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A method for synthesizing dynamical decoupling (DD) sequences is presented, which can tailor these sequences
to a given set of qubits, environments, instruments, and available resources using partial information of the system.
The key concept behind the generation of the DD sequences involves not only extricating the strong dependence
on the coupling strengths according to the “optimal control,” but also exploiting the “refocus” technique used
conventionally to obtain DD sequences. The concept is a generalized one that harmonizes optimal control and
designing of DD sequences.
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I. INTRODUCTION

In quantum information processing (QIP), dynamical de-
coupling (DD) [1,2] is a useful tool for suppressing the
decoherence resulting from multiple couplings among qubits
and their environments. Potential applications of dynamical
decoupling to quantum memory [3], quantum computation
(QC) [4–7], and fault-tolerant quantum computation [8] have
been proposed recently. Trains of successive pulses such as
Carr-Purcell-Meiboom-Gill (CPMG), which was originally
developed in the nuclear magnetic resonance (NMR) commu-
nity [9,10], concatenated DD, Uhrig DD (UDD), quadratic DD
(QDD), and Knill DD (KDD) [3,11–13] have been proposed
and demonstrated successfully to eliminate unwanted cou-
plings [14–16] without knowledge of the surrounding environ-
ment, e.g., its coupling strengths or structures. These methods
are useful for experiments in which system details are largely
unavailable. Furthermore, dynamical decoupling allows us to
build a quantum gate which can carry out gate operation and
decouple unwanted couplings simultaneously [17–19]. This
has been successfully implemented to demonstrate a quantum
algorithm [20]. In practical experiments, however, theoretical
approximations such as the δ-pulse approximation result in
the finite pulse width problem [21], and the requirement
of an infinite frequency bandwidth for a rectangular pulse
causes deformation at the leading and trailing edges of the
pulse [22,23]. Both of these practical resource limitations
cause serious bottlenecks when using pulse DD sequences.
References [24,25] provide a beautiful prescription for the
finite-width problem, which is derived based on dynamical
symmetrization. Fast repetition to reach the bang-bang limit
may require unreasonable operation in experiments, given that
the way to determine subintervals is arbitrary. In contrast,
application of optimal control theory (OCT) to build a quantum
gate and decoupling sequence [26–28] makes use of the
complete qubit- and environment-related information to avoid
such bandwidth divergence. These methods are attractive [29]
when one can obtain details of a qubit-bath system, although
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spectroscopy of qubits and generation of pulse sequences
become difficult as the system size increases because we have
to fully grasp and treat a large Hilbert space.

It would be beneficial to harmonize OCT and pulse-based
DD to avoid harmful effects arising out of practical resource
limitation and inevitable error. There are a few levels to
harmonize OCT and DD. One of the most intuitive and simplest
ways is to replace π/2 and π pulses in a conventional DD
sequence with the shaped pulses optimized by OCT [30]. This
method can be applied to almost all pulsed DD sequence. The
next level of harmonization is to numerically synthesize entire
DD sequences or waveforms using OCT. We would anticipate
having a much tailored DD sequence for experiments. Given
that the optimization process is carried out using a computer,
we can flexibly impose requirements upon DD sequences, e.g.,
energy and bandwidth constraints. For the synthesis of a DD
sequence (waveform) in OCT, we define the parameters of a
DD sequence to be optimized, for example, the amplitudes and
phases of the pulses, and define a cost function which evaluates
the decoupling infidelity of the DD sequence. Numerical
synthesis is carried out so that the cost function is minimized by
optimizing the waveform parameters of the DD sequence. How
the cost function is defined is important because it strongly af-
fects the computational complexity and decoupling efficiency.
Two methods using approximation to alleviate computational
complexity rather than using the full unitary evolution of the
quantum system have been proposed. The authors in Refs. [31–
33] focused on the noise spectrum of the environment for
building cost functions. In their method, decoherence arising
from the environmental noise can be suppressed by applying
qubit operations so that the overlap between the environmental
noise spectrum and the qubit modulation spectrum is reduced.
Furthermore, in their example in Ref. [32], they imposed
energy constraints on DD waveforms to suppress leakage to
the subspaces other than the qubit space in multilevel systems
and successfully demonstrated in simulation. This method is
fairly helpful for atomic qubits and superconducting qubits.
A similar idea has been proposed in Ref. [34], in which they
apply a multifrequency sinusoidal drive to the qubit. They
engineer the qubit modulation spectrum so as to avoid a single
Rabi-like intense peak in the spectrum that is overlapping
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the corresponding noise component. The application of a
well-designed multifrequency drive efficiently alleviates such
noise overlapping. The authors in Refs. [35,36] focused on
the coupling symmetries between a qubit and surrounding
environment. They restricted their DD waveforms to single-
axis rotation, and optimized the time-varying amplitude of
a DD waveform so that the effective Hamiltonian of the
qubit-environment couplings up to the first order was averaged
out. In their method, although the method is limited to
single-qubit cases, we can numerically design DD sequences
which decouple noises arising from the environment without
knowing the exact coupling strengths to the environment. This
method also maintains flexibility in OCT where we can easily
impose constraints to the DD sequences.

In this paper, we extend their single-axis rotation to the
rotations about time-varying arbitrary axes in the x-y plane
by allowing the time-varying amplitude and phase of the DD
waveforms. We anticipate wide varieties of qubit control and
more precise qubit decoupling with such qubit rotation around
arbitrary axes with arbitrary speeds, given that the application
of time-varying noncommuting operators to qubits is more
general than single-axis rotations and separate application of
two-axis rotations, e.g., in QDD and MREV [37]. We show in
our first example that by using such arbitrary time-varying
rotation, we can design a decoupling waveform which is
more robust against amplitude and phase errors compared to
conventional pulse-based DD sequences.

Furthermore, our method is a natural extension to multi-
qubit cases. Two- or multiqubit gates are essential elements
in QIP experiments. To switch on-and-off interactions to
make such multiqubit gates, DD would be an alternative
candidate. As compared to OCT based on unitary evolutions,
the proposed method helps us to alleviate computational cost
to optimize the DD sequence, provided that a cycle rate of
1/T in DD is much faster than the interaction strength. The
large alleviation stems from the approximation based on the
average Hamiltonian theory, in which the dynamics of the
system can be described by a small subset of the generator
space of unitary evolutions for shorter time compared to the
characteristic time of the system. In our second example,
we show that we can numerically synthesize a decoupling
waveform which turns on and off qubit-qubit couplings and
compare it with a conventional pulsed DD sequence which
applies two-axis rotations separately.

The paper is organized as follows: In Sec. II, we describe
the basic concept of our DD design. In Sec. III, we present a
pragmatic example in which a single qubit is coupled to many
two-level systems, and where the control field has imperfec-
tions due to instruments. In Sec. IV, we apply our method to
a multiqubit system where the qubits couple to each other. In
Sec. V, we discuss the performance of DD sequences generated
under resource restrictions in terms of energy and bandwidth.
The appendices describe how the average Hamiltonians are
calculated using Floquet Hamiltonian theory in the examples.

II. BASIC CONCEPT

Let Ĥ0 be the Hamiltonian of a system under consideration,
and V̂ (t) be a time-dependent external perturbation, repre-
sented in an appropriate rotating frame. We use h̄ = 1 units

throughout. The system Hamiltonian Ĥ0 can be expressed as

Ĥ0 =
∑

α

hα�̂α, (1)

using a set of orthonormal Hermitian operators {�̂α|�̂α =
�̂†

α,Tr[�̂α�̂β] = δαβ} and their coefficients {hα}. For example,
a system Hamiltonian that describes the coupling between a
single qubit and the surrounding environment can be expanded
with operators �̂α = 1

2 σ̂α ⊗ B̂α (α = x,y,z), where σ̂α are the
qubit’s Pauli operators and B̂α are bath operators. Consider
Ĥ0 in the interaction frame of V̂ (t) using unitary operator
ÛV (t) = T̂ exp[i

∫ t

0 V̂ (t ′) dt ′], where i = √−1 and T̂ is the
time-ordering operator. The Hamiltonian of Eq. (1) in the

frame of V̂ (t) then becomes the modulated Hamiltonian ˆ̃H0(t)
as follows:

ˆ̃H0(t) = ÛV (t)Ĥ0Û
†
V (t) =

∑
α

hα

⎛⎝∑
β

cβα(t)�̂β

⎞⎠, (2)

where ÛV (t)�̂αÛ
†
V (t) = ∑

β cβα(t)�̂β . In this process, the
effect of finite pulse width is naturally incorporated into cβα(t).
Compared to Ref. [24] in which they do not explicitly define
subintervals, application of any waveform or finite-width
pulses are fully characterized by the cβα(t). The δ-pulse
approximation of V̂ (t) can also be treated as discontinuities of
cβα(t). We call cβα(t) a system-modulation matrix, as used in
Ref. [32].

This system can be stroboscopically “time suspended,” that
is, decoupled from the environment, if there is an external

perturbation V̂ (t) such that the average Hamiltonian Ĥeff of
ˆ̃H0(t) vanishes [2,27,38], and if the period T of Ĥeff satisfies
‖Ĥ0T ‖ < 1 so that Magnus expansion of the evolution

operator converges. Suppose
ˆ̃H0(t) has T periodicity; then,

the average Hamiltonians [2,38] up to the first order become

Ĥ
(0)

eff = 1

T

∫ T

0

ˆ̃H0(t ′) dt ′ =
∑
α,β

hα

(
1

T

∫ T

0
cβα(t ′)dt ′

)
�̂β,

(3)

Ĥ
(1)

eff = 1

2iT

∑
α,α′

hαhα′
∑
β<β ′

( ∫ T

0
dt2

∫ t2

0
dt1 {cβ ′α′ (t2)cβα(t1)

− cβ ′α(t1)cβα′ (t2)}
)

[�̂β ′ ,�̂β]. (4)

We can obtain DD sequences V̂ (t) by minimizing the coeffi-
cients of the operators �̂β and [�̂β ′,�̂β], i.e., the terms within
the large parentheses in Eqs. (3) and (4). Given that the external
perturbation V̂ (t) does not always guarantee the T periodicity

of
ˆ̃H0(t), the system-modulation matrix cβα(t) should be

constrained such that cβα(t) are continuous at t = 0,T , . . . .
For numerical minimization, V̂ (t) should be parameterized

with pulse timings, flip angles, phases, and so on. When
the parameters are denoted by ζ = {ζ1,ζ2, . . . }, the system-
modulation matrix is also parameterized such that cβα(t) =
cβα(t ; ζ ). For example, some quantum computation schemes
require a state measurement during gate operations to protect
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qubits from decaying [39]. In our method, we naturally have
a measurement window that is parameterized by start and end
timing in a DD sequence, given that we can choose parameters
arbitrarily. The decoupling efficiency of a generated DD
sequence depends on the parameters because they are directly
related to control degree of freedom. It may seem that we
need to carefully choose the parameters; however, they can be
chosen suitably for an experiment in practice. In other words,
this method provides a way to generate the almost best DD
sequences within the available resources which are indicated
by the parameters. In Sec. V, we will discuss how the DD
efficiency improves as the resources that are available increase.

Given that a DD sequence should make its effective
Hamiltonian to zero in order to protect qubits, we optimize
the parameters ζ to minimize the effective Hamiltonian. If we
define

	
(0)
αβ(ζ ) = T −1

∫ T

0
cβα(t ′; ζ )dt ′, (5)

	
(1)
α′α,β ′β(ζ ) = T −1

∫ T

0
dt2

∫ t2

0
dt1

×{
cβ ′α′ (t2; ζ )cβα(t1; ζ )

−cβ ′α(t1; ζ )βα′(t2; ζ )
}
, (6)

the effective Hamiltonian up to the first order can be expressed
as follows:

Ĥeff =
∑
α,β

hα	
(0)
αβ(ζ )�̂β

+ 1

2i

∑
α,α′

hαhα′
∑
β<β ′

	
(1)
α′α,β ′β(ζ )[�̂β ′,�̂β]. (7)

To minimize the effective Hamiltonian parameterized by
ζ , a cost function 	(ζ ) for the numerical minimization is
constructed such that the 	

(0)
αβ and 	

(1)
α′α,β ′β show the residuals

against the ideal DD operation that cancels couplings between
qubits and its environment, i.e.,

	(ζ ) =
∑
α,β

∣∣	(0)
αβ(ζ )

∣∣2 + w2
∑

α′α,β ′<β

∣∣	(1)
α′α,β ′β(ζ )

∣∣2
. (8)

A guide for choosing a weight factor w is w = ‖H0T ‖, given
that the effects of the sth-order average Hamiltonian reduce
with ws . Here, we choose w = 1 for simplicity. A penalty
function 	P (ζ ) that imposes the continuity of cβα(t) at t =
0,T , . . . on the DD sequence is defined as follows:

	P (ζ ) =
∑
α,β

|cβα(T ; ζ ) − cβα(0; ζ )|2. (9)

Consideration of higher-order perturbations would result in
better decoupling performance; however, doing so would
involve cumbersome hand calculations for deriving average
Hamiltonians.

The synthesis of DD sequences is then reduced to a
nonlinear minimization problem,

min
ζ

	(ζ ) subjected to 	P (ζ ) = 0, (10)

which can be numerically performed on a modern digital
computer.

This method is basically the same as that given by Eq. (10) in
[27], except that the cost function is constructed in Lie algebra.
However, this difference allows us to choose among sequences
of DD type, optimal control type [26–28], or a combination
of both of these types. In general, the expansion coefficients
{hα} in Eq. (1) contain the details of the system, e.g., coupling
strengths and frequency shifts, which can be obtained through
spectroscopy. In the synthesis of DD-type sequences, which
do not require knowledge of the qubit’s surroundings, {hα}
should be excluded from the cost functions in Eqs. (5) and (6)
so that the generated sequences do not depend on them. For
the case where {hα} are known, sequences can be synthesized
with their help. If we explicitly include {hα} in a cost function,
for example, Eq. (5) becomes

	
(0)
β (ζ ) = T −1

∣∣∣∣∑
α

hα

∫ T

0
cβα(t ′; ζ )dt ′

∣∣∣∣2

, (11)

and the obtained sequences suppress decoherence using that
information. In the limit of ‖ĤT ‖ → 0 or in the limit of
n0 → ∞, where n0 is the maximum order of an average
Hamiltonian, this method corresponds to unitary-matrix-based
optimal control.

Furthermore, cost functions in Lie algebra alleviate the
growth of computational complexity as a system becomes
larger. The key to the alleviation is an approximation using
average Hamiltonian theory. Given that the effective Hamil-
tonian up to the first order does not require full operator
bases in su(2n), we can synthesize DD sequences in a small
subset in su(2n) for n qubits. There is a dramatic decrease in
computational costs associated with numerical optimization
for a system Hamiltonian that is simple and highly symmetric,
i.e., it is described with a small number of operators in Lie
algebra. For individually controllable qubits, operator space
does not grow exponentially with n, if the higher-order terms
in the effective Hamiltonian can be safely neglected. We give
a paradigmatic explanation in which a Hamiltonian Ĥ0 =∑n

k=0 g(k)σ̂z,k dictates a system, where σz,k is the kth qubit’s
Pauli z operator, {g(k)} are inhomogeneously broadened energy
shifts, and n is the number of qubits. In the optimal control
type, to obtain a DD sequence (time-suspension sequence), we
have to compute 2n × 2n matrices, which are intractable for
large n. However, a well-known method that flips the sign of
σ̂z,k in the frame of V̂ (t) by applying consecutive π pulses to
the qubits, such as CPMG [9], refocuses the inhomogeneity.
Our method automates such a flipping procedure for a given
system.

Note that while synthesizing DD sequences, Ĥ0 should be
modulated by ÛV (t). This requirement is equivalent to the
bracket generation condition mentioned in Ref. [27].

In the following two examples, we impose a bandwidth
limitation to DD sequences, V̂ (t) = ∑

α vα(t)�̂α . Such pulses
or waveforms under the limitation are robust against shape
deformation caused by the group delay dispersion of trans-
mission lines, given that the pulses having wider bandwidth
are easily degraded by the dispersion. These pulses under
bandwidth limitation should have smooth envelopes. We use
Fourier coefficients of

vα(t) =
p∑

n=1

vα,n sin(2nπt/T ) (12)
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as the parameters of V̂ (t), so that ζ = {vα,n}. For simplicity,
we use sine coefficients to reduce the number of parameters
in the following examples. The Floquet average Hamiltonian
theory [40] is useful to calculate the average Hamiltonian when
a system-modulation matrix is T periodic and expressed as the
Fourier expansion, cβα(t) = ∑

n cβα,n exp (2iπnt/T ). A brief
explanation of this calculation is given in Appendix A, and the
cost functions in the following examples are built using the
theory.

III. DEPHASING PROBLEM

Let us consider the qubit dephasing problem. A single qubit
is coupled to a bath consisting of many two-level systems
(TLSs) without energy relaxation. When there exist inevitable
pulse errors caused by instruments, an experimenter might
need a DD sequence that is robust to these errors. In this
example, we show how to incorporate Tycko’s composite
pulses [41] into DD designing. In Ref. [41], a Hamiltonian
of an external perturbation to control the qubits is described
as V̂ (t) + ĤE(t), where V̂ (t) denotes an ideal operation
to the qubit and ĤE(t) represents systematic errors due
to the instruments. Self-compensating composite pulses are
built so that the ideal pulsing of V̂ (t) decouples error
Hamiltonian ĤE(t).

Let the Hamiltonian of the system be Ĥ0 = ĤQ−B +
ĤE(t) and the ideal external perturbation be V̂ (t) =
vx(t)σ̂x + vy(t)σ̂y , where the qubit-bath interaction is ĤQ−B =∑

k g(k)σ̂zσ̂z,k and the pulse error term is ĤE = ε1vx(t)σ̂x +
ε3vy(t)σ̂y + ε2vy(t)σ̂x + ε4vx(t)σ̂y . Here, σ̂α and σ̂α,k denote
Pauli operators of the qubit and the kth TLS, respectively. ε1

and ε3 denote the error amplitudes of flip-angle error, while ε2

and ε4 denote the error amplitudes of phase-orthogonality error
arising, for example, from microwave in-phase and quadrature-
phase (IQ) mixers or hybrid circuits. The external perturbation
V̂ (t) modulates the Hamiltonian Ĥ0 in its interaction frame,
so that

ˆ̃H0(t) =
∑

k

∑
β

g(k)cβz(t)σ̂β σ̂z,k

+
∑

β

{ε1vx(t)cβx(t) + ε3vy(t)cβy(t)

+ε2vy(t)cβx(t) + ε4vx(t)cβy(t)}σ̂β,

where
∑

β cβα(t)σ̂β = ÛV (t)σ̂αÛ
†
V (t). In this example, the

zeroth-order cost function is defined as

	(0) =
∑

β

∣∣∣∣∫ T

0
cβz(t)dt

∣∣∣∣2

+
∑

β

∣∣∣∣∫ T

0
vx(t)cβx(t)dt

∣∣∣∣2

+ · · · ,

and the first-order cost function is also defined in the same
manner (see Appendices B and C for detailed derivations).
Exclusion of g(k) and εj (j = 1, . . . ,4) from the overall cost
function gives DD-type pulse sequences with a tolerance
to pulse imperfections. DD sequences generated with this
method can be tailored to the system by multiplying deliberate
weights to terms in the cost function. We minimized the
cost function by optimizing ζ = {vα,n} using a steepest-
descent method in combination with a genetic algorithm.

TABLE I. Parameters of the DD sequence generated in Sec. III.

n vx,nT /π vy,nT /π

1 −0.7030256 −3.6201768
2 3.3281747 3.8753985
3 11.390077 −1.2311919
4 2.9375301 −0.2998110
5 −1.8758792 3.1170274
6 1.7478474 0.3956137
7 5.6966577 −0.3593987
8 −0.5452435 −3.5266063
9 4.0826786 2.4900307

The generated waveform expressed in Fourier series form,
vα(t) = ∑9

n=1 vα,n sin(2πnt/T ), as listed in Table I, is shown
in the top panel of Fig. 1.

We evaluated the performance of our synthesized DD
sequence, UDD12, QDD3, and KDD against the flip-angle
error �β = ε1 = ε3 and the phase-orthogonality error �ϕ =
tan−1[ε2vy(t)/vx(t)] on a single-qubit system coupled to four
bath TLSs, with the fidelity of quantum gate C defined as

F (C) = min|φ〉‖
√

|φ〉〈φ|
√
C(|φ〉〈φ|)‖tr. (13)

We have chosen ε4 = 0. The number of pulses and the
pulse widths in UDD and QDD sequences were chosen

FIG. 1. Decoupling fidelities against (a) flip-angle error and (b)
phase-orthogonality error for a single qubit coupled to four bath TLSs
with UDD12, QDD3, and KDD sequences, and the sequence generated
in this example. The waveforms of these sequences are displayed in
the top panel of the figure. (c) Decoupling fidelities against coupling
strengths to four TLSs denoted by ‖ĤQ−B‖. Coupling strengths to
TLSs were randomly generated for each point in the graph.
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such that the total amounts of the applied energy and the
peak amplitudes were nearly equal to those of the generated
waveform. If the energy of a DD sequence is defined as√∫ T

0

∑
α=x,y v2

α(t) dt , the energies per cycle of the generated
DD sequence, UDD12, QDD3, and KDD amount to 11.50 π/T ,
12 π/T , 16 π/T , and 20 π/T , respectively. The peak am-
plitudes maxt∈[0,T ]

√∑
α v2

α(t) T/2π of the DD sequences
were limited to 10, 20, 25, and 25 for the synthesized DD
waveform, UDD12, QDD3, and KDD, respectively. Given that
there is minimal interpulse spacing in UDD and QDD, their
peak amplitudes were not equal to that of the synthesized
DD sequence. The coupling strengths between the qubit and
TLSs were randomly generated; we used {g(k)T/π}4

k=1 =
{0.1353055,−0.3625386, 0.0057979, 0.2963580}, so that
‖Ĥ0T ‖/2π ∼ 0.1.

As the flip-angle errors are accumulated at each π pulse,
UDD is sensitive to the flip-angle error [Fig. 1(a)]; on the
other hand, QDD cancels the flip-angle error by inserting a
90◦ phase-shifted π pulse. However, as seen from Fig. 1(b),
QDD cannot compensate for the phase-orthogonality error.
The KDD pulse sequence shown in the third row of the top
panel in Fig. 1 has pulses with jumping phases with constant
amplitude, which is intended to compensate flip-angle errors.
The performance is far superior to UDD12 and QDD3 for
flip-angle errors, having similar robustness to QDD3 against
phase-orthogonality error. Figures 1(a) and 1(b) show that the
generated sequence is robust against the pulse errors caused by
the instruments. This example shows that a DD sequence can
be optimized to be robust against known systematic errors,
which are small but accumulate after millions of cycles in
actual experiments. A variation of this example, where there
is crosstalk between control pulses, can be managed in the
same manner. Another variation is that the behavior of the
surrounding bath TLSs is known, the Hamiltonian of which
is denoted by ĤB , e.g., the principal axes of the TLSs are
tilted from the z axis so that [ĤQ−B,ĤB] = 0. In this case,
taking the bath Hamiltonian of the TLSs into account, we can
obtain a DD sequence that overcomes degradation due to ĤB

by minimizing higher-order cost functions 	(n), at least up to
the second order.

Figure 1(c) shows fidelities against various sets of
coupling strengths in order to investigate the robustness of
the synthesized DD waveform. In a system where a single
qubit is coupled to four TLSs, we evaluate fidelities for the
sets of coupling strengths which are randomly generated.
Figure 1(c) suggests the existence of the lowest bound
of fidelity. For coupling strengths randomly distributed
but ‖ĤQ−BT ‖ � 1 (high-repetition-rate regime), the DD
waveform works efficiently under the approximation based on
average Hamiltonian theory. Thus, Fig. 1(c) clearly indicates
that OCT and DD are successfully harmonized; the weakness
in OCT, i.e., a generated external perturbation is only
applicable for a single set of coupling strengths, is overcome
by the refocusing technique in DD, and numerical synthesis
of external perturbations using OCT is safely applied to
the generation of DD waveforms for ‖HQ−BT ‖ � 1. The
achievable fidelity should be bounded by the residuals in
the cost function or the higher-order terms in the effective
Hamiltonian. To obtain broader robustness against coupling

strengths, we have to include the higher-order terms in the cost
function 	(n). However, the DD efficiency might be degraded
due to resource restrictions. We will discuss this trade-off
between the achievable fidelity and the resources in Sec. V.

IV. MULTIQUBIT COUPLING

In this section, we show that the proposed method is
applicable to multiqubit cases. The dynamic control of qubit-
qubit interactions, which are used for realizing multiqubit
gates, is an important technique in QIP experiments. Optimal
control theory based on a unitary evolution is useful for
optimizing such dynamic control by numerical computations.
In general, however, for qubits having noncommuting two-
body interactions between them, the interactions generate
irreducible unitary evolutions among them. The fact that the
size of unitary matrices grows exponentially with the number
of qubits easily leads to intractable computational costs in
OCT. Here, we show that a DD waveform can be obtained by
solely considering two-qubit interactions, and it can switch off
all the interactions among n qubits.

Consider a system that consists of a finite number of qubits
coupled to each other. Access to the qubits is assumed to be
restricted to collective manipulation, the external perturbation
of which is given by V̂ (t) = vx(t)

∑
k σ̂x,k + vy(t)

∑
k σ̂y,k .

Each qubit is considered as being connected through a qubit-
qubit Hamiltonian,

Ĥ0 = ĤQ−Q =
∑
k′<k

d (k′,k)

×(σ̂z,k′ σ̂z,k − σ̂x,k′ σ̂x,k/2 − σ̂y,k′ σ̂y,k/2). (14)

In this example, we assume the qubit-qubit Hamiltonian is
a dipolar Hamiltonian in a solid-state nuclear spin system
with high-field approximation for example. Dynamic control
of the qubit interactions can be used for QIP experiments
[42–44]. This Hamiltonian contains σ̂x,kσ̂x,k′ - and σ̂z,kσ̂z,k′ -
type interactions, which also appear in the superconducting
qubit community for realizing two-qubit gates. Thus, the
Hamiltonian chosen is a good example for both spin and
superconducting qubit communities to control the coupling.
We do not restrict the types of qubit-qubit couplings in
the proposed method except that the couplings commute
with external perturbations, i.e., [ĤQ−Q,V̂ ] = 0. In such
exceptional cases, because of their symmetries, the external
perturbation cannot modulate the coupling Hamiltonian. It
leads to failure in dynamical decoupling.

In the interaction frame of V̂ (t), we obtain a modulated
Hamiltonian,

ˆ̃H0(t) =
∑
k′,k

∑
βγ

d (k′,k)ηβ,γ (t)σ̂β,k′ σ̂γ,k, (15)

where ηβγ (t) = cβz(t)cγ z(t) − cβx(t)cγx(t)/2 − cβy(t)cγy(t)/2.
We defined a cost function for the synthesis of vx(t) and vy(t)
in a manner similar to that in Sec. III, excluding d (k′,k) from
the cost function to manage the arbitrary strengths of the
interactions and considering ‖ĤQ−QT ‖ < 1. The synthesized
waveforms expressed in a Fourier series are listed in Table II
and the graphical one is displayed in the top panel of Fig. 2(a).
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TABLE II. Parameters of the DD sequence in Sec. IV.

n vx,nT /π vy,nT /π

1 −4.8892576 −2.6291726
2 −3.1490576 −3.4112889
3 −14.317448 −1.7326439
4 −0.0929321 4.2805093
5 6.8394959 −3.7925374
6 −0.6645375 −2.3678092
7 0.3344480 −2.5797746
8 −1.5042059 −1.9232075
9 2.3863574 −4.2795712

Here, we emphasize again that it is not necessary to redo the
numerical generation for various sets of coupling strengths
and the number of qubits.

We evaluated the synthesized DD waveform by simulating
a one-dimensional qubit chain, for simplicity, by considering
couplings up to the second-nearest qubits, and compared its
performance with that of MREV16 [45], which is known to
be powerful for this type of coupling. The Hamiltonian of
the qubit chain was defined using the coupling strengths in
Eq. (14),

d (k,k′) =
⎧⎨⎩π/T (k′ = k + 1)

π/8T (k′ = k + 2)
0 (otherwise).

(16)

Because it was difficult for us to calculate the gate fidelity
defined in Eq. (13) for several qubits, we used the state
fidelity for typical quantum states and the trace fidelity
defined as F (C) = Tr[

√
C†C] instead, where C is the

unitary representation of C. Four states were used and
defined as follows: The coherent spin state directed toward
the x axis is the eigenstate of the collective x operator∑

k σ̂x,k that has the maximum eigenvalue. The GHZ state is
|GHZ〉 = |0〉⊗n + |1〉⊗n, where n is the number of qubits. The
maximally entangled state is |MES〉 = 2−n/2 ∑2n

i=0 |i〉. The
Dicke state is one of the eigenstates of the collective z operator
and the total spin operator σ̂ · σ̂ that have the σ̂z eigenvalue

FIG. 2. DD performance as evaluated for an n-qubit chain
system coupled through dipolar interactions with (a) optimized pulse
sequence and (b) MREV16 sequence. Fidelity F is normalized so
that F̄ = 1 − (1 − F )/‖ĤQ−Q‖ because ‖ĤQ−Q‖ becomes larger as
the number of qubits increases.

closest to zero and the maximum σ̂ · σ̂ eigenvalue. The energy
and peak amplitude of this DD sequence were restricted to
13.8 π/T and 20 π/T so that they were almost equal to those
of MREV16 (16 π/T and 20 π/T , respectively).

Figure 2 shows the fidelity per cycle against the number
of qubits in the system. The synthesized sequence effectively
decouples qubit-qubit interactions for any state available in this
example, whereas MREV16 shows considerable degradation
in the nonclassical states owing to cooperative destruction
caused by the finite width of the pulses and the qubit-qubit
interactions. Given that the numerically synthesized sequence
is optimized to isotropically suppress any operator coefficient
up to the first order, experimentally, it works better for the
nonclassical states, which are necessary for QIP experiments.

V. PERFORMANCE VERSUS RESOURCES

Our examples, with smoothly modulated DD sequences,
are free from the finite pulse width problem and are robust
against distortion in the waveforms under the finite-frequency
bandwidth limitation. Available resources can be specified
in terms of the maximum control amplitude ‖V̂ (t)T ‖ and
frequency bandwidth of V̂ (t), so that DD sequence synthesis
is performed within the available resources. We found that
there is a close relationship among the DD performance,
available bandwidth, and peak amplitude. Figure 3 shows
the imperfection of DD sequences used in Sec. IV under the
resource restrictions. The root mean square of the operator
coefficients in an average Hamiltonian up to the first order√

	(0) + 	(1) was used as a measure of imperfection because
this value indicates the suppression ratio sum of residual
coupling strength at ‖Ĥ0T ‖ ∼ 1. We imposed a frequency
bandwidth limitation on V̂ (t) using p in Eq. (12). The
bandwidth of waveforms fBW was defined as 2p/T .

The figure clearly shows that the imperfection of the
generated DD sequences is monotonically improved with an
increase in the available resources; however, it also suggests

FIG. 3. Decoupling imperfection under resource restrictions in
terms of amplitude of ‖V̂ (t)T ‖ and bandwidth of V̂ (t). Imperfection
is investigated with linear combination of zero- and first-order cost
functions defined in Sec. IV, so that it is the reciprocal of DD
performance. Regions in which the maximum amplitude or the
bandwidth is excessively supplied are labeled as I and II, respectively,
and the region where both resources are sufficiently supplied is
labeled as III. All axes are in logarithmic scale.
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FIG. 4. System-modulation matrices cαx(t) (α = x,y,z) in re-
gions I–III, represented in Cartesian coordinates. cαx(t) are displayed
as functions of t ∈ [0,T ].

that there is a trade-off between the minimum attainable
imperfection and available resources. As seen from the figure,
converged values of the cost function

√
	(0) + 	(1) are closely

related to the available resources. This can also be seen in
Ref. [32], where the imperfection of synthesized DDs depends
on the available amplitude of V̂ (t). Although the converged
values are not always the global minima of 	(ζ ) (because of
the existence of local minima in nonlinear minimization), the
figure suggests that available resources bound the performance
of dynamical decoupling sequences.

The figure shows another relationship between the re-
sources: the decoupling imperfection becomes large when
either of the resources is oversupplied. Region I in Fig. 3 is
ascribed to over driving, which denotes lack of bandwidth
of V̂ (t) to utilize the large amount of driving energy for
controlling the qubits. This behavior can be seen in region I
of Fig. 4, where a part of a system-modulation matrix cαx(t)
(α = x, y, z) in the region is represented as a trajectory in
Cartesian coordinates. Given that the trajectory needs to have
loops to consume the excess driving energy, the trajectory
of the system-modulation matrix is constrained from moving
efficiently to decouple and, consequently, the performance
drops. Region II in Fig. 3 is ascribed to over modulation of
V̂ (t), wherein the amount of energy supplied for driving the
qubits is insufficient (region II in Fig. 4). When both resources
are sufficiently supplied to drive and modulate, as in region III
in Fig. 3, the system-modulation matrix in the region efficiently
averages out unwanted interactions (region III in Fig. 4).

VI. CONCLUSION

We presented a general framework to numerically syn-
thesize DD sequences, which can tailor them to a given set
of qubits, environment, and realistic resource limitations. To
this end, a cost function for the numerical synthesis of the
DD sequences was built using system-modulation matrices of

operators in Lie algebra, instead of a unitary propagator, in
order to fully exploit the symmetries that exist in qubits and
environments. The effects of finite pulse width are naturally
incorporated in the system-modulation matrix. We presented
two examples to demonstrate the robustness of the generated
DD waveform to flip-angle and phase-orthogonality errors,
regardless of the error amplitude, and the capability of the
DD waveform to eliminate unwanted qubit-qubit interactions,
regardless of the number of qubits with protected nonclassical
qubit states. The trade-off between decoupling imperfection
and resource limitations was numerically studied. In the near
future, we intend to rearrange a system Hamiltonian with the
help of an external perturbation as introduced in [27], which
is also applicable to QC and QIP experiments.
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APPENDIX A: FLOQUET HAMILTONIAN THEORY

A periodic time-dependent Hamiltonian
ˆ̃H(t) can be aver-

aged over a period T using an approach based on the Floquet

theory. Consider a Fourier expansion of
ˆ̃H(t) such that

ˆ̃H(t) =
∑

n

Ĥ(n)
F exp (2iπnt/T ). (A1)

As stated in [40], average Hamiltonians up to second order are
given by

Ĥ
(0)

eff = Ĥ(0)
F , (A2)

Ĥ
(1)

eff = T

4π

∑
n=0

1

n

[
Ĥ(n)

F ,Ĥ(−n)
F

]
, (A3)

Ĥ
(2)

eff = T 2

12π2

∑
n=0

∑
n′+n=0

1 + (1/2)δn′,0

n(n + n′)

× [[
Ĥ(n)

F ,Ĥ(n′)
F

]
,Ĥ(−n−n′)

F

]
. (A4)

APPENDIX B: DERIVATION OF AVERAGE
HAMILTONIAN FOR DEPHASING PROBLEM

The Hamiltonian of the system Ĥ0 is considered as Ĥ0 =
ĤQ−B + ĤE in the main text, where

ĤQ−B =
∑

k

g(k)σ̂zσ̂z,k, (B1)

ĤE = ε1vx(t)σ̂x + ε3vy(t)σ̂y

+ ε2vy(t)σ̂x + ε4vx(t)σ̂y, (B2)
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and σ̂α , σ̂α,k (α = x,y,z) denote Pauli operators of the qubit and the kth TLS, respectively. A unitary operator ÛV (t) =
T̂ exp[i

∫ t

0 V (t ′)dt ′] modulates the Hamiltonian Ĥ0 in the interaction frame of V (t) such that

ˆ̃HQ−B(t) =
∑
α,k,n

g(k)cαz,nσ̂ασ̂z,k e2πint/T , (B3)

ˆ̃HE(t) =
∑
α,n

{
ε1

∑
n′

vx,n−n′cαx,n′ + ε2

∑
n′

vy,n−n′cαx,n′ + ε3

∑
n′

vy,n−n′cαy,n′ + ε4

∑
n′

vx,n−n′cαy,n′

}
σ̂α e2πint/T , (B4)

where vα,n = T −1
∫ T

0 vα(t) exp(−2πint/T ) and cβα(t) = ∑
n cβα,n exp(2πint/T ) = Tr[ÛV σ̂αÛ

†
V σ̂β]/Tr[σ̂ 2

β ]. If we write

d (1)
α,n =

∑
n′

vx,n−n′cαx,n′ , d (2)
α,n =

∑
n′

vy,n−n′cαx,n′ ,

d (3)
α,n =

∑
n′

vy,n−n′cαy,n′ , d (4)
α,n =

∑
n′

vx,n−n′cαy,n′ ,

the Fourier series of the modulated Hamiltonians are

Ĥ(n)
Q−B,F =

∑
α,k

g(k)cαz,nσ̂ασ̂z,k, (B5)

Ĥ(n)
E,F =

∑
α,i

εi d (i)
α,n σ̂α. (B6)

The zeroth-order average Hamiltonian is easily obtained from Ĥ
(0)

eff = Ĥ(0)
Q−B,F + Ĥ(0)

E,F, and is given by

Ĥ
(0)

eff =
∑
α,k

g(k)cαz,0σ̂zσ̂z,k +
∑
α,i

εi d
(i)
α,0 σ̂α. (B7)

The first-order average Hamiltonian is obtained from Eq. (A3) and is given by

Ĥ
(1)

eff = T

4π

∑
n=0

1

n

[
Ĥ(n)

F ,Ĥ(−n)
F

]
= T

2π

∑
n>0

1

n

[
Ĥ(n)

Q−B,F + Ĥ(n)
E,F,Ĥ

(−n)
Q−B,F + Ĥ(−n)

E,F

]
= T

2π

∑
n>0

1

n

{[
Ĥ(n)

Q−B,F,Ĥ
(−n)
Q−B,F

] + [
Ĥ(n)

E,F,Ĥ
(−n)
E,F

] + [
Ĥ(n)

Q−B,F,Ĥ
(−n)
E,F

] − [
Ĥ(−n)

Q−B,F,Ĥ
(n)
E,F

]}
,

where [
Ĥ(n)

Q−B,F,Ĥ
(−n)
Q−B,F

] =
∑
k′,k

g(k′) g(k)
∑
α′,α

cα′z,ncαz,−n[σ̂α′ ,σ̂α]σ̂z,k′ σ̂z,k

=
∑
k′,k

g(k′) g(k)
∑
α′<α

(cα′z,ncαz,−n − cαz,ncα′z,−n)[σ̂α′ ,σ̂α]σ̂z,k′ σ̂z,k

=
∑
k′,k

g(k′) g(k)
∑
α′<α

(cα′z,nc
∗
αz,n − cαz,nc

∗
α′z,n)[σ̂α′ ,σ̂α]σ̂z,k′ σ̂z,k

=
∑
k′,k

g(k′) g(k)
∑
α′<α

2 εα′αβIm[cαz,nc
∗
α′z,n] σ̂β σ̂z,k′ σ̂z,k,

[
Ĥ(n)

E,F,Ĥ
(−n)
E,F

] =
∑
α′<α

∑
i

ε2
i 2εα′αβIm

[
d

(i)
α′,n d (i)∗

α,n

]
σ̂β +

∑
α′<α

∑
i ′<i

εi ′εi 2εα′αβIm
[
d

(i)
α′,n d (i ′)∗

α,n + d
(i)∗
α′,n d (i ′)

α,n

]
σ̂β ,

[
Ĥ(n)

Q−B,F,Ĥ
(−n)
E,F

] =
∑

k

∑
i

g(k)εi

∑
α′<α

2εα′αβIm
[
c∗
α′z,n d (i)

α,n + cαz,n d
(i)∗
α′,n

]
σ̂β σ̂z,k,
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and εαβγ is the Levi-Civita symbol.
∑

α′<α represents the summation of (α′,α) = {(x,y),(x,z),(y,z)}. Here, we used the identity
cαβ,−n = c∗

αβ,n because cαβ(t) is real. The first-order average Hamiltonian then becomes

Ĥ
(1)

eff = T

π

∑
k′,k

g(k′) g(k)
∑
α′<α

εα′αβ

(∑
n>0

1

n
Im[cαz,nc

∗
α′z,n]

)
σ̂β σ̂z,k′ σ̂z,k + T

π

∑
α′<α

∑
i

ε2
i εα′αβ

(∑
n>0

1

n
Im

[
d

(i)
α′,n d (i)∗

α,n

])
σ̂β

+ T

π

∑
α′<α

∑
i ′<i

εi ′εi εα′αβ

(∑
n>0

1

n
Im

[
d

(i)
α′,n d (i ′)∗

α,n + d
(i)∗
α′,n d (i ′)

α,n

])
σ̂β

+ 2T

π

∑
k

∑
i

g(k)εi

∑
α′<α

εα′αβ

(∑
n>0

1

n
Im

[
c∗
α′z,n d (i)

α,n + cαz,n d
(i)∗
α′,n

])
σ̂β σ̂z,k. (B8)

APPENDIX C: DERIVATION OF THE COST FUNCTION FOR DEPHASING PROBLEM

The zeroth-order cost function 	(0) is defined from Eq. (B7) as follows:

	(0) =
∑

α=x,y,z

{
|cαz,0|2 + w2

∑
i

∣∣d (i)
α,0

∣∣2

}
. (C1)

The first-order cost function 	(1) is defined such that terms within the large parentheses in Eq. (B8) become zero, and is given by

	(1) =
∑
α′<α

∣∣∣∣∣∑
n>0

1

n
Im[cαz,nc

∗
α′z,n]

∣∣∣∣∣
2

+ w4
∑
α′<α

∑
i

∣∣∣∣∣∑
n>0

1

n
Im

[
d

(i)
α′,n d (i)∗

α,n

]∣∣∣∣∣
2

+w4
∑
α′<α

∑
i ′<i

∣∣∣∣∣∑
n>0

1

n
Im

[
d

(i)
α′,n d (i ′)∗

α,n + d
(i)∗
α′,n d (i ′)

α,n

]∣∣∣∣∣
2

+ w2
∑
α′<α

∑
i

∣∣∣∣∣∑
n>0

1

n
Im

[
c∗
α′z,n d (i)

α,n + cαz,n d
(i)∗
α′,n

]∣∣∣∣∣
2

, (C2)

where w is the deliberate weight for the pulse errors set to 1/100.
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