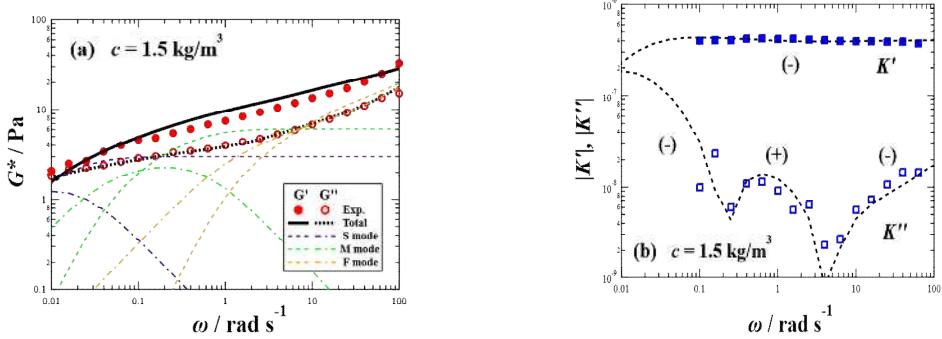


Title	Rheo-Optical Study on Dispersion Systems of Cellulose Nanofibers, Microgels, and Their Mixture
Author(s)	Li, Shangwei
Citation	大阪大学, 2020, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/77596
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>


The University of Osaka

Abstract of Thesis

Name (SHANGWEI LI)	
Title	<p>Rheo-Optical Study on Dispersion Systems of Cellulose Nanofibers, Microgels, and Their Mixture (セルロースナノファイバー、マイクロゲルおよびそれらの混合物の分散系に関する流動光学的研究)</p>
<p>Abstract of Thesis</p> <p>In this thesis, the stress-optical relationship of the viscoelasticity in dispersion systems of TEMPO-oxidized cellulose nanofiber (CNF), the microgel particle (MGP), and their mixture was studied.</p> <p>In Chapter II, the viscoelastic response of CNF dispersions in the entangled regime was investigated. Width of the cellulose nanofiber was firstly determined as 3.46 ± 0.2 nm by using UV-VIS-NIR absorption spectroscopy. The critical concentrations for onset of semi-dilute and concentrated regime were evaluated as $c_1=0.033 \text{ kg/m}^3$ and $c_2=6.56 \text{ kg/m}^3$ respectively with the obtained width. The contribution of orientation mode and bending mode were analyzed by rheo-optical measurements, indicating that the birefringence was reduced from the orientational birefringence, probably due to the non-affine deformation of the system resulting from the slippage occurring between CNFs. In spite of these non-idealness of deformation, the stress-optical relaxation seemed to hold well and the stress-optical coefficient for the bending mode was successfully determined. $C_{\text{bend}}=2.5*10^{-7} \text{ Pa}^{-1}$, which was approximately 30 times smaller than the stress-optical coefficient for the orientation mode, $C_{\text{or}}=7.8*10^{-6} \text{ Pa}^{-1}$, as shown in Fig. 1.</p>	
<p>Fig. 1 Concentration dependency of stress optical coefficient C. Fig. 2 Diagram of the self-build apparatus.</p> <p>In Chapter III, the highly-sensitive apparatus (shown in Fig. 2) for oscillatory flow birefringence measurements in a co-cylindrical geometry was developed. A conventional rheometer is equipped with an Argon ion laser, optical train, and a lock-in amplifier for birefringence measurements. The laser was irradiated to sinusoidally oscillating samples in an outer cylinder of the geometry, and amplitudes and phase angle differences of the transmitted light through samples were analyzed using the lock-in amplifier. The phase shift between the Transistor-Transistor Logic signals (nominal strains) and sinusoidal signals (true strains) was calibrated with a half shaded glassy fixture, manifesting phase shift depended on strains as well as</p>	

frequencies. The reliability of the apparatus was further examined with the CTAB / NaSal solution whose rheo-optical behavior has been clearly researched. It was expected that the dynamic flow birefringence measurement using the high-sensitive apparatus can provide new insights on dynamics of low birefringent polymeric materials which used to be difficult.

In Chapter IV, the validity of stress optical rule (SOR) for soft deformable colloids was examined. I measured the dynamic birefringence and linear viscoelasticity of MGP dispersions of $0.8 \text{ kg/m}^3 \leq c \leq 40 \text{ kg/m}^3$. For microgels dispersions in regime of $c \leq c_{\text{glass}}$, where $c_{\text{glass}} = 2.16 \text{ kg/m}^3$ was the mass concentration corresponding to the maximum of random close packing volume fraction 0.64, the imaginary part of the complex strain optical coefficient, K^* , changed its sign with angular frequency while the real part exhibited negative values within whole frequency window. The dynamic modulus G^* could be described with three relaxation mechanisms, which were assigned to the reorientation of polymer segments of internal microgel, the form birefringence, and the Brownian stress. This assignment could be supported by the extension of the Doi-Onuki theory to strain-induced birefringence of MGP dispersions. However, in the concentration regime of $c \geq c_{\text{glass}}$, the SOR held well with one stress-optical coefficient, implying there was only one relaxation mechanism, which could be attributed to the segment orientation of network strands in gel particles. Thus, it was concluded that the rheo-optical research provided a practicable method for the research of microgel particles on a microscopic level.

Fig 3. (a) Frequency dependences of G^* for MGP of $c=1.5 \text{ kg/m}^3$. (b) Frequency dependences of K^* for MGP of $c=1.5 \text{ kg/m}^3$. Curves represents fitting result derived from SOR.

In Chapter V, characteristics of the CNF dispersed in the matrix composed of MGPs were investigated. The linear range of the complex modulus was clearly expanded by mixing, where the slippage between MGPs was suppressed by the presence of CNF and the strain concentration of CNF was suppressed by the presence of MGP. The non-affine response related to the high mechanical contrast between CNFs and matrix water was restrained and the mixed system could deform affinely. The dynamic birefringence measurement was also carried out on the CNF / MGP mixtures, showing the presence of MGP facilitated the orientation motion of CNFs. Contributions of CNF and MGP for viscoelasticity in the mixed system could be separated by the MSOR and by the analysis of synergistic effect respectively. Two estimations coincided with each other that there was a significant decrease of modulus for MGPs, as if the effective volume fraction of MGP was reduced. MGPs might be partially de-swollen due to an enhancement of strength or a change in the local stress field caused by the presence of CNFs. The strong mutual effect influenced the properties of CNF / MGP composites greatly.

論文審査の結果の要旨及び担当者

氏名 (LI SHANGWEI)		
論文審査担当者	(職)	氏名
	主査 教授	井上正志
	副査 教授	佐藤尚弘
	副査 准教授	浦川 理
	副査 准教授	寺尾 憲

論文審査の結果の要旨

本論文は、セルロースナノファイバーCNF、マイクロゲルMGPおよびそれらの混合物の分散系について、流動光学的手法を用いて調べたもので、5章から構成されている。

第1章は序言であり、本研究の実施に至った背景が述べられている。さらに、研究の目的が「1. からみ合ったCNF水分散液の動的特性の分子的側面を明らかにする。」「2. 高感度複屈折測定のための新しい装置を開発する。」「3. MGP分散溶液の応力発現起源を明らかにする。」「4. MGP分散媒体中におけるCNFの強化機構を解明する。」であることが、端的に説明されている。

第2章は、からみ合ったCNF水分散液の実験結果と分子理論との比較が述べられており、複屈折測定からCNFが、理論が仮定するように変形によりアフィン的に配向しておらず、変形時に試料内で滑りが生じていることを明らかにしている。この結果は、CNF分散溶液のレオロジーを考える上で極めて重要なもので、その非線形性の強い特異的なレオロジー挙動を、説明する有用な知見である。

第3章は、新たに開発された高感度複屈折測定装置について述べられている。MGPの測定においては、極めて低濃度(0.1wt%)での測定が不可欠で、このため共軸円筒の治具を用いた装置の開発を行い、従来型の装置に比べて30倍以上の感度の向上に成功している。

第4章は、新たに開発された高感度複屈折測定装置を用いて、MGP分散溶液の応力発現起源について調べる。MGPはソフトな分散系であり、ゲルとしての高分子の配向応力に加えて、粒子の変形と粒子のブラウン運動による応力が観測されるはずである。希薄な領域では、動的複屈折に3つの緩和過程が観測されることを世界に先駆けて発見し、発生機構別に弾性率を定量的に分離することに成功している。この成果は、MGP分散溶液が持つ分散系としての性質とゲルとしての性質をシームレスに繋げるもので、複雑なMGP分散系のレオロジーを定量的に理解する手法を提供するものである。

第5章は、CNFの補強効果を調べるために、CNF/MGP混合系について調べている。CNFの補強効果を調べるために、マトリックスとCNFの力学的コントラストが大きいほど、すなわちマトリックスの弾性率が低い方がCNFの補強効果が明確に観測される。こうした観点からすれば、ゲル中にCNFを分散させることが良いが、通常のゲル化方法では、一度生じた不均質構造が容易に固定化され平衡状態の達成に疑惑が残る。本研究では、MGPを利用することで、この問題を回避している。MGPの複屈折は弱いため、動的複屈折測定からCNFの配向状態を調べることができ、その結果、マトリックスを水からゲルに変えることにより、CNFのアフィン変形が回復されることを見出している。さらにCNFの補強効果は、CNFが低濃度であれば半屈曲性高分子の理論で説明できることを明らかにしている。

第6章は、研究の総括である。

以上のように本論文は、CNF、MGPの分散系、並びにその混合系について、複屈折測定を利用して応力の発生機構に関する本質的問題を明らかにしている。

よって、本論文は博士(理学)の学位論文として十分価値あるものと認める。