone Winston occurred
in mid-February of 2016. Cyclone Pam showed the strongest wind speed at 14.4m/s on
March 11, 2015; Cyclone Ula showed the strongest wind speed at 17 m/s on December
28, 2015. Thus, it was found that around 25% of area were divested between 2016 and
2017 except the section D where decrease was only 15%. This is because the D section
is the location with the gravel nourishment designed by JICA. The detailed physical test

will be discussed in the next chapter.
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2.4 Bathymetric Survey

Processing of the data was carried out using HypackTM, validated by the
International Hydrographic Organization (IHO), to increase the quality and
compatibility of the data. Location data can vary significantly from the original depth
value and the location data due to mechanical errors in the acoustic sounder with GPS,
and from the atmospheric instability. These errors considerably reduce the accuracy of
the final depth values. Thus, the error data is removed by thoroughly performing the
measured and position error with SBAS. Bathymetric data is obtained from the sonic
velocity corresponding water depth and calibrated with sound wave velocity value
(1,531 m/sec).

The distribution of water depth in this study area is gently distributed from DL
(+) 1.0m ~ DL (-) 12.0 m near Catalina ramp, DL (-) 10.0 m ~ DL (-) 18.0 m steeply
near the rock area. DL (+) 1.0 m ~ DL (-) 15.0 m distribution is shown in the survey
area. As shown in Figure 2.14, the route section shows a gentle appearance with DL (-)
32.0 m ~ DL (-) 41.0 m. The bathymetric survey of this task provides high water depth
data (Koo, 2018) based on precise depth information obtained by comprehensive

bathymetric and topographic survey throughout the survey area.
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Figure 2.14: Bathymetric survey result of Fongafale shore
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2.5 Grain Size Composition

Since most of the population is located in the Fongafale area where the most
protections are needed, gravels from the other area have sufficient to be used in gravel
nourishment. JICA has conducted gravel nourishment on 2015 before cyclone Ula
attacks. The survey was conducted after the cyclone's impact on the beach. From the
measurement of the D section of the Fongafale shore, unlike the typical beach, gravel
was dominant in onshore of the beach. The analysis of the grain size was conducted on
this beach, as shown in Figure 2.16. The gravel covering the surface at the beach had a
particle diameter of 8-15 cm, and bottom of these thick gravel, there was gravel smaller
than the surface around 2-6 cm.

Nonetheless, not all the beach was formed with gravel unlike ordinary
pebble or gravel beach. By the time measurement was conducted, the beach was more
like a composite gravel-sand beach where gravel and sand were mixed and formed on
the beach. This seems to be the reason for the Cyclone Ula's impact since the slope of

the beach was very steep, as shown in the right photo of Figure 2.15.

Figure 2.15: Gravel beach on the Catalina Ramp (D section)

31



2mm GRADUATION

ww %o w o
sulunluolundinly

% % T W W0 g0 % B

i g i £
W h R h _ 1§ 0 Jri

n.m'."uﬁ‘nn
0 % B % 6 W0 E

2mm GRADUATION 74 SB’ wermc souane 2mm GRADUATION 74 SB’ vernic souane
,.,‘Wmn-un-n--zm =) 100
O O O O e 0 O R 3 . IR S I T TN T

. AT "o
aff ,A.FHMW.HW‘ fitnponi]
3 % @ % W T R W g
2mm GRADUATION 74 SB’ uemae sauane
100 4o 2 0 4 s0 e 7 e % 200 30 2 2 4 w @
sttt bbb anlunbdudunlonl

Figure 2.16: Grave size measurement at the gravel nourished beach
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2.6 Simple wind wave test

Using the obtained data, a simple wave deformation test using SWAN
(Simulating Waves Nearshore) model has been conducted to determine the wave
condition when the cyclone Ula impacted. SWAN is a third-generation wave action
model that uses typical formulations for wave growth by wind, wave dissipation by
white capping, and four nonlinear wave interactions. It also includes physical processes
associated with intermediate-depth and shallow water. The governing equation of
SWAN action balance equations to calculates the random, short-crested wind-generated
waves in coastal regions and inland waters (Settlelmaier, et al., 2011). 24 years (1993-
2016) of the Tuvalu observation data of the Pacific sea level monitoring provided by
the Australian Bureau of Meteorology were used as input and verified with the observed
wave data conducted during the survey. For the model verification, the same time wind
data from Tuvalu observation and the present wave observation (November 15", 2017
— December 6™) were used as input to the model in real time and the output of real time
wave was obtained to verify at the observation point. Result of the verification on Figure

2.17 found to be reasonable.

2.0

—— Observed
o Computed

Wave height(m)

0.5 4

0.0 T T T
17-11-16 17-11-20 17-11-24 17-11-28 17-12-02 17-12-06

Time

Figure 2.17: Model verification result
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Numerical simulations were carried out for nine wave directions (S, SSW, SW,
WSW, W, WNW, NW, NNW, N) in large (grid size ds = 50 m) and detailed (grid size
ds = 20 m) scales (shown in Figure 2.18) which affect the study site in abnormal and
normal wind conditions. Non-excess probability of 97.5% was considered as normal
wind and wave conditions, and that of 99.9% was considered as abnormal wind and
wave conditions (Ministry of Maritime Affairs and Fisheries, 2005). Table 2.7 and 2.8
show the test results with maximum wind speed in normal and abnormal conditions, and
wave height analysis results on nine wave directions.

As a result of the wind-induced wave test, the WNW wave direction was the
highest in the study site's vicinity, and the maximum wave heights were 1.76 m and 1.08
m, respectively. As from the Figure 2.20, when abnormal wind condition on the
Fongafale coast, sections A, B, C, and D have similar wave heights which confirms the
gravel nourishment area (section D) protected cyclone damage well compared to the

other sections.
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Table 2.7: Maximum wind speed in normal and abnormal by wind direction

Wind
Speed
(m/sec)

SSW

SW

WSwW

WNW

NW

NNW

Normal
Condition
(97.5%)

7.32

7.66

9.02

10.55

11.34

12.09

11.77

9.71

7.32

Abnormal
Condition
(99.9%)

11.67

11.54

13.56

15.45

15.22

17.05

16.21

13.87

10.95

Table 2.8: Wave height analysis result

Wave
height
(m)

SSW

SW

WSW

NW

NNW

Normal
Condition
(97.5%)

0.27

0.40

0.60

0.80

0.98

1.08

0.99

0.71

0.39

Abnormal
Condition
(99.9%)

0.52

0.72

1.05

1.35

1.52

1.73

1.56

0.71
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Figure 2.19: Summer and winter wind rose diagram
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Figure 2.20: Wave height test result for WNW wind direction in abnormal wind
condition
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2.7 Conclusions

General topographic, UAV, bathymetric survey, and wave observation have
been conducted at the Tuvalu, Funafuti Fongafale area for the basic measurement and
an understanding of the study area. This area is a lagoon with a distance of around 17
km, where it is difficult for deep-sea waves to reach. Even with low-wave energy shore
conditions, Tuvalu was suffering from beach erosion. This was found to be the problem
of the cyclone damage, which occurs once or twice regularly every year. Thus, it was
considered that this study area has low-wave energy conditions with a dominant wind.
A recent cyclone impacted this area was found to be the Cyclone Ula. Ula had a
maximum wind speed of around 17 m/sec during the period of the cyclone. This
cyclone’s damage was analyzed by UAV and past satellite image comparisons and was
observed that on the section with gravel nourishment (section D), cyclone damage was
less than the other nourishment sections. That being said, on the section with gravel
nourishment, grain size composition was measured. Using all the data obtained through
survey, simple wind-wave simulation using the SWAN model was conducted to see if
the wave height varies by the sections. With the highest wind direction of WNW, all the
sections (A, B, C, and D) had similar wave height affected at both normal and abnormal

wind conditions.
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Chapter 3

HYDRAULIC MODEL EXPERIMENT

3.1 Introduction

This chapter provides an overview of the hydraulic model experiment conducted
in the wave flume located in the Waterfront and Coastal Research Center. This chapter
also provides an overview of the experiment setup, beach profiles, and characteristics
of gravel. The details of this experimental setup were given by Kim et al. (2019). Gravel

nourishment with different placements were used in the experiment.

3.2 Experiment Setup

A hydraulic model experiment using a 2-dimensional wave flume was
conducted to observe the sediment transport and profile evolution of the different
nourishment types. The wave flume used in this experiment was 30 m long, 1 m in width,
and 1.8 m in height (see Figure 3.1). The wavemaker can generate both random and
regular waves. Furthermore, the wavemaker has a wave height gauge attached to the
front of the wave paddle to enable reflected wave absorbing control based on the data
read by the indicator. Also, a wave damper consisting of rubbles, Styrofoam, aluminum
pieces, and an absorption filter was installed to minimize the generation of reflected

waves (Kim et al., 2019).
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Figure 3.1: Wave flume used in the hydraulic model experiment

JICA conducted a gravel nourishment project at the Tuvaluan beach (see Figure
3.2). This cross-section of the gravel nourished Tuvaluan coast in the Fongafale was
used as an initial profile for the hydraulic model experiment, and the geometric scale
1/25 was used in the experiment (Figure 3.3). The initial profile had a berm slope of
1:3.5 and a beach slope of 1:11. Two different still water levels (6 and 8 cm above the
MSL, i.e., HHWL (+1.42 m from MSL) and ground-level (+1.92 m from MSL)) were
used throughout the experiment. Beach nourishment can help mitigate the erosion
process; however, single nourishment is not a long-term solution; the erosion process
will continue to erode the nourished sand until renourishment is required. Accordingly,
the aim was to see the erosion tendency when using different grain sizes with varying

placement methods.
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Figure 3.2: Gravel nourishment typical cross section on the Fongafale shore
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Figure 3.3: Experimental cross-sectional beach profile
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Most parameters of experiments were considered based on the actual conditions
of the Fongfale shore, Tuvalu. From the field survey, it was observed that the Tuvaluan
coast is a low -wave energy coast where erosion was accelerated by storm waves. Since
this experiment was small-scale, reproducing the actual damage was not the main focus.
Instead, the aim was to see how the gravel nourishment would react to a large external
force like Cyclone Ula, which impacted the beach, causing severe damage to the
Tuvaluan coast in 2016, and which morphological changes would occur in these
situations. Various placement methods were also considered to find economical
methods by prolonging the period of renourishment without disturbing the aesthetic
view. From the satellite image comparisons in Chapter 2, Cyclone Ula severely
impacted the nourished beach; therefore, incident wave characteristics of Cyclone Ula
were selected as wave characteristics used in the experiment. The wave parameters in
test cases used prototype significant wave height and the period of 5.2 cm and 1.1 sec
(actual Hs =1.33m, shown in Figure 3.4) for 2 hours. To scale down the sand grain size
without scale effect is usually difficult that the grain size (Dso) used in the experiment

for sand and gravel was 0.16 mm and 5.0 mm, respectively.
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Figure 3.4: Wave height at the lagoon side during the monitoring period (Onaka et
al., 2017)
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A total of four test cases with using two still water levels (SWL) in each case
in the wave flume—one with HHWL (SWL 1, 6 cm above the MSL) and one with
ground level (SWL 2, 8 cm above the MSL)—were used to examine the damage of each
test (see Table 3.1). Sand and gravel with different placements were selected as design
options and used to plan an effective nourishment strategy. A larger grain sized
nourishment is more resistant to erosion; however, to achieve similitude, mean
diameters similar to those of local, prototype gravels were chosen. Therefore, four types
of nourishments with different mean diameters — namely, Dso of 0.16 mm of sand and
Dso of 5.00 mm of coral gravel — were used for the experiments (see Figure 3.5).

The initial profiles for each of the four test cases are shown in Figure 3.6. The
experiments were performed for four test cases with the same wave conditions with
irregular waves. The spectrum of the irregular wave used in the experiment was
Modified Bretschneider-Mitsuyasu (Eq. (3.1)) proposed by Goda (1985) for the
frequency spectrum of wind waves. For each test case, the profile was measured every
30 minutes and stopped at 120 minutes. Total irregular wave energy E; was computed
using Eq. (3.2), where Hs and Ts represent the significant wave height and period,

respectively.

— 2m—4£-5 _ 075
S(f) = 0.205 H2T;*f ~Sexp ( (Tsf)4) (3.1)
E = pg [~ 0.205 H2x5e~%75*"dx = 0.068pgH? (3.2)

Four test cases with two sea levels for each test cases were conducted and each test case

consisted 120 minutes and profile were measured in every 30 minutes.

44



Table 3.1: Four test cases with different sea level

Test case Condition Sea Level
Case 1-1 EL +3.42 m
Sand Only
Case 1-2 EL +3.92 m
Case 2-1 EL +3.42 m
Gravel Only

Case 2-2 EL +3.92 m
Case 3-1 Sand (Top) EL+3.42m
Case 3-2 + Gravel (Bottom) EL +3.92 m
Case 4-1 Sand (Left) EL +3.42m
Case 4-2 + Gravel (Right) EL +3.92 m

Figure 3.5: Sand and gravel used in the experiment
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Figure 3.6: Four test cases with two SWL tested with 120 minutes runs each
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3.3 Hydraulic model test cases

The first test case with a berm slope of 1:11 and a foreshore slope of 1:3.5
corresponded to the sand berm and sand beach, SBB test case, without gravel on a berm
(see Figure 3.7) was tested. The berm was exposed to 120 minutes runs using 5.2 cm
significant wave heights with 1.1 sec significant wave period using irregular waves. The
SBB test case with each SWL was tested for 120 minutes, and the same initial profile
was rebuilt after SWL 1 test. The SBB test case was conducted to see how the other test
cases would differ from SBB, where only sand was used. Under breaking waves, most

of the sand on the foreshore was moved onshore as bed loads, and offshore as suspended

loads.
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Figure 3.7: Test Case 1 — Sand Berm and Beach (SBB) initial profile
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For the test case GBS, gravel berm and sand beach, the initial berm profile was
rebuilt on the initial profile for case SBB and a berm was replaced with the gravel (see
Figure 3.8). Dso of 5 mm of the gravel used in the test was replaced on the sand berm
from SBB. This profile was the same as the profile JICA built on the Tuvaluan coast
gravel nourishment section. The idea of this profile was to compare with the SBB and
see how to decrease or protect the erosion from storm waves effectively. As in the SBB
test case, the gravel berm was exposed to 120 minutes runs using 5.2 cm significant
wave heights with 1.1 sec significant wave period for irregular waves. The GBS test
case with each SWL was tested for 120 minutes, and the same initial profile was rebuilt

after SWL 1 test.
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Figure 3.8: Test Case 2- Gravel Berm and Sand Beach (GBS) initial profile
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Gravel nourishment can disfigure the aesthetic view and adversely affect the
natural beach. Therefore, using only half amount of the gravel used in GBS, the buried
gravel layer, was applied to reduce the extent of berm erosion without spoiling the shore
aesthetics. As shown in Figure 3.9, gravel layer was first placed on the berm, and sand
was covered on top of the layer. Similarly, to the other two test cases, the BGL test case
with each SWL was tested for 120 minutes, and the same initial profile was rebuilt after
SWL 1 test using 5.2 cm significant wave heights with 1.1 sec significant wave period

for irregular waves.
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Figure 3.9: Test Case 3- Buried Gravel Layer (BGL) initial profile

49



The buried gravel sill (BGS) test case had a concept of using the same amount
of gravel on the test case 3-BGL, but build sill type of gravel on the berm covered with
sand to look like sand berm but gravel buried inside (see Figure 3.10). After rebuilding
the berm sill, a mixture of sand and water was poured into the gravel sill to cover the
gravel and fill its voids. The BGS test case with each SWL was tested for 120 minutes,
and the same initial profile was rebuilt after SWL 1 test using 5.2 cm significant wave

heights with 1.1 sec significant wave period for irregular waves.

Case 4: BGS
SWL 2
SWL 1w |

Elevation (cm)

| B R —
0 20 40 60 80 100 120 140 160 180 200

Cross-shore distance (cm)

Figure 3.10: Test Case 4- Buried Gravel Sill (BGS) initial profile
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3.4 Beach Profile Evolution

Figures 3.11-3.13 and 3.15-3.20 show the measured profiles of test cases 1,2,3
and 4 at t= 0, 30, 60, 90, and 120 min for all four test cases with the elevation SWL 1
and 2. For brevity, in Figures 3.11- 3.20, t;= 30 min, ;=60 min, t3=90 min, and =120
min. The profiles were measured along x= 0-200 cm.

As can be seen in Figure 3.11 with SBB test case with SWL 1, there was a sand
dune formation right after t;. Continuous erosion accelerated on the sand berm and after

t3, deposited sand dune on the backshore disappeared.
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Figure 3.11: Case 1, SBB with SWL 1 profile evolution of ty, t2, t3, and t4
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The SBB test case with SWL 2 caused the trend of foreshore erosion and berm
erosion during t1 and t2. The pattern of forming the sand dune on the backshore was
similar to the SBB test case with SWL 1; however, the erosion persisted and created
deposited sand dune which disappeared quicker with a higher SWL. By comparing two
profiles in Figured 3.11 and 3.12, it was observed that when using only sand as
nourishment, the beaches were less sensitive to SWL, and the final profiles for SWL 1

and SWL 2 seemed similar.
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Figure 3.12: Case 1, SBB with SWL 2 profile evolution of ty, t2, t3, and t4
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For the gravel berm and sand beach test case GBS, Figure 3.13 shows the profile
evolution of measured profile at t1=30 min, t2=60 min, t3=90 min, and t;=120 min.
During t1-t2, a gravel dune was formed on top of the berm. This gravel dune protected
minor waves from overtopping. Gravel dune was formed on the backshore; however,
since the gravel did not easily move onshore, scouring occurred on the foreshore. As
time passes, the gravel dune migrated backshore, and the size of the dune increased.
Scour trench was created landward of the berm and the seaward slope, and the crest of
the berm was eroded. In the case of SWL 2 (Figure 3.15), berm became saturated with
an increase in the water level. Accordingly, the results confirmed that a large amount of
erosion occurred within a short time. Compared to the results of SWL 1 in Figure 3.11,

the erosion pattern showed a marked difference.
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Figure 3.14: Southern part of Catalina Ramp with gravel nourishment
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Figure 3.15: Case 2, GBS with SWL 2 profile evolution of t, to, t3, and t4

In the case of the GBS, for the SWL 1, the deposition of the berm appeared over
the time and the deposited gravel-sand tends to retreat. This test case was found to have
a good result as a countermeasure against erosion.

From the photo taken before and after the cyclone Ula at the southern part of
Catalina Ramp where the gravel nourishment was conducted (Figure 3.14), one on the
left was taken after the gravel nourishment and before the damage of cyclone Ula. The

photo on the right was taken in December 2017 after the cyclone Ula invasion, where a
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large amount of the gravel dune with steep slope was formed, similarly to the
experimental results. According to Shim et al. (2019) and Muhajjir et al. (2019), the
gravel on the beach tended to create a gravel dune after the induced high waves. Figure
3.16 shows the results reported by Shim et al. (2019). These results cannot be
quantitatively compared to those of the present study due to the differences in the
experimental conditions such as incident waves, beach profile, range of beach
nourishment and generation of the wind (U). However, the experimental results for a
similar particle size can be compared qualitatively. Erosion occurred at the beginning
of the experiment, but a large-scale accretion occurred on the rear side of the shoreline
after a certain period. Overall, comparing the tendencies of profile evolutions, it was
observed that the results were similar to those of the GBS study case by forming the

gravel dune and foreshore erosion.
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Figure 3.16: Experiment of gravel nourished beach (Shim et al., 2019)
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Nonetheless, unlike the SWL 1, SWL 2 showed the erosion of the berm caused
by the sea level rise in the case of GBS. The erosion problem was more pronounced in
the saturated and unsaturated state than in the sand or gravel problem. Erosion pattern
was almost the same for both sand berm from SBB and gravel berm from GBS, and
only the pattern of deposition behind the berm was different.

With an increase of the still water level to SWL 2, gravel dune formed in
different locations (Figure 3.15), and the formation of gravel dune was located more on
the far backshore. Scour continued and created the sand dune between the berm and
foreshore at t.. These gravel dunes seemed to protect from the wave overtopping as
well as wave overwash. Unlike in the SBB test case, gravel deposition and landward
migration were sensitive to SWL, as wave run-up on gravel is sensitive to SWL. The
results of this test case with SWL 2 suggest that the gravel nourishment perform at the

Tuvaluan coast with a higher cyclone surge more than in the case of Cyclone Ula.
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The profile evolution in the case of buried gravel layer, BGL, is shown in Figure
3.17. As demonstrated by the initial profile with a bird’s eye view, gravel was hidden
so that the initial profile looked the same as the test case of SBB; however, the gravel
layer was placed underneath of the berm. Only half the amount of the gravel from GBS
was applied in this test case. By the end of the t;, a similar tendency with SBB was
observed; however, once the gravel layer was exposed, gravel protected the erosion and
created a gravel composite sand dune on the backshore. As time passes, the beach
became equilibrium; however, it was found that the composite gravel sand protected the
beach from slowing down the erosion. After ts, beach profile evolution became similar

to the SBB test cases.
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BGL is a type where gravel exists inside the berm to form a permeable layer.
The gravel layer inside the sand berm acts as a water-permeable filter, and, unlike SBB
in the case of only a sand berm, it has the effect of slowing the erosion rate in the area
behind the gravel. This can be seen that it acts as a filter for the permeable layer of
gravel and keeps the sand inside the rear section unsaturated for a certain period of time.

For the SWL 2 (Figure 3.18), erosion accelerated; however, as compared to the
test case 1 with SWL 2, the gravel layer protected from the scour. In the overall
comparison with SWL 1, the landward edge of the gravel layer was eroded after the
berm erosion progressed landward, and the thin layer of gravel provided some

protection for the sand below the gravel layer.
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The profile evolution of buried gravel sill, BGS, is shown in Figure 3.19.
Similarly, to the BGL test case, gravel was hidden underneath the sand berm with sill
shape. The same amount of the gravel was used as test case 3, BGL. Due to the gravel
sill, when gravel was exposed, scour occurred on the sand berm. The sill’s effect became
noticeable only after the sill’s crest was exposed, but wave breaking over the exposed
crest created a scour hole landward of the sill. Even in the case of BGS, the results
confirmed that the role of the gravel filter permeable layer shown in SLW 1 was not

exerted at the water level of SWL 2.
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In the case of buried gravel sill with SWL 2 (Figure 3.20), the scour hole
occurred after t1, as wave breaking accelerated the erosion on the sand. Therefore, a
dune was not formed on the landward, and the scour hole became larger on the berm;

however, the scour hole on the berm recovered with the sand after t,.
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3.5 Extra test case using gravel bag

Although Case 3 with gravel layer can initially cover the gravel, and the layer
provided some protection to slow down the erosion, the results showed that, when gravel
was used in nourishment, there was a problem of gravel moving onshore and, therefore,
gravel nourishment can impact on the aesthetic view of the sand beach (see Figure 3.21),
as gravel will move onshore.

Therefore, there emerges a question of how to prevent the gravel’s moving
onshore without changes in the gravel’s performance used as nourishment. Accordingly,
a gravel filled bag was applied to see whether the usage of the gravel-filled bags could
measure the problem. In test case 5, the gravel bag layer (GBL) used the gravel-filled
net made of synthetic fiber to substitute the gravel layer from the BGL test case. Usually,
such gravel bags are used to protect the foundations of large bridges and are applied in
civil engineering for rivers and coastal works.

Gravel-filled bags are a type of fill-containing geosystems (bags, mattresses,
geotubes) where the units are filled with sand, gravel, or mortar. Examples of these
systems include bags, mattresses, tubes, containers, and open bags filled with gravel,
stones, or asphalt. These systems have been extensively used various coastal
engineering applications (Havelin, 2012). One of the first applications was in the scope
of the Delta Works in the Netherlands in the 1960s and 1970s. However, more rapid
developments all over the world took place in the 1980s (Pilarczyk, 2012).

Among various types of sand or gravel-filled bags used for the coastal protection,
a gravel bag can be used as a berm and placed along a level contour where sheet flow
may be detained and ponded, promoting sedimentation. This gravel bag filters may be
used to trap sedimentation or reduce velocity. They have also been used in places where

flows are moderately concentrated, such as ditches, swales, and storm drain inlets to
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divert and detain currents. A gravel berm consists of a single row of gravel bags installed
end to end to form a barrier across a slope to intercept runoff, reduce runoff velocity,
release runoff as sheet flow, and provide some sediment removal. Another example is a
Grout-filled bag. A major advantage of this bag is that the units hold their shape after
the fabric deteriorates or is torn. Sand-filled bag breakwaters are constructed of stacked
bags in a staggered pattern. The integrity of the structure depends on the individual bags
remaining in place and intact. Among many types of gravel bags, in the experiment, the
filter unit, manufactured by Kyowa (Sumitomo Corp., 2017) shown in Figure 3.22 was
applied using the same initial profile and the same amount of gravel used in the BGL

test case. (see Figure 3.23 -3.24).
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Figure 3.21: End of the test case 3 test

Figure 3.22: Kyowa’s Filter Unit (Gravel-filled bag)
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Figure 3.23: Test Case 5 Gravel Bag Layer (GBL) initial profile

Figure 3.24: Hydraulic model experiment using gravel bags
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Due to the interaction among gravel bags using the hydraulic model experiment
conducted using SWL 1, no considerable difference was observed compared to the
buried gravel layer, test case 3, except for the mixture of composite gravel sand moving
onshore was not observed in this test case (Figure 3.25). This was so because gravel tied
in a synthetic fiber mesh, and no movement of the filter unit was detected throughout
the experiment.
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For the GBL with SWL2, as time passed, the erosion persisted; however, the

filter unit did not move; therefore, there was no movement of gravel (see Figure 3.26).
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Figure 3.26: Case 5, GBL with SWL 2 profile evolution of ty, t2, t3, and t4
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The overall tendency was similar; however, while BGL created a berm at the
initial landward, it also created scouring at the gravel layer and caused gravel moving
onshore. Unlike in the case of BGL, the GBL test case was more stable and created no
gravel movement.

The results of comparison of the erosion tendencies for case 3 and case 5 at the
water level of SWL 1 showed that, when the gravel of GBL was replaced with the gravel
bag, there was no significant difference in the profile between them. As shown in Figure
3.27, the rear of the berm showed different sedimentation patterns in the time condition
of to, where in case 5, the gravel bag could not be installed to the ground, which caused

erosion faster than in case 3.
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In SWL 1, overall erosion and deposition patterns of case 3 and case 5 were
similar; however, in SWL 2, case 5 was found to have superior erosion control ability
as compared to case 3. This was so because, in the case of test case 3, as time passed,
the role of the gravel permeable layer was reduced by the scattering of some moving
gravel into the surface layer. On the other hand, the results confirmed that the gravel
bag of case 5 demonstrated the ability to control erosion for a long time by sufficiently
exerting the permeable layer's role despite the passage of time.

When SWL increased, the difference was considerable. Since the gravel bag
protected the berm from forming the scour hole, erosion persisted. By the end of ty,
unlike in test case 3, a large amount of sand dune formed on the backshore. When test
case 3 has eroded dune on the backshore, in test case 5, a sand dune formed even higher.
This dune slowly eroded after to; however, not much erosion was observed on the
backshore as compared to the other test case. Erosion on the berm on top of the gravel
and the gravel bag layer appeared similar; however, after ts, in test case 5, the formation
of the scour hole was prevented. This method is effective in the event of high waves
such as hurricanes, and the results confirmed that sedimentation was trapped by gravel
bags to prevent erosion. Besides, due to their low cost, simple processing, and the
possibility of being tailor-made, gravel bags are considered as a great countermeasure

to be used with nourishment.
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Thus, by looking at the Figure 3.29, A comparison of the outcomes of test cases
3 and 5 showed that, in the latter case, due to gravel’s being tied in synthetic fiber mesh,

no movement of filter unit was detected throughout the experiment (see Figure 3.29).

\

Figure 3.29: Top view of the end of test cases 5 and 3.

72



3.6 Conclusions

In this chapter, beach profile evolution and sediment transport were
experimentally investigated using gravel to reinforce a nourished sand beach for low
wave energy shores with limited sediment availability. Porous gravel berm interacted
with wave action in the swash zone and reduced wave overtopping and berm erosion.
Sand particles moved as bedload and suspended load, whereas gravel particles moved
as bed load only. When gravel bags substituted the gravel layer, gravel particles did not
move, and only sand particles moved as bedload and suspended load. Therefore, it can
be concluded that, for the purposes of both aesthetic value and effectiveness in low wave

energy shores, gravel nourishment can be replaced by gravel bags.
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Chapter 4

NUMERICAL SIMULATIONS AND ARTIFICIAL INTELLIGENCE

This chapter explains the numerical simulation models to compute beach profile
evolution and sediment transport of four different test cases conducted through
hydraulic model experiments. Since the current numerical simulation models cannot
simultaneously reproduce the gravel and sand, artificial intelligence that uses the neural
networks was applied as a new way to cluster and classify sediment transport. The
efficiency of application back-propagation neural network with three hidden layers to
emitter identification was examined. This chapter reports the results obtained through

ANN model.

4.1 Introduction

Most shorelines worldwide are experiencing some form of erosion, and this
trend can aggravate if the mean sea level rise accelerates due to the greenhouse effect
(Nicholas and Cazenave, 2010). The recent increase of coastal storm damage
necessitates the development of numerical models to predict the damage progression
and breaching of beaches, coastal stone structures, and earthen leaves during extreme
storms. In this context, in order to quantitatively understand the beach morphology and
damage progression, robust and straightforward models to reproduce the phenomenon
are necessary. Unfortunately, current models cannot calculate the damage while
simultaneously using different grain sizes.

Current models are based on the combinations of many physical equations (e.g.,
the wave energy equation) and are calibrated and verified using small-scale hydraulic
model experiments. Throughout the experiment, test case 1 was the only sediment of

sand with Dsp 0.16 mm used, compared with various 2D numerical simulations.
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Numerical models CSHORE, SBEACH, and XBEACH were tested and compared with
the results of the hydraulic model experiment. Moreover, the results of the artificial
model were compared with the results of numerical simulations.

Other than test case 1, hydraulic model experiments of test case 2,3, and 4 with
different SWL were compared with the Al model prediction. In this chapter, the aim is
to explore the possibility of reproducing the Al convergence and application on
sediment transport. Since only the data obtained from the current hydraulic model
experiment were used in the Al prediction, the results may not be entirely reliable;

however, they can show the application’s possibility.
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4.2 Numerical Simulations

This chapter aims to validate the ability of three cross-shore numerical models
(CSHORE, SBEACH, and XBEACH-G), and artificial neural network model
developed in this study to overcome the shortcomings of other numerical simulations.

Due to dramatic advances in the capabilities of personal computers, the usage of
numerical model tests for coastal regions has become increasingly popular. Combining
numerical and hydraulic model plays a vital role in quantifying the natural processes,
such as beach profile performance or sediment transport behavior. Such a relationship
produces the potential capacity to replicate complex features that cannot be obtained in
the field. Moreover, soft techniques such as beach nourishment should be tested before
actual nourishment; furthermore, to be nourished in the best placement, numerical
simulation can be simply and quickly applied.

With regard to the sediment transport profile behavior, in the literature,
numerous numerical models for the littoral zone have been proposed (Yuan, 2017). For
instance, in a pioneering study on the beaches along the Danish North Sea coast and the
California coast, Bruun (1954) developed a predictive equation for the equilibrium
beach profile. Furthermore, using the wave energy approach and differentiation between
bedload and suspended load, Bagnold (1966) developed formulas to calculate sediment
transport rates, including cross-shore transport. Several subsequent studies, including
Bailard (1982), and Stive and De Vriend (1987) refined Bagnold’s (1966) work. Using
a combination of theory and field observation, Larson (1996) proposed the SEBACH
model to predict profile changes due to storms; similarly, the CSHORE model was used
to predict such changes in response to the interactions between waves and currents.
Finally, the XBEACH-G model was proposed that uses non-linear shallow water

equations, such as a non-hydrostatic pressure term and a source term for the exchange
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with groundwater. However, a limitation of all aforementioned models is that all of them
reply to the equilibrium profile assumption to estimated profile and sediment transport.

The initial version of the CSHORE model, developed by Kobayashi and his
colleagues at the University of Delaware, was based on irregular nonlinear wave theory
which uses the time-averaged continuity, momentum, and wave energy equation
together with a non-Gaussian probability distribution of the free surface elevation
(Kobayashi and Kim, 2017; Kim et al., 2016). However, due to complex natural
environments and the limitations of empirical formulas, this model has several
limitations. Therefore, in the present study, for the case of alongshore uniformity, the
model was developed based on the equilibrium profile and linear wave theory combined
with the current. The sediment transport rate was computed based on a combination of
cross-shore and longshore suspended load and bedload in the surf zone. The calculation
of the wave and current model was based on the time-averaged continuity equation, the
cross-shore and longshore momentum equation, and the wave action equation in the surf
zone. Given that the CSHORE is a time-averaged probabilistic model, the sediment
transport model formulation involved predicting both suspended load and bedload
transport rate. For the CSHORE sediment transport, the time-averaged bedload
transport rate gox Was estimated using Eq. (4.1), and time-averaged cross-shore

suspended sediment transport rate gsx was computed based on Eq. (4.2).

_ bPpaj
Qpx = g(s—1) Gs(be) (4-1)
Gsx = aUVs; ay = [a+ (Spx/tan §)*°] 2 a (4.2)
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where b is the empirical bed load parameter with the value in the range of 0.001-

0.004, S, is the cross-shore slope, and G, is the bottom slope function where G; =

(1 - :;Ln’;) tang is the avalanching angle, s is the sediment specific gravity, a =

(0.2 + /Sp,/0.63) is the suspended load parameter of the order of 0.2 under the action
of waves and wave-induced currents for upward slopes, Py is the sediment movement
probability, U, is the onshore current due to the wave overtopping rate q,, U is given in

Eq. (4.3), Ce is an empirical coefficient, V; is the suspended sediment volume per unit

horizontal area in Eq. (4.4), Vs is the potential suspended sediment volume on a

horizontal bottom (see Eq. (4.5)). Overbar indicates time-averaged values.

1T U Ceqr Qx
U=—%O’UO'* (1+ﬁ)+7 (4.3)
— 2 105 2 105 . _ 92p, _92p
Ve = PVpp(1+ SE)OS(1+ 58,0055 Spe = 225 5, = 22 (4.4)
_ eBDT+efo
BI' ™ pg(s-1yws (4.5)

where e, = 0.005, ef = 0.01, and ws is the sediment fall velocity. Ps the probability
of sediment suspension, was included in Eq. (4.4). The sediment transport direction was
assessed by both suspended gsx and bed load transport rate gox. The following cross-
shore equilibrium profile concept proposed by Dean (1991) was used: gsx + Qox = O.
When gsx was negative, the transport direction was offshore, as the return current U was
negative (offshore). Alternatively, when gox was positive, the transport direction was
onshore for Spx < (tang)/2, and when gpx Was negative, transport was offshore for Spx>
(tang)/2 (Kobayashi, 2016). Although equations used in the CSHORE model pertain

to various sectors, only the sediment transport part was reviewed.
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The SBEACH model, originally developed by the US Army Corps of Engineers,
is a numerical model for simulating cross-shore storm-induced beach transport that can
simulate long-term recession processes with empirical coefficients derived from
process-based models (Roelvink et al., 2009). The SBEACH model simulates beach
profile changes, such as the formation and movements of significant morphologic
features (e.g., berms and bars) for various parameters of storm waves and water levels.
Breaking waves and changes in the sea level are the major parameters accounted for by
the SBEACH model. This model is based on the equation of mass conservation that
requires the mathematical expression for the cross-shore transport rate. The transport
direction and the rate of transport equations are developed separately for
monochromatic waves and irregular waves. The model enables determining the
direction of net cross-shore transport based on the deep-water wave steepness (Ho/Lo)
and sediment fall velocity (ws). Eq. (4.6) is the transport direction equation for

monochromatic wave types.

Ho _ y ( Ho )3, M = 0.00070 (4.6)

3 3
H H, . . . H, H . . .
where —L" >M (—L") is accretion, while —L" <M (—L") is erosion. Ho is deep water wave
o o

o o

height, T is the wave period, and L, is the deep water wave length. The monochromatic

wave transport equation under broken waves is shown in Eq. (4.4), where q is the net
3 2
cross-shore transport rate, S;Z—m € is the slope related transport rate coefficient 5":7 , K
4
is the sand transport rate coefficient mT and h is the still water level in m. x is the cross-

shore coordinate directed positive offshore in m, D is the wave energy dissipation per

unit water volume ( Zm ) and Deq is the equilibrium wave energy dissipation per unit

m-sec

water volume ( A;";C) € is slope related transport rate coefficient.

m-s
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€ dh € dh
.= KD = (Deg =53] P> Deg —55 47)
0 D < Dg—=

where D= %% , Deg = %pg3/2y2A3/2, and the energy flux = %ngZ,/gh (A is dean’s

scaling parameter, and y is a wave breaker index).

For irregular wave types, the transport direction is determined as follows (see Eqg. (4.8)):

1 Hrmso( wsT )3

e M Lo \Hrmso
2
~(r2%5)
e \Hrmso

In Eq. (4.3), & represents the net transport direction, Hrmso iS the deep-water root mean

=2 -1, —-1<é<1 (4.8)

square (rms) wave height and Hyo is the wave height at incipient breaking transformed
seaward to deep water, M=0.0007. Net erosion occurs when £ is positive, whereas net
accretion is predicted when ¢ is negative.

The transport rate equation for random wave types is shown in Eq. (4.9).

q = K¢& [D —a (Deq . g%)] (4.9)

where D is the average energy dissipation per unit water volume, K is the sand transport

rate coefficient & that weights the influence of erosion versus accretion waves on the

transport rate and determines the net direction of transport. In Eq. (4.9), « (Deq — %%)
part must be in positive in order to make the transport to occur; otherwise, the transport

is set to zero (Wise et al., 1996). Furthermore, transport rate is set to zero when the
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sections where % < 0 as the computations progress up the foreshore (Larson, 1996).

Therefore, SBEACH is unable to model the accretion process under irregular waves.
XBEACH—a model used to model the nearshore processes, such as wave
breaking, surf and swash zone processes—was originally proposed by Reolvink et al.
(2007). A powerful tool to reproduce the erosion for sediment transport, the XBEACH
model includes long wave transformation, short wave transformation (refraction,
shoaling, and breaking), time-varying depth-averaged currents, wave-induced setup and
run-up, wave-current interaction, roller momentum exchange, over-wash, as well as
inundation and hard structures. . A limitation of this model is that it requires extensive
modelling input and running time. Reviewing the significant sediment transport formula,
the sediment transport is modelled with a depth-averaged advection-diffusion equation

(see Eq. (4.10); Galappatii and Vreugdenhil, 1985).

dnc , dhcuf = dncvE

at dx ay

ac] _ RCeq—hC

7 T (4.10)

] acl , @
where C, which varies on the wave group time scale, is the depth-averaged sediment
concentration, Ceq is the equilibrium concentration computed as shown in Eq. (4.11),
and Dy is the sediment diffusion coefficient. Furthermore, Ts is an adaptation time based
on the local water depth h and sediment fall velocity ws, representing the entrainment of

the sediment. The continuity equation, which indicates bed-updating, is shown in Eq.

(4.12).

2.4
AsptAss Fms
Coq = %((Iu’flz + 0.018%) — ucr> (1—apm) (4.11)
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92p | fmor (04x | 94y _
6t+1—p(6x+6y)_0 (4.12)

where Ay is a bed load coefficient, Ass is a suspended sediment coefficient, u,,. is critical
velocity for sediment to move, and Cq is drag coefficient. To account for bed-slope
effects on the equilibrium sediment concentration a bed-slope correction factor is
introduced, where the bed slope is denoted by m and «;,, represents a calibration factor.
fmor 1S @ morphological acceleration factor of order (1-10), p is the porosity, while gx and

gy are the sediment transport rates in x and y direction, respectively (see Eq. (4.13)-

(4.14)).
00 = [22]  [2 2] 019
0.0 = 2] ¢ [2 o] 619

The formulation in XBEACH uses the Soulsby-Van Rijin transport concept (Roelvink
et al., 2009) and the avalanching approach to update the morphology. XBEACH-G,
which was used in this study is based on the XBEACH model for sandy coasts, which
has previously been modified to solve intra-wave flow and surface elevation variations
for waves in intermediate and shallow water depths by means of a one-layer, depth-

averaged, non-hydrostatic flow model (McCall, et al., 2015).
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4.3 Numerical Simulation Results

Sandy beaches without any protection are vulnerable to storm waves and cause
a large amount of erosion. Similarly, to the results of test case 1, when only sand was
used in the nourishment, beach acquired equilibrium soon after the storm wave attacks.
As current numerical models cannot reproduce test case 2, 3, and 4 with gravel
nourishment, only test case 1 was compared among other numerical models.

The aim of this section is not to compare and see which model is the best, but to
see whether Al model can reproduce the reasonable prediction like the other numerical
simulations as will be discussed in section 4.7. For all three numerical models used 0.16
mm for the Dso and used irregular waves with same wave heights and wave period used
in hydraulic model experiment. Since SBEACH and XBEACH-G models are made with
GUI, all the input factors were easily set as same as the hydraulic model experiments.
All the models used number of calculation cells or grid sizes smallest as possible. For
the different parameters each model requires, 30 degrees were used for maximum slope
prior to avalanching in SBEACH, and 30 degrees were used for angle of repose in
XBEACH-G. For the sediment friction factor, default value of 0.025, and for the
hydraulic conductivity, K, 0.1 m/s was used. For the CSHORE, version developed in
2017 (Kobayashi and Kim, 2017) was used throughout the test; however, among many
parameters, only parameters calculate sediment transport were selected and used as
same as the hydraulic model experiments. SBEACH and CSHORE computational
running time was short, unlike XBEACH requires extensive computational running time.

Again, the focus of this section is to see numerical simulations can reasonably
generate equilibrium beach profile like hydraulic model experiment did and later
compare it with Al model results to see whether Al model is comparable with these

numerical models. Therefore, after runtime of 120 minutes, beach profile was compared
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as shown in Figure 4.1 and Figure 4.2. Using SWL 1 with the same wave conditions, it
was found that the results of CSHORE showed the most similar profile evolution as
compared to that of the measured profile. XBEACH created the dune on the backshore;
however, a relatively good agreement was observed. On the other hand, the results of
SBEACH showed too much deposition on the foreshore. Overall, all the numerical

simulations could reproduce the equilibrium beach profile with SWL 1.

= INITIAL

CSHORE SBEACH XBEACH-G = swwun: MEASURED

Case 1: SBB, SWL 1
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Cross-shore distance (cm)

Figure 4.1: Case 1 SBB, SWL1 numerical simulations and measured comparison

When SWL was increased to SWL 2, the results varied. Soon after the SWL
increased, the final profile of SBEACH, which is sensitive to water level changes,
became parallel to the ground. SBEACH is sensitive to both wave climate and water
level changes, which is an advantage of the model; however, in this case, when SWL
increased to almost the same as the ground level, an accurate calculation could not be
performed. On the other hand, the final profile of CSHORE showed extensive erosion
on the backshore; however, the general profile looked most similar to that of the

measured profile. XBEACH showed extensive erosion both on the berm and foreshore.
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By examining each model's formulations, it can be seen that the empirical models with
equilibrium profile concepts were more economical; however, this computation is not
always accurate compared to energetic models, especially with high seawater level (see
Figure 4.2). Energetic models have an advantage in accuracy and theory of formulation,

but are time-consuming and not suitable for the long-term simulation.
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Figure 4.2: Case 1 SBB, SWL2 numerical simulations and measured comparison
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4.4  Artificial Neural Networks (ANN)

Artificial neural networks (ANN), a major tool in deep learning computing, are
widely used across all coastal and ocean engineering disciplines, including offshore,
deep-ocean, and marine engineering. ANN are being used in the areas of prediction and
classification, areas where regression and other related statistical techniques have
traditionally been used (Abambres et al., 2017; Banihabib et al., 2020). ANN, in general,
have provided either substitutive or complementary options to traditional computational
schemes of statistical regression, time series analysis, pattern recognition, and numerical
methods (Chaudhuri et al., 2016; Konate, 2019; Tealab, 2018). Due to the limitations of
numerical simulation reproducing the gravel nourishment, in this chapter, ANN were
used to try to predict the future profile evolution of test cases 1, 2, 3 and 4 using the
hydraulic model experiment data as a training dataset. Recently, ANN have been studied
as an alternative to the non-linear model-driven approaches. ANN rely on a data-driven
approach where the analysis depends on the available data, with little a
priori rationalization about the relationships between variables and about the models.
The process of constructing the relationship between the input and output variables is
addressed by a certain general-purpose learning algorithm.

In the present study, the ANN were inspired by information processing and
communication nodes in biological systems (Salahudeen et al., 2018). ANN follow the
cognition process of the biological neurons of a brain and develop the intelligence from
communications between different artificial neurons. An ANN are basically composed
of a set of interconnected artificial neurons, nodes or a group of processing units that

process and transmit information through activation functions.

86



Tanh function Sigmoid function
Yo Yy

[
| -1 -1

RelL.U function Linear function
Y+l —T T T Y+

-1 -1

Figure 4.3: Activation functions tanh, sigmoid, ReLU, and linear functions
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The most frequently used activation functions are the linear and non-linear
functions- the logistic, ReLU, hyperbolic tangent functions, and others, all of which

define the output of that node given an input or set of inputs.

f(x) = tanh(x) = E:: ::2 (tanh function) (4.15)
f(x) =0(x) = 1+le_x (sigmoid function) (4.16)
fx) = {(J)c]]?()):fc i % (ReLU function) (4.17)

In recent years, the Rectified Linear Unit (LeLU) has become very popular. It
outputs the function f(x)=max(0,x). In other words, the activation is simply thresholds
at zero. Comparing with tanh or sigmoid neurons that involve exponentials, the ReLU
can be implemented by simply thresholding a matrix of activations at zero. The neurons
of a network are structured in a single or multi-layer. The most frequently used
perception for deep learning is the multi-layer perceptron or MLP (Matuszewski et al.,
2017). The nodes of one layer are connected to the next layer's nodes to which they can
send information. More precisely, ANN consist of neurons that have learnable weights
and biases. Each neuron receives inputs, performs a dot product, and optionally follows
it with non-linearity. ANN receive the input and transform it through a series of hidden

layers. As shown in Figure 4.4, the last connected layer is called the output layer.
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Output

Figure 4.4: Structure of neurons of network
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Here, ANN with0 = f(X&,w;x; + b) where x,x;,X3,..., x4 and output
is 0. Every activation function takes a single number and performs a certain fixed
mathematical operation on it.

The advantage of a multi-layer perceptron is that both input and output data can
be processed in a continuous or discrete format. It has good predictability in general or
is always compared to other algorithms. It is powerful and useful when the relationship
between attributes or features is more complex. However, it is difficult to describe the
structure and relatively difficult to derive the optimal model, since it is composed of a
model close to the black box.

Predictive analytics deals with information retrieval to predict an unknown event
of interest, typically a future event. In the present study, sediment transport and profile
evolution were intended for the prediction. Using technology that learns from data to
predict these unknown events could drive better decisions. Usually, these predictive
analytics include readily available data like age, income, marital status, or other open-
text types. Using various data, predictive models can uncover patterns and relationships,
which allow organizations to anticipate outcomes based on more concrete information
than an assumption. The advantage of the ANN is the feedforward networking and back
propagation of error (Fine, 1999; Matuszewski et al., 2017), by which the network can
be trained to minimize the error up to an acceptable accuracy. The training procedure of
the network can select to fit the purpose of supervised and unsupervised training types.

In the present study, the back-propagation algorithm with supervised learning was used.
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4.5 Dataset and Architecture

Each hidden layer consists of a set of neurons. Each neuron is fully connected
to all neurons in the previous layer, and where neurons in a single layer function entirely
independently and do not share any connections. The last fully-connected layer is called
the output layer. The architecture of this research is based on a three-layer perceptron
(see Figure 4.5). Seven nodes with the input layer and three hidden layers with 254
nodes were used. These nodes from the hidden layer can be made up infinitely. Here,
after using more than 254 nodes, results changed minimal that 254 nodes were used.

The intention was to obtain the final predicted profile; therefore, the node of the
output layer was set to one. The aim was to predict the future profile and to compare it
with the measured data obtained from the hydraulic model experiments. Thus, beach
profile evolution with ti, t2, and t3 was used for the training, and t4 was tested with the
output from the prediction.

As the architecture of the ANN model in Table 4.1, seven input parameters were
used for both training and testing. Profiles of Case 1, 2, 3, and 4 with SWL 1 and 2 for
time ti, t2, t3 were trained. Seven input parameters include cross-shore distance, initial
profile, time, height, period, case, and seawater levels with the output (profile evolution)
were used in training. For the testing (ts of each test case), the same input parameters
were used to get a final profile evolution as an output. Later, tested outputs were
compared with the measured profiles, and the differences were analyzed to see the

performances of ANN model in Table 4.2-4.4.
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Figure 4.5: Neural network architecture used in the present study
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Table 4.1: Architecture of the present study

Parameter LAF case RAF case SAF case
Model Deep Neural Network
Cross-shore distance
Initial profile
Time
Input parameter Height
Period
Case
Sea Water Level
Activation function Linear RelLU sigmoid
Hidden layer 3
Hidden laver’s node 254
QOutput node 1

Target

Changed Profile (Profile evolution)
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For the parameter of each activation function, Linear activation function (LAF),
ReLU activation function (RAF), and sigmoid activation function (SAF) cases were
compared. The developed ANN model's performance was evaluated to ensure that the
model was able to perform within the pre-defined limits set by the data used for training
generally. The conventional approach was used to evaluate the model performance on
an independent validation set of data not used in the training process. Root mean square
error (RMSE), mean absolute error (MAE), and mean squared error (MSE) were used as
evaluation metrics to gauge the prediction accuracy. The RMSE, MAE,

and MSE evaluation matrices were defined as follows (see Eq. (4.18) -(4.20)):

RMSE = \[Z?(Predicte:i—Actuali)z (4.18)
MAE = =37 |Predicted; — Actual;| (4.19)
MSE = %Z?(Predictedi — Actual;)? (4.20)

where 7 is the number of test samples; predicted is the predicted beach profile change
at t4=120 min, and actual denotes the measured ts4 from the hydraulic model experiment.

From the prediction accuracy comparison of using the activation function of
LAF, RAF, and SAF cases, all three activation functions have not much differences of
error since amount of the training data is not too much (Table 4.2-4.4); however ReLU
activation function was chosen since ReLU is a faster learning AF, which has proved to
be the most successful and widely used function (Ramachandran et al., 2017) and it’s

data sparsity which reduces the likelihood of the gradient to vanish.
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Table 4.2: Results in RMSE, MAE, MSE (Linear activation function)

SWL CASE RMSE MAE MSE
1 0.6663 0.6663 0.8736

2 1.2512 1.2512 3.4243
SWLI 3 0.8655 0.8655 1.4636
4 0.7411 0.7411 1.3602
1 0.7467 0.7467 0.8849

2 0.7956 0.7956 1.1911

SWL2 3 0.4788 0.4788 0.3683
4 0.6418 0.6418 0.6751

Table 4.3: Results in RMSE, MAE, MSE (ReLU activation function)

SWL CASE RMSE MAE MSE
1 0.6141 0.6141 0.7235

2 1.3004 1.3004 3.9409

SWL 1 3 0.9777 0.9777 1.9097
4 0.8903 0.8903 1.9033

1 0.7559 0.7559 0.9443

2 0.8308 0.8308 1.2265

SWL 2 3 0.5345 0.5345 0.4829
4 0.6398 0.6398 0.7698

Table 4.4: Results in RMSE, MAE, MSE (Sigmoid activation function)

SWL CASE RMSE MAE MSE
1 0.6098 0.6098 0.6909

2 1.2353 1.2353 3.6859

SWL 1 3 0.9431 0.9431 1.9205
4 0.8769 0.8769 1.7792

1 0.7633 0.7633 0.9537

2 0.9091 0.9091 1.6425

SWL2 3 0.5691 0.5691 0.5491
4 0.6394 0.6394 0.7830
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4.6 Artificial Intelligence (ANN) model results

In this chapter, ANN was used to predict the future profile evolution of the
sediment transport of the sand and gravel nourishment of test cases with sand berm and
beach, gravel berm and sand beach, buried gravel layer, and buried gravel sill. After
deciding to use the ReLU activation function for the final output, the final beach profile
for t4=120 min was compared with that of the hydraulic model experiment. Some
drawbacks associated with the practical use of ANN include the possibly long time of
the modeling process and the large amount of data required. Figure 4.6 shows the initial
profile with SWL for each test cases. Figures 4.7- 4.14 show the predicted beach profile

evolution compared to the measured profile from the hydraulic model experiment.
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Figure 4.6: Case 1, 2, 3, and 4 initial profile

As shown in Figures 4.7 and 4.8, in test case 1, using only sand nourishment,
with SWL 1 and SWL 2 were compared. This profile is the equilibrium beach profile
where the ANN model predicted the foreshore very well; however, erosion on the

backshore was not accurately predicted on SWL 1. For SWL 2, there was a scour hole
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that occurred during t>, and ANN used the previous training data to reproduce the scour.
This was due to the lack of data to be trained except three-time steps ti, t2, and ts.

However, the overall profile appeared to be reasonable.
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Figure 4.7: Case 1 SWL 1 comparison of ANN prediction and measured from the
physical test
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Figure 4.8: Case 1 SWL 2 comparison of ANN prediction and measured from the
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Typical gravel nourishment of Tuvalu was reproduced and tested through test
case 2 with SWL 1 and SWL 2. Figures 4.9 and 4.10 show the results of the ANN model
and compared with the measured profiles. From SWL 1, the ANN model produced the
dune on top of the berm like the measured profile; however, the shape and location were
not in the exact location. Nonetheless, for the tendency wise, creating the dune on top
of the berm, and foreshore erosion were accurately reproduced through ANN. Measured
profile of test case 2 with SWL 2 showed the dune forming on the backshore, and the
ANN model also predicted the berm shape profile on the backshore. Although, overall
tendency appeared to be reasonable, size and location of the dune were not precisely
reproduced. One of the main reasons for this inaccuracy may be the lack of the data

since only 8 test cases with ti, t2, and t3 were used as the training dataset.
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Figure 4.9: Case 2 SWL 1 comparison of ANN prediction and measured from the
physical test
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In test case 3 with SWL 1 shown in Figure 4.11, the ANN model predicted less
erosion on the backshore compared to the measured profile evolution. Even though the
overall tendency of beach profile becoming equilibrium was predicted, the amount of
erosion was not precisely predicted. Nonetheless, the prediction of ANN on test case 3
with SWL2 in Figure 4.12 was accurate as compared to the measured data. Erosion was

accurately predicted on both the berm and the foreshore.
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Figure 4.11: Case 3 SWL 1 comparison of ANN prediction and measured from the
physical test
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Figure 4.12: Case 3 SWL 2 comparison of ANN prediction and measured from the
physical test
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Finally, for the test case 4 with SWL 1, similarly to test case 2 with SWL2 in
Figure 4.10, the scour hole was predicted on the berm, and less erosion was predicted
on the backshore of the beach. As shown in Figure 4.14, foreshore prediction of cross-
shore 60 to 180 cm prediction was accurate. Gravel sill did not move so much on the
cross-shore 40 — 64 cm in the measured data; however, the tendency of ANN prediction
on this section predicted well. The prediction had a dune shape formed on this section
unlike measured data. Cross-shore 0 to 40 cm had a reasonable prediction as compared

to the measured data.

102



e Al Model +===s: MEASURED

18 Case 4: BGS, SWL 1

Elevation (cm)

0 20 40 60 80 100 120 140 160 180 200

Cross-shore distance (cm)

Figure 4.13: Case 4 SWL 1 comparison of ANN prediction and measured from the
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Artificial neural networks were used to predict the final profile of test cases 1,
2, 3, and 4 with SWL 1 and 2 (a total of 8 test cases) by training the test cases with time
intervals 30 minutes (t;=30 min, t;=60 min, and :=90 min). For the activation function,
the ReLU function was used for the prediction. Throughout the profile comparisons of
ANN model and measured data for t4 = 120 min, the ANN model was able to predict
the tendency of the erosion quite well with forming the dune on the backshore when
using gravel nourishment. However, the ANN model's prediction about the erosion
amount of the measured data was reasonable but not precisely accurate. This limitation
could have been caused by lack of the dataset used for model training. In the future
analysis, more datasets with shorter timesteps should be trained on the model to increase
the accuracy of the prediction. Moreover, various types of the initial profile should be
trained in order to make the ANN model more robust and accurate. Further researches

should be conducted in order to use the model practically.
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4.7 Data Comparisons

Since the comparison of ANN model can be made with numerical simulation on
only test case 1 using only the sand beach profile, three numerical simulation models
(CSHORE, SBEACH, and XBEACH-G) were compared with the ANN model. As
mentioned in Section 4.3.3, CSHORE most accurately predicted the profile evolution
for measured profile at t4=120 min. When comparing the result of CSHORE with that
of the ANN model prediction (Figure 4.15), ANN model prediction was more accurate
with same tendency of becoming equilibrium profile; however, on the backshore, less
erosion has been predicted, and the tendency of the backshore erosion was similar to
that of the XBEACH-G.

When the SWL increased to SWL 2 (Figure 4.16), the prediction of the
numerical simulation was not very accurate. The ANN model prediction was not very
precise as compared to CSHORE. The erosion was overestimated for the CSHORE;
however, the ANN model less accurately estimated the erosion. XBEACH-G and
SBEACH predictions on SWL 2 were not very accurate. SBEACH predicted too much
deposition on the foreshore, while XBEACH-G predicted too much erosion as
compared to other models. This may be a problem when the SWL is too high. The ANN
model prediction's main focus is that it can be used in any profile without any limitations
(e.g., gravel nourishment) so that ANN can be applied and compared with the test cases
2, 3, and 4. Using large amounts of small and field-scale data will increase the accuracy
of the current ANN model, highlighting the potential of artificial intelligence
applications on the sediment transport prediction of beaches where the numerical

simulation cannot predict.
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4.8 Conclusions

In this chapter, modeling and prediction of beach profile evolution on beaches
with gravel nourishments using an artificial intelligence model was performed. The
level of reflectivity of the beach is an important parameter to control the magnitude and
distribution of the undertow velocity. Throughout the profile, the Al model less
accurately estimated the erosion on the backshore; however, in some test cases, the
prediction was noticeably accurate. Overall, the tendency for sediment transport was
accurately predicted. Training limited dataset can cause less accurate predictions, as
neural networks work better with a large amount of data. Therefore, training large
amounts of both small- and large-scale data will increase the accuracy of the profile
evolution prediction, which can then be applied to many beaches where numerical
simulation cannot produce accurate predictions.

Despite the availability of useful numerical simulations, a novel insight provided
in this chapter is supplementing the shortcomings of these numerical models by using
artificial intelligence. Although the results were obtained through the use of a basic
artificial deep learning model, in the future, the model can be upgraded by a comparative
review of various artificial intelligence models to make a robust model using more data
to be trained. Also, the importance of explainable Al, which can tell what the results
mean, as well as create complex and good models, is increasing. At present, it remains
challenging to explain what correlations exist and how these results are obtained in
analyzing and predicting data using artificial neural networks. Therefore, future studies
should contain Explainable Al so that the model can be practically used in coastal

engineering.
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Chapter 5
CONCLUSIONS

5.1 Experimental Findings

A laboratory experiment consisting of four test series: SBB, GBS, BGL, BGS
and GBL with 40 runs in total (each run consist 30 min) was conducted in a wave flume
with a sand beach and a nourished berm to compare the effectiveness of a sand berm
and beach (SBB), a gravel berm and sand beach (GBS), a buried gravel layer (BGL),
and a buried gravel sill (BGS). The still water level was increased to generate extreme
conditions to create accretional profile changes on the foreshore and berm. While SBB
test case was vulnerable to the extreme wave conditions and quickly become an
equilibrium profile, GBS shows deposition of the berm appeared over time and found
to have a good result as a countermeasure against erosion. For the aesthetic and
environmental purposes, BGL and BGS cases were tested. Gravel underneath the berm
acts as a filter for the permeable layer of gravel and keeps the sand inside the rear section
unsaturated for a certain period of time. Scour appeared on BGS, and found to be less
efficient compared to BGL. Although it is known fact that the water permeable layer is
effective when there is no sea level rise, the gravel water permeable layer has a similar
effect even when the sea level rises was confirmed through this research.

BGL was found to be an efficient method in slowing down erosion; however, if
the duration of the high wave in an abnormal tide condition becomes longer, eventually,
buried gravels were moving onshore and could interrupt the aesthetic view of the beach.
Thus, gravel bags were substituted for the gravel layer from BGL, and the gravel bag
layer (GBL) was tested to see the difference. No considerable difference was observed

for SWL 1 (HHWL condition); however, when the still water level was increased, gravel
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bag protected the berm from forming the scour hole, and In SWL 1, the erosion and
deposition patterns of case 3 and case 5 were similar; however, in SWL 2 (abnormal
tide condition), gravel bag layer was found to have superior erosion control ability as
compared to buried gravel layer. This was so because, in the case of test case BGL, as
time passed, the role of the gravel permeable layer was reduced by the scattering of
some moving gravel into the surface layer. On the other hand, the results confirmed that
the gravel bag demonstrated the ability to control erosion for a long time by sufficiently
exerting the permeable layer's role despite the passage of time and preserve the aesthetic

view at the same time.

5.2 Artificial Intelligence

Artificial neural networks were used to predict the final profile. For the
activation function, the ReLU function was used for the prediction. Throughout the
profile comparisons of artificial neural networks and measured data for the final profile,
the artificial neural networks model was able to predict the tendency of the erosion quite
well with forming the dune on the backshore even when using gravel nourishment.

When gravel and sand are mixed, such as gravel nourishment, it is challenging
to draw results other than the hydraulic model experiment. Throughout the research,
application of artificial intelligence in coastal engineering started with the question, ‘if
one can create a robust artificial intelligence model by using various hydraulic model
experiments and field data as big data, can it be possible to replace the limitations of the
numerical simulations composed of mathematical formulas?’. The results showed in
this study may be minimal; however, the results were good enough and thought to be

the excellent baby step to deepen the convergence of artificial intelligence in coastal
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engineering. However, the something to keep in mind is that artificial intelligence is a
data-based predictive analyst, so it is essential to use enough data. The more data, the
more accurate the prediction. Although, it is vital to verify availability through various
model verification before being used practically.

The prediction of the artificial neural networks model about the erosion trend
was accurate, but the amount was not so precise. This limitation could have been caused
by a lack of the dataset used for model training. In the future analysis, more datasets
with shorter timesteps, small- and large-scale experiments should be trained on the
model to increase the accuracy of the prediction. Moreover, various tests with various
types of beach profiles should be trained to make the Al model more robust and accurate

to be used practically.
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