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 ABSTRACT 

Small-angle X-ray scattering (SAXS) and circular dichroism measurements were carried out for 

NaHeparin and a triple helical peptide, H-(Pro-Pro-Gly)10-OH (PPG10), in aqueous sodium 

chloride (NaCl) at ionic strengths of 20 mM, 50 mM, and 150 mM at different temperatures.  While 

PPG10 forms a triple helix below 25 C, the melting temperature of the triple helix in the mixed 

solution is considerably higher (~ 10 C) at low CS values than without NaHeparin.  Part of the 

PPG10 molecules formed complexes with NaHeparin in 20 mM and 50 mM aqueous NaCl at 15 

C, but all solutes were molecularly dispersed at 75 C, indicating that only triple helices form 

complexes with NaHeparin.  Electrostatic attraction plays an important role in the complexation, 

since no complex formation was observed in 150 mM aqueous NaCl.  The scattering function of 

the complex was explained by the presence of a thick wormlike chain, indicating that the molecular 

shape is different from that of the previously investigated complex with polyacrylic acid and 

carboxymethyl amylose.  This suggests appreciable attractive interaction between the triple helical 

part of PPG10 and NaHeparin. 

 

Keywords: anionic polysaccharide / circular dichroism / collagen / electrostatic interactions / 

small-angle X-ray scattering / triple helical peptide 

 

Introduction 

Oligopeptides with a Pro-Pro-Gly sequence exhibit thermoreversible conformational changes in 

aqueous solution [1, 2], and furthermore, trimerization has been observed at low temperatures [3], 

while different conformations were found after the renaturation of native multiple helical 

biopolymers, including collagen, schizophyllan [4], and xanthan [5, 6].  Such synthetic peptides 

have therefore been widely investigated to clarify the structure-function relationship of collagen 

[7-11].  Thus, these peptides are called collagen model peptides (CMPs) or triple helical peptides.  

They have been widely investigated for biomedical applications because some CMPs have 

relatively high stability in mammalian serum and/or plasma [12-17].  CMPs form a uniform triple 

helix, which was confirmed by single crystal formation [18]; moreover, a rodlike nature of the 

triple helix was observed in solution at low temperatures by small-angle X-ray scattering (SAXS) 

[19] and dielectric dispersion [20]. 

The positively charged N-termini of the triple helices interact much more significantly with 

anionic charges than do those of the single coil because the N-termini of the triple helices of CMPs 

are located near each other.  Indeed, the triple helical structure is extremely stabilized in the 

presence of a small amount of polyelectrolytes [21, 22].   The obtained complex has a comb-like 
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structure, in which the main chain and side chains consist of the polyelectrolyte and triple helical 

CMPs, respectively.  The most important attractive force in the formation of the complex is the 

electrostatic force because the stability of the complex increases with both an increasing charge 

density of the polymer chains and a decreasing ionic strength (CS) of the aqueous solvent [23].   

Although previous studies on synthetic polyelectrolytes have been performed, mainly focusing on 

sodium acrylate (NaPAA) and carboxymethyl amylose (NaCMA), the investigation of the 

interaction of CMPs with natural electrolyte polysaccharides is inviting because some biopolymers 

have specific interactions with other molecules to facilitate their specific functions in vivo. 

In this study, we investigated the complex formation as well as the stabilization of the triple 

helical structure of H-(Pro-Pro-Gly)10-OH (PPG10) with and without heparin by means of SAXS 

and circular dichroism (CD) measurements because the former method is appropriate for 

identifying the conformational properties of nonlinear polymers and polymeric complexes in 

solution [24, 25].  The resulting data were analyzed using linear and branched chain models to 

estimate the molecular shape of the complex.  Since heparin is an abundant anionic polysaccharide 

in mammals and is widely used as a blood thinner, its interaction with CMPs may become a key 

factor in developing their biomedical applications. 

 

Experimental Procedure 

Samples 

Commercially available heparin sodium salt (NaHeparin, TCI) and PPG10 (Peptide Institute) were 

used for this study without further purification.  The number of sulfuric acid groups of each 

disaccharide unit was estimated from ultimate analysis to be 1.57.  The number of anionic groups 

was thus 2.57 for each disaccharide unit, upon taking carboxylic groups into account.  The average 

molar mass M0 of the monosaccharide unit was therefore calculated to be 0.260 kg mol−1 for 

NaHeparin.  It should be noted that slight differences in the chemical structure do not cause 

significant errors in the following analysis of the scattering data. 

Size-exclusion chromatography (SEC) equipped with multiangle light scattering (MALS) 

and refractive index (RI) detectors was used for the analysis of the NaHeparin sample in 50 mM 

aqueous NaCl at room temperature (~ 25 C) on a Shodex GPC-101 SEC system with a Shodex 

OHpak SB-G guard column and two Shodex OHpak SB-806M HQ SEC columns connected in 

series, a Wyatt DAWN Heleos II MALS detector, and a Shodex RI-71 RI detector to determine 

the weight-average molar mass Mw and the dispersity index Ð, defined as the ratio of the Mw to 

the number average molar mass.  The flow rate was set to 1 mL min−1.  The two values for 

NaHeparin were determined to be Mw = 18.9 kg mol−1 and Ð = 1.09.  The excess refractive index 

increment for NaHeparin was determined with a Schulz-Cantow-type differential refractometer 

(Shimadzu) and identified as 0.115 cm3g−1 in 50 mM aqueous NaCl at 25 C at the wavelength 0 

= 658 nm in a vacuum, which are the same conditions as those of the light source of the MALS 

detector.  The molar mass M of PPG10 was calculated to be 2.531 kg mol−1 according to the 

chemical structure. 

 

Small-angle X-ray Scattering (SAXS) 

Synchrotron-radiation SAXS measurements were carried out for NaHeparin and 

NaHeparin/PPG10 in 20 – 150 mM aqueous NaCl at 15 C and 75 C at the BL40B2 beamline in 

SPring-8 (Hyogo, Japan).  Some preliminary measurements were also carried out at the BL-10C 

beamline in KEK-PF (Ibaraki, Japan).  The camera length and 0 were set to be 4.16 m and 0.10 

nm, respectively.  The intensity of the scattered light was integrated by a Rigaku R-AXIS VII 
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imaging plate for 180 s.  The position of the incident light at the detector and the precise camera 

length were calibrated with silver behenate.  Solvent and solutions with 3 or 4 different total mass 

concentrations ct, which is the sum of the concentrations of NaHeparin and PPG10, were filled in 

a quartz capillary cell with a diameter of 2 mm just before each measurement.  The range of ct 

was chosen to be between 1 and 5 mg mL−1.  The scattering intensity at each pixel was calibrated 

with the direct beam intensity at the lower end of the sample to correct both the incident light 

intensity and the transmittance.  A circular average procedure was employed with SAngler 

software [26] to determine the scattering intensity I(q) as a function of the magnitude q of the 

scattering vector.  The scattering intensity of the solvent determined with the same capillary cell 

was subtracted from I(q) to estimate the excess scattering intensity I(q).  The ratio z2Rq/K, where 

Rq and K denote the Rayleigh ratio at q and the optical constant, respectively, was estimated from 

the following relationship, with the subscript r being the reference value evaluated from the 

NaHeparin solutions [27]: 
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where z is related to 

 

e,sz z v = −     (2) 

 

Here, z is the number of moles of electrons per unit mass of the solute, 𝑣̅ is the partial specific 

volume of the solute, and e,s is the electron density of the solvent.  We estimated the 𝑣̅ value of 

the NeHeparin solution from the specific density increment at the fixed chemical potential.  For 

PPG10, literature values were used for this study [23].  

 

Circular Dichroism (CD) 

CD measurements were performed by a JASCO J720WO spectropolarimeter for PPG10 with or 

without NaHeparin in 20, 50, and 150 mM aqueous NaCl.   The sample solution in which ct was 

in the range of the SAXS measurements was placed into a rectangular cell with a path length of 1 

mm.  The temperature of the JASCO PTC-423L Peltier cell holder was increased at a rate of 6.0 

C/h.  The ellipticity  was determined at 0 = 225 nm and decreased sigmoidally with increasing 

temperature due to the conformational change of the triple helix to a single coil-like chain.  The 

melting temperature Tm was estimated as the temperature at which the half of PPG10 had a triple 

helical structure. 

 

Results and Discussion 

Stability of Triple Helices 

Fig. 1 illustrates the Tm of PPG10 including NaHeparin.  The horizontal axis is the charge group 

ratio  defined as the molar ratio of anionic groups of NaHeparin to N-terminal groups of PPG10.  

Tm rapidly increased with increasing  at CS = 20 mM, while almost no  dependence was 

observed at CS = 150 mM, indicating that the stabilization of the triple helical structure with 

increasing NaHeparin composition becomes much more significant with the decrease in CS.  

Another interesting point is that the asymptotic Tm at CS = 20 mM was approximately 10 C higher 



 4 

than that for the pure PPG10 system.  Similar high stabilization has only been found for sodium 

poly(acrylic acid) and polyvinylamine, for which the line charge density was 3.8 nm−1 [22].  The 

value can be estimated for NaHeparin to be 4.6 nm−1 from the helix rise per residue evaluated 

below, revealing that the electrostatic attractive interaction between PPG10 and NaHeparin plays 

an important role in the stabilization of the triple helices.  

 

 
Fig. 1. Composition dependence of Tm for PPG10 including NaHeparin in aqueous NaCl with CS 

= 20 mM (circles), CS = 50 mM (triangles), and CS = 150 mM (squares) at a temperature increasing 

rate of 6 °C h–1.  

 

Complex Formation of PPG10 and NaHeparin 

The reduced scattering intensity z2Rq/Kct was almost independent of the ct at the high q range, 

suggesting essentially the same complexation within the ct range investigated (1 – 5 mg mL−1).  

The slight decrease in z2Rq/Kct at the low q range with increasing ct can be attributed to the second 

virial term.  We thus extrapolated z2Rq/Kct to ct = 0 to eliminate the interparticle interference.  

The modified square-root Zimm plots for NaHeparin/PPG10 at low CS and ct = 0 are illustrated in 

Fig. 2, in which the vertical axis is free from z, cf. eq 1.  The scattering intensity at q = 0 at 15 

C was appreciably lower than that at 75 C.  Considering that NaHeparin has a much higher molar 

mass than PPG10, the high scattering intensity at low temperatures indicates complex formation 

between NaHeparin and PPG10 because this difference is much more significant than that resulting 

from simply forming the triple helix of PPG10.  When we consider that each mixed solution 

includes three components, PPG10 (CMP), polysaccharides (PS), and their complex, the reduced 

scattering intensity is expressed as [23] 

 

t
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 (3) 

 

where n and f denote the number of anionic groups of a polysaccharide molecule (n = 93.5 for 

NaHeparin) and the degree of complexation of each polysaccharide chain, with f = 1 

corresponding to full complexation.  The [(𝑀PS 𝑛 +𝑀CMP 𝛼⁄⁄ )(∆𝑧2𝑅0 𝐾𝑐t⁄ )𝑐t=0]
1 2⁄

 values are 

plotted against 1/ in Fig. 3.   The plotted data at CS = 150 mM (panel c) are mostly independent 
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of both 1/ and temperature.  They are fitted by a straight line calculated by means of eq 3 with f 

= 0 (no complexation), where m was chosen to be 3 and 1 at 15 C (dashed blue line) and 75 C 

(solid red lines), respectively.  This indicates that NaHeparin does not form an appreciable 

complex with PPG10 in 150 mM aqueous NaCl.  This is consistent with the almost constant Tm in 

Fig. 1.  In contrast, significant temperature-dependent scattering intensity was found at lower CS 

values, as illustrated in panels a and b in Fig. 3.  While the data points at 75 C are fitted by a dot-

dashed red lines for f = 0 and m = 1, those at 15 C are between f = 0 and 1, suggesting partial 

complexation consisting of NaHeparin and PPG10.  If we choose f = 0.4, the calculated dashed 

lines mostly reproduce the experimental data, indicating that some of the peptide molecules form 

complexes with polysaccharides at 15 C.  It should be noted that it is unclear whether f is 

independent of  since sufficient accuracy of f is only found at the highest 1/.  Another 

important point is that the shape of the molar ellipticity [] of PPG10 plotted against the 

temperature is mostly independent of  and CS, even though a significantly higher Tm was observed 

in Fig. 1.  This is likely because complex formation is dynamic, and the time constant of association 

is much faster than the temperature change of the CD measurements.   

 

 

Fig. 2. Plots of (𝐾𝑐t ∆𝑧2𝑅𝑞⁄ )
𝑐t=0

1 2⁄
 versus q2 in aqueous NaCl at 15 C (unfilled circles) and at 

75 C (filled circles).  The range of ct was between 1 and 5 mg mL−1.  (a) Naheparin/PPG10 ( = 

2.76, CS = 20 mM) and (b) Naheparin/PPG10 ( = 2.98, CS = 50 mM). 
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Fig. 3. Plots of [(𝑀PS 𝑛 + 𝑀CMP 𝛼⁄⁄ )(∆𝑧2𝑅0 𝐾𝑐t⁄ )𝑐t=0]
1 2⁄

 versus 1/α for NaHeparin/PPG10 in 

aqueous NaCl at 15 C (unfilled circles) and 75 C (filled circles).  (a) CS = 20 mM, (b) CS = 50 

mM, and (c) CS = 150 mM.  Solid and dashed lines indicate the values calculated for 15 C by 

using eq 3 with the indicated f and m = 3 (triple helix).  Dot-dashed lines indicate the theoretical 

values for f = 0 and m = 1 for 75 C (single coil). 

 

Molecular Shape of Polysaccharides in Solution 

Prior to discussing the conformation of the complex NaHeparin and PPG10, the conformation of 

NaHeparin needed to be confirmed.  Fig. 4 shows the Holtzer plot obtained from SAXS 

measurements of NaHeparin in 20 mM, 50 mM, and 150 mM aqueous NaCl.  The shape is typical 

of the wormlike chain with a finite thickness [28, 29].  It can be seen that the shape does not depend 

appreciably on the temperature or CS, suggesting a similar conformation in all examined solvent 

conditions.  The data were analyzed in terms of the touched-bead wormlike-chain model for which 

the particle scattering function P(q) is expressed with the bead diameter db as [28-31] 

 

( ) ( )
6 2

b b b
0

b

2
9 sin cos

2 2 2

qd qd qd
P q P q

qd

   
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where P0(q) is the particle scattering function of the thin wormlike chain.  Numerical values can 

be calculated from the following equation 
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when we apply the approximate expression of the characteristic function I(−1q; t) of the 

wormlike chain reported by Nakamura and Norisuye [32, 33].  Here, L and −1 are the contour 

length and the Kuhn segment length (or twice the persistence length), respectively.  A curve fitting 

procedure was employed in the data analysis to estimate L = 20  2 nm, −1 = 12  3 nm, and db = 

1.5  0.3 nm, while the actual parameters for each system are listed in the figure caption.  The 

chain stiffness (−1) is fairly close to the reported value of −1 = 9 nm in 200 mM aqueous NaCl 

[34].  It should be noted that the occurrence of essentially the same −1 value at different CS values 

is most likely because the experimental P(q) data is not very different from the rod-limiting value 

(dashed curve), and hence, the accuracy ( 3 nm) of −1 is not high enough to observe the CS 

dependence, even though it has been observed for other polyelectrolytes including sodium 

hyaluronate [35].  The contour length h (or helix rise) per residue, defined as h  LM0/Mw, was 

calculated to be 0.28 nm.  This value is somewhat smaller than 0.4 – 0.5 nm for NaHeparin in 

saline [34, 36].  A possible reason for this finding is that our analysis is different from that in 

former studies.  In any case, to discuss this difference precisely, data of samples with different Mw 

will be mandatory.    

 

 
Fig. 4. Holtzer plots of NaHeparin in aqueous NaCl.  (a) CS = 20 mM at 15 C, (b) CS = 20 mM at 

75 C, (c) CS = 50 mM at 15 C, (d) CS = 50 mM at 75 C, (e) CS = 150 mM at 15 C, and (f) CS 

= 150 mM at 75 C.  Solid curves indicate the theoretical values for the touched-bead wormlike 

chain with the parameters (a) L = 20 nm, −1 = 12 nm, and db = 1.6 nm, (b) L = 18 nm, −1 = 12 

nm, and db = 1.8 nm, (c) L = 20 nm, −1 = 12 nm, and db = 1.6 nm, (d) L = 21 nm, −1 = 12 nm, 

and db = 1.7 nm, (e) L = 19 nm, −1 = 12 nm, and db = 1.2 nm, and (f) L = 19 nm, −1 = 12 nm, and 

db = 1.3 nm.  Dashed curves indicate the theoretical values for the rod limit. 



 8 

 

Molecular Shape of the Complex in Solution 

To elucidate the molecular shape of the complex, the Holtzer plots illustrated in Fig. 5 for 

NeHeparin/PPG10 in 20 mM and 50 mM aqueous NaCl at 15 C were analyzed by the following 

procedure.  The peak position and height are quite similar to those of the single chain in Fig. 4, 

and the qP(q) values at the higher q range are considerably smaller than those without PPG10.   

The P(q) data for previously investigated systems—that is, CMP with NaPAA [22] or NaCMA 

[23]—were well explained in terms of the wormlike comb model, in which the main chain and 

side chain consist of the polyelectrolyte and CMP, respectively.  The current data was therefore 

compared with the same model.  The scattering function P(q) of the mixture of triple helical CMP 

[PCMP(q)] and the wormlike comb [complex, Pcomp(q)] can be expressed as 
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2
2 2PS

PS CMP CMP comp CMP CMP CMP

2
2 2PS

PS CMP CMP CMP CMP

1
Δ

1
Δ

M
n z z M f P q m z M f P q

n
P q

M
n z z M f m z M f

n





   
 +  + −  

  =
   

 +  + −  
  

    (6) 

 

The scattering function PCMP(q) of CMP can be expressed as eqs 4 and 5, with P0(q) at an infinitely 

high −1.  PCMP(q) was thus calculated by the length LCMP of the triple helical CMP and the diameter 

of the touched bead db.  The LCMP value in aqueous media has been determined to be 8.6 nm via a 

different method [20].  For the complex, Pcomp(q) is a function of the contour length LPS of the 

main chain (NeHeparin), the Kuhn segment length PS
−1 of the main chain, LCMP, db, and the 

number of CMP triple helices in each complex, which is 1 – 5, depending on f and .  Because db 

= 1.5 nm for NeHeparin is the same as the chain thickness of triple helical CMP [19], we calculated 

P(q) with eq 6 and LPS = 20 nm, PS
−1 = 12 nm, LCMP = 8.6 nm, and db = 1.5 nm (no adjustable 

parameters).  The resultant theoretical values shown as blue solid curves in Fig. 4 fairly fit the 

lowest q region but deviate upward with increasing q.  If we choose the much larger db of 4 nm for 

CS = 20 mM and 5 nm for CS = 50 mM, the resultant dashed red curves reproduce the experimental 

data almost quantitatively.   This shows that the shape of the complex cannot be explained by the 

wormlike comb model with universal joints.  Possibly, triple helical CMPs are adsorbed parallel 

to the polysaccharide chain, as schematically illustrated in Fig. 6.  If so, the scattering function can 

be modeled by the thick linear wormlike chain.  The local helical conformation of NaHeparin 

within the complex may be extended by the absorbed CMPs.  Thus, when we assume that Pcomp(q) 

is a thick wormlike chain with L = 28 nm (h = 0.4 nm), −1 = 12 nm, and db = 4 – 6 nm depending 

on the sample, the calculated dot-dashed curves well explain the experimental data.  As described 

above, only about half of the CMPs form complexes with NaHeparin (f ~ 0.4), whereas the line 

charge density of NaHeparin is higher than that of the previously investigated NaPAA [22].   This 

is likely because the absorbed CMPs inhibit further complexation.  The similar f values obtained 

at different CS are also due to the inhibition. 
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Fig. 5. Holtzer plots of NaHeparin/PPG10 in aqueous NaCl at 15 C.  (a) CS = 20 mM and  = 

2.76, (b) CS = 20 mM and  = 9.72, (c) CS = 50 mM and  = 2.98, (d) CS = 50 mM and  = 10.4.  

Solid curves indicate the theoretical values for touched-bead wormlike comb-like chains (see text).  

Dashed curves (red) are the theoretical values from the same equation with db = 4 nm (CS = 20 
mM) and 5 nm (CS = 50 mM).  Dot-dashed curves (green) are for thick linear wormlike chains 

(see text). 

 

 
Fig. 6. Schematic representations of possible complexations. (a) Polyelectrolyte chain. (b) Triple 

helical CMP.  (c) Previous studies of polyelectrolytes + CMP.  (d) NaHeparin + CMP. 

 

Conclusions 

As in the case of synthetic polyelectrolytes, a natural polysaccharide, NaHeparin, forms a complex 

with a triple helical collagen model peptide (CMP) at relatively low ionic strengths (20 mM and 

50 mM) at 15 C.   While the previously investigated sodium polyacrylate and sodium 

carboxymethyl amylose form comblike complexes with universal joints, the scattering data for 

NaHeparin/PPG10 may indicate a parallel alignment, suggesting that not only N-termini of CMP 

but also the triple helical part interact attractively with NaHeparin.  This specific interaction 

between NaHeparin with the current peptide may be a key factor in elucidating the interaction of 
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heparin with other extracellular matrices in vivo.  Furthermore, it may also be important in 

clarifying the multilayer formation and functionality of complexes of natural collagen and 

electrolyte polysaccharides [37-39]. 
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