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Brüschweiler’s database search in a spin Liouville space can be efficiently simulated on a conventional
computer without error as long as the simulation cost of the internal circuit of an oracle function is polynomial,
unlike the fact that in true NMR experiments, it suffers from an exponential decrease in the variation of a
signal intensity. With the simulation method using the matrix-product-state proposed by Vidal �G. Vidal, Phys.
Rev. Lett. 91, 147902 �2003��, we perform such a simulation. We also show the extensions of the algorithm
without utilizing the J-coupling or DD-coupling splitting of frequency peaks in observation: searching can be
completed with a single query in polynomial postoracle circuit complexities in an extension; multiple solutions
of an oracle can be found in another extension whose query complexity is linear in the key length and in the
number of solutions �this extension is to find all of marked keys�. These extended algorithms are also simulated
with the same simulation method.
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I. INTRODUCTION

Since the time Deutsch �1� introduced quantum bits �qu-
bits� and quantum circuits, there have been notable advances
in quantum information theories, leading to the current status
of quantum computation. Among quantum algorithms for
quantum computation, there are two famous algorithms pub-
lished from 1994 to 1997: Shor’s �2� algorithm solves the
problem of prime factorization within a time increasing poly-
nomially in the number n of qubits; Grover’s �3� algorithm
solves the problem of unsorted-database searching �or solu-
tion searching using an unsorted database� in O�2n/2� queries
to find a solution �a key to find� from a key table consisting
of n-bit-length keys of a database that contains N=O�2n�
different records. This database search problem is concerned
in this paper. We will see the definition of the problem in
Sec. III. The query complexity O�2n/2� is a quadratic speedup
over standard classical methods that need O�2n� trials to find
a single string �a key of a record� in the key table of an
unsorted database. It was shown to be optimal �4�, in the
standard model of quantum computation using pure-state in-
puts and unitary transformations, as written in Chap. 6 of
Ref. �5�. It should be noted that a search in a present context
is a search using an oracle and it is conceptually different
from a usual search �see, e.g., Ref. �6� for the traditional
definitions of databases and searching problems�. Moreover,
there is another fact that should be mentioned: a quantum
oracle-based database search is a searching for a particular
key in a superposition of states by using a quantum oracle
function, while a classical oracle-based database search is a
searching in a table of record keys using a classical oracle
function.

The speedup made by the algorithm had been considered
due to a quantum nature. Recently, however, it was shown by
Viamontes et al. �7� that Grover’s algorithm can be simulated
with the original query complexity unchanged by using their

special decision diagram called quantum information deci-
sion diagram �QuIDD�. In their method, the total complexity
of the simulation is comparable to that of an ideal quantum
computer for a construction of an oracle such that its internal
simulation cost grows polynomially in n. Kawaguchi et al.
�8� also showed that Grover’s algorithm can be simulated on
a conventional computer with a trivial increase in the com-
plexity when one uses the density matrix renormalization
group �DMRG� method �9� in the simulation of quantum
circuits, which is equivalent to the simulation scheme using
the matrix-product-state �MPS� decomposition proposed by
Vidal �10�. This is because the amount of entanglement in-
volved in the algorithm is small as long as the internal circuit
of an oracle function is not considered. As shown by Vidal, if
the amount of entanglement �Eq. �44� in the present paper�
increases polynomially in n in a quantum algorithm for pure
states, such an algorithm can be efficiently simulated on a
classical computer. Thus, apart from applications of Grover’s
search �e.g., quantum counting �11��, we cannot strongly in-
sist on the benefit of quantum computation in solving the
problem of unsorted-database searching. In particular for
solving practical NP-complete search problems, Grover’s
search is often inferior to conventional specialized algo-
rithms according to Viamontes et al. �12�.

There is another algorithm to solve the problem of
unsorted-database searching in a different approach: Brüsch-
weiler �13� proposed an algorithm with which one finds a
solution in a linear query complexity by utilizing classical
parallelism of a bulk ensemble quantum computer �14,15�.
This algorithm, however, suffers from an exponential de-
crease in the variation of a signal intensity to detect, in in-
creasing the number of qubits; one has to aggregate an ex-
ponentially increasing number of output signals to find a
correct signal variation hidden in random noise. �The role of
measurement precision in a similar algorithm was discussed
by Okubo et al. �16�.� This is why it has been not so much
highlighted. Nevertheless, with the MPS simulation, this al-
gorithm can be regarded as a quite efficient algorithm with
respect to query complexity. The MPS simulation method
can be used for an efficient simulation of time-evolving*Electronic address: saitoh@qc.ee.es.osaka-u.ac.jp
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mixed states under the condition that the amount of site-site
correlation is small as shown by Zwolak and Vidal �17�.
Because Brüschweiler’s algorithm only processes slightly
unmixed states, it meets this special condition.

Thus, in this paper, we argue the MPS simulation for the
original Brüschweiler’s search that we will see in Sec. III
and that for its two variants that we construct in Sec. V:
Explicit processes and computational complexities are de-
scribed in Sec. VI; results from simulations are shown in
Sec. VII. Here is a brief list of results.

�1� We find that the original Brüschweiler’s database
search is terminated with a good solution in polynomial time
and polynomial memory space in n in the MPS simulation on
a conventional computer as long as an oracle function is
constructed as a quantum circuit whose cost in a simulation
is small, such as one comprising a CnNOT gate and NOT gates.
Here, the term “memory space” is used in the meaning of a
length of computer memory.

�2� We extend the algorithm so that a single query and
O�n� postoracle quantum gates are sufficient. Although this
is similar to the Xiao-Long �18� algorithm, it is different
because we do not use the split of frequency peaks caused by
J or DD couplings in an observation stage but we use stan-
dard ensemble average measurements of polarizations. Simu-
lation cost of this extension is also dependent on an oracle
structure.

�3� Another extension is made so that one can use
Brüschweiler’s algorithm for a database search with multiple
solutions involved �the J-coupling or DD-coupling split of
frequency peaks is not used in observation�; this extension
also keeps the complexity of the simulation polynomial
when an internal oracle structure is easy to simulate. One can
find all of r solutions �their bit length is n� in O�nr� queries.

These facts show that if we accept to regard quantum
oracle functions in MPS simulations as a special sort of clas-
sical oracles, the cost of a classical simulation is, occasion-
ally, exponentially smaller than that of quantum and/or en-
semble computations for the problem of so-called unsorted-
database searching owing to such small query complexities.
We will discuss the meaning of the problem itself later in
Sec. VIII because this result shows that the simulation is fast
as if it were a sorted database or a database with a structure
that we search in.

In this paper, we will first see the basics of a spin Liou-
ville space in Sec. II because Brüschweiler’s algorithm was
originally described in a spin Liouville space. Brüschweiler’s
algorithm will be briefly introduced in Sec. III. Second, we
will write about Vidal’s MPS simulation method from the
viewpoint of computer programming in Sec. IV. It is fol-
lowed by Sec. V in which we will describe the extensions of
Brüschweiler’s algorithm. The details of our simulation and
simulation complexities will be described in Sec. VI. Simu-
lation results will be shown in Sec. VII. The discussion and
the conclusion in Secs. VIII and IX will terminate this paper.

II. SPIN LIOUVILLE SPACE FOR A QUANTUM
COMPUTATION

In this section, we will see a small part of the versatile
formulations of quantum computing in a Liouville space pro-

posed by Tarasov �19�. We omit the description of the for-
mulation using generalized computational states here al-
though it is the main part of his formulation. This is because
it is not relevant to the description of Brüschweiler’s data-
base search which is of our interest.

A. Representation of quantum states
under the terms of Hilbert spaces

As is well known, a pure state of a qubit is a unit vector of
a Hilbert space H2�C2. A pure state of n qubits is a unit
vector of a product space H�n�=H2

�n=H2 � ¯ � H2. We
usually use the Z basis for a single qubit, the basis under
which the Pauli Z matrix is written as �0��0 �−�1��1� using
basis vectors �0� and �1�. For n-qubit pure states, we usually
use a computational basis, with basis vectors
�0¯0� , . . . , �1¯1�; this is a product basis of basis 	�0� , �1�
.
We also express the basis by 	�k�
k= 	�0� , �1� , . . . , �2n−1�
 in
the decimal system instead of the binary system. A pure state

����H�n� may be represented as ���=�k=0
2n−1ak �k�, where co-

efficients ak are complex numbers that satisfy �k �ak�2=1.
A mixed state of n qubits is generally represented as a

density operator �=�k,l=0,0
2n−1,2n−1ckl �k��l�. � is an Hermitian ��†

=��, positive operator ��v �� �v��0 for vector �v��H�n��
with unit trace �Tr �=1�. When it is idempotent ��2=��, � is
a pure state, i.e., �= ������.

The expectation value of a measurement with an observ-
able M �M is an Hermitian operator� is given by �M�
=Tr �M. When a system is a bipartite of systems A and B
with state spaces HA and HB, respectively, for an Hermitian
operator MA acting on A, we have �MA�=Tr �ABMA � IB

=Tr �AMA, where �A=���B���B ��AB ��B� is the reduced den-
sity operator of A �	��B�
 is a complete orthonormal system
of HB�. In addition, an expectation value of a measurement
on a particular qubit i with an observable Mi is given by
�Mi�=Tr �I1,. . .,i−1 � Mi � Ii+1,. . .,n=Tr �iMi where �i is the re-
duced density operator of the ith qubit.

B. Liouville space

Consider a linear operator A acting on a state in a Hilbert
space H�n�:

A = �
k,l=0,0

2n−1,2n−1

Akl�k��l� . �1�

The dimension of such operators is �2n�2=4n. We denote this
operator as a superket �A�.

Let us define a Liouville space �operator Hilbert space�
L�n� of n qubits as a 4n-dimensional complex linear space
such that the inner product of two elements ��� and ��� is
defined as

����� = Tr��†�� , �2�

and the norm of an element ��� is defined, with the positive
square root, as

��� = ����� . �3�
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Consider a complete orthonormal system 	�k�
k of a Hil-
bert space H�n�. Then 	�k , l�
k,l= 	��k� , �l � �
k,l is a complete
orthonormal system of a Liouville space L�n�, i.e., for
	�k , l�
= 	�k1 , l1� � ¯ � �kn , ln�
= 	��k1� � ¯ � �kn� , �l1 � � ¯

� �ln � �
,

�k,l�k�,l�� = �kk��ll�, �4�

�
k=0

2n−1

�
l=0

2n−1

�k,l��k,l� = I . �5�

Note that �a ,b� � �c ,d�= ��a� �c� , �b � �d � �.
For an arbitrary element ����L�n�,

��� = �
k=0

2n−1

�
l=0

2n−1

�k,l��k,l��� . �6�

Here, �k , l ���=Tr��l��k ���= �k �� � l�=�kl is a matrix element
of �.

C. Superoperators

An operator that acts on a superket in a Liouville space is
called a superoperator. A superoperator E
=�k,l,k�,l�Eklk�l� �k , l��k� , l�� transforms ���=�k,l�kl �k , l� to the
state

E��� = �
k,l=0,0

2n−1,2n−1

�
k�,l�=0,0

2n−1,2n−1

Eklk�l��k�l��k,l� . �7�

1. Quantum gates

A quantum gate written as a unitary transformation U
=�ijuij � i��j� acting on a state ��� in H�n� is also represented
as a superoperator

E = �
iljk

Eil,jk�i,l��j,k� = �
iljk

uijulk
* �i,l��j,k� �8�

acting on ��� in L�n�. This is because

U�U† = �
ijabkl

uij�abulk
* �i��j�a��b�k��l� = �

ijkl

uij� jkulk
* �i��l� .

�9�

For example, the NOT gate �X gate� is represented as a super-
operator

EX = �1,1��0,0� + �1,0��0,1� + �0,1��1,0� + �0,0��1,1� .

�10�

III. BRÜSCHWEILER’S DATABASE SEARCH
ALGORITHM

Brüschweiler’s search is a search algorithm for an un-
sorted database by using NMR parallel computation. It offers
an exponential speedup in query complexity for the search
although the reduction of signal variation to detect is expo-
nential in the number of qubits.

A database of present interest is a set of N=2n records
each of which has an n-bit-length key. A particular key is
marked but it is unknown in public. A table of keys is open
to the public except for the information about marking. One
intends to search for a marked key by sending a query to the
database. The database will return some answer that will be
used to determine a marked key. This is quite different from
a usual database search. Usually, one knows a marked key
that should be searched in a database. In contrast, one aims
to find a marked key by sending queries to a database in the
present context. We employ three different names to call this
database according to its style of a query-and-answer behav-
ior:

�a� It is called an unsorted database when it returns yes or
no �i.e., 1 or 0� when one queries it as to whether a key that
one shows to it is marked one.

�b� It is called a sorted database when it answers a query
as to whether a key is equal to, larger than, or smaller than a
marked key.

�c� It is called a partition-structured database when one
can query as to whether a part of a key is equal to that of a
marked key. An example of a partition-structured database is
a database to which one can send a query as to whether a
symbol l� 	0,1
 in a particular place of a key �in binary
notation� is equal to a symbol in the same place of the
marked key.

The problem of unsorted-database searching is to find a
marked key in a database described in �a�. This problem can
be defined mathematically as written below, which is the
definition used in many papers including Brüschweiler’s one.

Definition 1: The problem of unsorted-database searching
is defined as follows.

Suppose that there is a given binary function
f : 	0,1
n� 	0,1
 such that f�x�=0 for "x�w and f�w�=1,
where strings x and a string w are n-bit strings. The problem
is to find w=w1 , . . . ,wn.

This function f can be realized as a unitary transformation
Uf that performs a transposition of the two ket vectors
�w� �0�o and �w� �1�o in the Hilbert space H�n+1� of n+1 qu-
bits. Here, a ket vector with the subscript o is one in the state
space of the oracle bit. Let the superscripts 1 , . . . ,n and o
denote the state space of the qubits 1 , . . . ,n and that of the
oracle qubit, respectively. We have

Uf = I1,. . .,n,o − �w1,. . .,n0o��w1,. . .,n0o� − �w1,. . .,n1o��w1,. . .,n1o�

+ �w1,. . .,n1o��w1,. . .,n0o� + �w1,. . .,n0o��w1,. . .,n1o� . �11�

This oracle operation is also written as the superoperator

E f = �
ijkl

�i�Uf�k���j�Uf�l��*�i, j��k,l� . �12�

In Brüschweiler’s search, this problem is solved with an
ensemble of molecules in a highly mixed state of n+1 spins
1/2. The superket of an original state is well approximated by

��0� = �	��n+1 = �p�0,0� + �1 − p��1,1���n+1, �13�
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where �0,0�= ��0� , �0 � �, �1,1�= ��1� , �1 � �, and �	�= p �0,0�
+ �1− p� �1,1�; we also impose the condition 0�p�1. The
searching is conducted in the following scheme.

For s=1 to n, do the procedures 1 to 4.
1. Initialize the qubit n+1 for the oracle bit by using a

proper method, such as the effective pure state �20�. This
creates the superket

��1� = �	��n
� �0,0�o = �p�0,0� + �1 − p��1,1���n

� �0,0�o.

�14�

2. Initialize the qubit s. The state at this point is the su-
perket

��s� = �	��s−1
� �0,0�s � �	��n−s

� �0,0�o. �15�

3. Apply the oracle operation E f to ��s�:

��s�� = E f��s� . �16�

In this transformation, the element �w1,. . .,n0o ,w1,. . .,n0o� is
mapped to �w1,. . .,n1o ,w1,. . .,n1o� in the case where ws=0.

4. Evaluate the function

F = 1 − �I�n
� Z��s�� = 1 − Tr �s�I

1,. . .,n
� Z = 1 − �Zoracle��.

�17�

F is a variation in the polarization �Zoracle�� of the oracle
qubit in other words. If and only if the sth bit of w, ws, is
0, then we have F
0; otherwise we have F=0. Accord-
ingly, we find the value of ws. In particular when p=0.5,
we have F=2−n+2 if and only if ws is 0.

After the iteration, we know the values w1 , . . . ,wn. n que-
ries are used in total. In addition, the procedures 3 and 4 may
be illustrated as a quantum circuit in Fig. 1.

The variation V of a signal intensity, proportional to F,
decreases as V=O�2−n�. Once V is lower than the mean noise
level of an apparatus, we cannot get the signal in a single
measurement even though we increase the number of bits in
anolog-to-digital converters. Indeed, if we add additional m
bits in anolog-to-digital converters, the precision of them is
��2−m�, but a signal is hidden in noise before the input wires
of them. It requires a number of measurements increasing
exponentially in n to cancel noise by aggregating measure-
ment results.

In contrast, in an MPS simulation, it is easy to add bits to
a register to improve the precision. To refine the precision by
the factor 2−m, we simply add m bits to each register. There-
fore, in a classical emulation of an NMR parallel computa-
tion, what they call the unsorted-database search can be ex-
ponentially faster than conventional schemes without any
deficit in resolution, in terms of query complexity. The
method of the MPS simulation will be described in detail in
the next section from the viewpoint of computer program-
ming.

IV. INTRODUCTION TO VIDAL’S MPS SIMULATION

From the viewpoint of computer programming, we will
see the process of the MPS �matrix product state� simulation
of a quantum computation. This method was first proposed
by Vidal �10� in 2003. General simulation complexities
shown by Vidal are also revisited in Eqs. �44�–�49�, which
will be especially used in calculating complexities of simu-
lations of Brüschweiler’s algorithm and its variants in Sec.
VI. Some simulation techniques are also introduced in this
section.

A. MPS decomposition of a quantum state

In the MPS simulation of time evolutions of quantum
pure states, a state ��� of n qubits at a particular time step is
kept in the form of tensors 	Qs
s=1

n with parameters is ,vs−1 ,vs

�v0 and vn are excluded�, and 	Vs
s=1
n−1 with parameter vs in the

MPS decomposition shown in Eq. �18�. ���
=�i1,. . .,in

ci1,. . .,in
� i1 , . . . , in� is decomposed as �26�

��� = �
i1=0

1

¯ �
in=0

1 � �
v1=1

m1

�
v2=1

m2

¯ �
vn−1=1

mn−1

Q1�i1,v1�V1�v1�

� Q2�i2,v1,v2�V2�v2� ¯ Qs�is,vs−1,vs�Vs�vs� ¯

Vn−1�vn−1�Qn�in,vn−1���i1, . . . ,in� . �18�

Here, ms is a suitable number of values assigned to vs with
which the state is represented precisely or well approxi-
mated. That is to say, the coefficient ci1,. . .,in

of �i1 , . . . , in� is
expanded as

�
v1=1

m1

�
v2=1

m2

¯ �
vn−1=1

mn−1

Q1�i1,v1�V1�v1�Q2�i2,v1,v2�V2�v2� ¯

Qs�is,vs−1,vs�Vs�vs� ¯ Vn−1�vn−1�Qn�in,vn−1� . �19�

Qs�is ,vs−1 ,vs� is a tensor �namely, an array� with
2�ms−1�ms elements; Vs�vs� is an array in which the
Schmidt coefficients for the splitting between the sth site and
the �s+1�th site �i.e., the square roots of nonzero eigenvalues
of the reduced density operator of qubits 1 , . . . ,s� are stored.
By using Vs and eigenvectors �vs

1,. . .,s� ��vs

s+1,. . .,n�� of the
reduced density operator �1,. . .,s ��s+1,. . .,n� of qubits 1 , . . . ,s
�s+1, . . . ,n�, the state can be also written in the form of
Schmidt decomposition

FIG. 1. The quantum circuit of the procedures �3� and �4� in the
description of Brüschweiler’s algorithm. �0���0,0� and �1�
��1,1�.
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��� = �
vs=1

ms

Vs�vs��vs

1,. . .,s��vs

s+1,. . .,n� . �20�

In an MPS simulation, some small coefficients and corre-
sponding eigenvectors are truncated out unlike a usual
Schmidt decomposition that keeps all the nonzero coeffi-
cients. The number of kept coefficients is important to find a
complexity of a simulation as we will see in Eqs. �44�–�49�.
In a computer program, we may regard Qs as a function that
returns a complex number for some inputs to its parameters
is ,vs−1 ,vs; Vs�vs� as a function of vs that returns a real num-
ber larger than zero.

The MPS decomposition of ��� can be accomplished by
using the Schmidt decompositions sequentially although we
seldom use this method in a usual simulation. The sequential
Schmidt decomposition is accomplished in the following
process:

First, the system is split into two parts, the first qubit and
the rest qubits. The reduced density operators for individual
parts, �1 and �2,. . .,n, have the same set 	�v1


 of nonzero ei-
genvalues labeled by v1 �the number of these eigenvalues is
written as m1�; the set of eigenvectors for the former is
	�v1

1 �
 and that for the latter is 	�v1

2,. . .,n�
. Here, �1 is com-
puted by

�1 = �
�2,. . .,n

��2,. . .,n�������2,. . .,n� , �21�

where 	��2,. . .,n�
 is a complete orthonormal system of the
state space of the qubits 2 , . . . ,n. �2,. . .,n is also computed in
a similar way. Setting V1�v1�=�v1

, we have the Schmidt
decomposition

��� = �
v1=1

m1

V1�v1��v1

1 ��v1

2,. . .,n�

= �
i1=0

1

�
v1=1

m1

V1�v1�Q1�i1,v1��i1��v1

2,. . .,n� , �22�

where Q1�i1 ,v1�= �i1 �v1

1 �. �v1

2,. . .,n� can be written as

�v1

2,. . .,n� = �
i2=0

1

�i2���i2,v1

3,. . .,n� , �23�

where ��i2,v1

3,. . .,n�= �i2 �v1

2,. . .,n�. Second, we compute �3,. . .,n to
get m2 nonzero eigenvalues 	�v2


 and corresponding eigen-
vectors 	�v2

3,. . .,n�
. Setting V2�v2�=�v2
, ��i2,v1

3,. . .,n� is decom-
posed as

��i2,v1

3,. . .,n� = �
v2=1

m2

V2�v2�Q2�i2,v1,v2��v2

3,. . .,n� , �24�

where Q2�i2 ,v1 ,v2�= 1
V2�v2� �v2

3,. . .,n ��i2,v1

3,. . .,n�. Using this routine

sequentially for the decompositions of eigenvectors from
�v2

3,. . .,n� to �vn−1

n �, we determine the tensors
V3�v3� , . . . ,Vn−1�vn−1� and Q3�i3 ,v2 ,v3� , . . . ,Qn�in ,vn−1�.

As we mentioned, this method is expensive and seldom
used to prepare the initial MPS in the simulation of a quan-
tum computation.

B. Main process of the MPS simulation

In a usual MPS simulation of a quantum computation, we
use the following three processes.

�i� Preparation of the initial MPS.
The initial state ��ini� for the input of a quantum circuit is

often very easy to decompose into the MPS form: in the case
of �a �0�+b �1���n �a ,b�C and �a�2+ �b�2=1�, we have only
to set m1= ¯ =mn−1=1 and V1�1�= ¯ =Vn−1�vn−1�=1;
Q1�0,1�=Q2�0,1 ,1�= ¯ =Qn−1�0,1 ,1�=Qn�0,1�=a and
Q1�1,1�=Q2�1,1 ,1�= ¯ =Qn−1�1,1 ,1�=Qn�1,1�=b. We
need not to use any floating-point multiplication to store val-
ues of elements in tensors V1 , . . . ,Vn−1 and Q1 , . . . ,Qn for
such a simple initial state. Once the MPS decomposition is
done for the initial state, we use the following procedures to
perform the simulation of a time evolution under unitary
transformations.

�ii� Procedure 1 for single-qubit quantum gates. Let us
regard the state ��� in Eq. �18� as a state before some par-
ticular operation is applied. First, let us suppose that a single-
qubit unitary transformation Us=�isks=00

11 uisks
� is��ks� operates

on the qubit l. This transformation is realized in the simula-
tion by altering Ql�il ,vl−1 ,vl� to

Q̃l�il,vl−1,vl� = �
kl=0

1

uilkl
Q�kl,vl−1,vl� . �25�

�iii� Procedure 2 for two-qubit quantum gates. Second, let
us suppose that we apply the two-qubit unitary transforma-
tion Us,s+1=�uisis+1ksks+1

� isis+1��ksks+1� on some consecutive
qubits l , l+1. We first represent the state ��� before the trans-
formation in two different expressions

��� = �
vl−1=1

ml−1

Vl−1�vl−1��vl−1

1,. . .,l−1��vl−1

l,. . .,n� , �26�

��� = �
vl+1=1

ml+1

Vl+1�vl+1��vl+1

1,. . .,l+1��vl+1

l+2,. . .,n� . �27�

Then we define the vectors

�vl−1� = Vl−1�vl−1��vl−1

1,. . .,l−1� , �28�

�vl+1� = Vl+1�vl+1��vl+1

l+2,. . .,n� . �29�

We do not need to know how they can be represented under
the computational basis. In the simulation program, we have
only to know the values

�vl−1�vl−1� = �Vl−1�vl−1��2, �30�

�vl+1�vl+1� = �Vl+1�vl+1��2. �31�

Next, utilizing Eqs. �28� and �29�, we rewrite Eq. �18�:
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��� = �
ilil+1=00

11

�
vl−1=1

ml−1

�
vl=1

ml

�
vl+1=1

ml+1

�Ql�il,vl−1,vl�Vl�vl�

� Ql+1�il+1,vl,vl+1��vl−1��ilil+1��vl+1�� . �32�

To this state, Ul,l+1=�uilil+1klkl+1
� ilil+1��klkl+1� is applied. In

order to write the state after the application of Ul,l+1 in a
succinct style, the tensor

��il,il+1,vl−1,vl+1� = �
vl=1

ml

�
klkl+1=00

11

�uilil+1klkl+1

� Ql�kl,vl−1,vl�Vl�vl�Ql+1�kl+1,vl,vl+1��
�33�

is introduced. With this new tensor, the evolved state ��̃�
=Ul,l+1 ��� is given by

��̃� = �
ilil+1=00

11

�
vl−1=1

ml−1

�
vl+1=1

ml+1

��il,il+1,vl−1,vl+1��vl−1��ilil+1��vl+1� .

�34�

The simulation should go on running, reshaping this state
into that in the style of Eq. �18�. This process will update Ql,

Vl, and Ql+1 to Q̃l, Ṽl, and Q̃l+1. For this purpose, we shall
find the reduced density operator of the block of bits l

+1, . . . ,n from ��̃�. In this calculation, we use the orthonor-
mal basis 	�il+1vl+1

l+2,. . .,n�
= 	�01� , . . . , �1ml+1�
 �this is a basis
for a subset of states among the states of qubits l+1, . . . ,n�:

�l+1,. . .,n = Tr1,. . .,lUl,l+1��̃���̃�Ul,l+1
† = �

il+1=0

1

�
vl+1=1

ml+1

�
il+1� =0

1

�
vl+1� =1

ml+1 � �
vl−1=1

ml−1

�
il=0

1

�vl−1�vl−1���il,il+1,vl−1,vl+1�

��*�il,il+1� ,vl−1,vl+1� ���il+1vl+1��il+1� vl+1� �

= �
il+1=0

1

�
vl+1=1

ml+1

�
il+1� =0

1

�
vl+1� =1

ml+1 � �
vl−1=1

ml−1

�
il=0

1

�Vl−1�vl−1��2��il,il+1,vl−1,vl+1�

��*�il,il+1� ,vl−1,vl+1� �Vl+1�vl+1�Vl+1�vl+1� ���il+1vl+1

l+2,. . .,n��il+1� vl+1�
l+2,. . .,n�

= �
il+1vl+1il+1� vl+1�

ail+1vl+1il+1� vl+1� �il+1vl+1

l+2,. . .,n��il+1� vl+1�
l+2,. . .,n� . �35�

Elements ail+1vl+1il+1� vl+1� = ��vl−1
�il

¯ � of �l+1,. . .,n are calcu-
lated in this way. Under the current basis 	�il+1vl+1

l+2,. . .,n�
,
�l+1,. . .,n is a �2ml+1 ,2ml+1� matrix. This is then diagonalized
by some numerical diagonalization method, such as the Her-
mitian Jacobi method, the Householder transformation, etc.
�see, e.g., Ref. �21��. A unitary transformation Ud can be
numerically found to obtain

Ud�l+1,. . .,nUd
† = ��01

�

�1ml+1

� . �36�

Note that the elements should be rearranged in the order of
values. Among them, nonzero eigenvalues are labeled by vl.
We take the square roots of them to have

Ṽl�vl� = �vl
. �37�

The corresponding eigenvectors �̃vl

l+1,. . .,n�, i.e., the column
vectors of Ud

†, are also obtained in this process. We set m̃l to
the number of the nonzero eigenvalues obtained above. If we
do not need so much accuracy, very small eigenvalues may
be omitted. After omitting a particular eigenvalue �x out, the
other eigenvalues �i are replaced with �i / �1−�x�
=�i /�i�x�i.

Because the basis is 	�il+1vl+1

l+2,. . .,n�
, the result of the pro-
cess provides

�̃vl

l+1,. . .,n� = �
il+1=0

1

�
vl+1=1

ml+1

Cl+1�il+1,vl,vl+1��il+1vl+1

l+2,. . .,n� ,

�38�

where elements of tensor Cl+1�il+1 ,vl ,vl+1� come from ele-
ments of a column vector of Ud

†. By using the relation
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Q̃l+1�il+1 ,vl ,vl+1�=Cl+1�il+1 ,vl ,vl+1� /Vl+1�vl+1�, we have

�̃vl

l+1,. . .,n� = �
il+1=0

1

�
vl+1=1

ml+1

Q̃l+1�il+1,vl,vl+1��il+1vl+1� . �39�

In the next process, we use the relation

Ṽl�vl��̃vl

1,. . .,l� = �̃vl

l+1,. . .,n��̃� . �40�

This leads to that

Ṽl�vl��̃vl

1,. . .,l� = �
ilil+1=00

11

�
vl−1=1

ml−1

�
vl+1=1

ml+1

�Q̃l+1
* �il+1,vl,vl+1�

� ��il,il+1,vl−1,vl+1��vl+1�vl+1���vl−1il�

= �
il=0

1

�
vl−1=1

ml−1

Cl�il,vl−1,vl��vl−1il� , �41�

where Cl�il ,vl−1 ,vl�=�il+1
�vl+1

�¯�. Thereby we have

�̃vl

1,. . .,l� = �
il=0

1

�
vl−1=1

ml−1

Q̃l�il,vl−1,vl��vl−1il� . �42�

Consequently, the calculations that we have seen provides

Q̃l�il ,vl−1 ,vl�, Ṽl�vl�, and Q̃l+1�il+1 ,vl ,vl+1�. Now we can
write the state after Ul,l+1 acts on as

��̃� = �
i1=0

1

¯ �
in=0

1 � �
v1=1

m1

¯ �
vl=1

m̃l

¯ �
vn−1=1

mn−1

Q1�i1,v1�V1�v1�

� Q2�i2,v1,v2�V2�v2� ¯ Q̃l�il,vl−1,vl�Ṽl�vl�

� Q̃l+1�il+1,vl,vl+1� ¯ Vn−1�vn−1�Qn�in,vn−1��
� �i1, . . . ,in� . �43�

When a unitary transformation U is applied to dispersed
�nonconsecutive� qubits a and b, we use the bit-swapping
gate, SWAP= �00��00 � + �01��10 � + �10��01 � + �11��11�, �a−b �
−1 times to gather them in consecutive locations; then we
apply U, and again use �a−b �−1 SWAP gates to restore the
locations of the qubits.

C. Complexity of the simulation

Let us consider the complexity of the MPS simulation
using the above processes. Here, a variable to represent a
largest one among ms=ms�t� �s=1,2 , . . . ,n–1� at a time step
t is utilized for convenience:

mmax�t� = maxs ms�t� . �44�

This was introduced by Vidal as � in the Eq. �2� of Ref. �10�
�he also showed that � is a measure of an amount of en-
tanglement.�. Let us also use the variable

mmax,max = maxt mmax�t� . �45�

It is tacitly assumed that an initial state is a product state;
otherwise the decomposition for the initial state possibly re-

quires a resource increasing exponentially in n and spoil the
estimation below. The decomposition of an initial state needs
O�n� time to store values and ��n� memory space on that
assumption.

First, we estimate the required memory space. The tensor
Qs�is ,vs−1 ,vs� needs a stack of 2ms−1ms floating-point
memory blocks. Each memory block has the real part and the
imaginary part of a complex number, each of which com-
prises nprec binary digits to have the precision �namely, the
smallest distinguishable number in a signed mantissa por-
tion� of ��2−nprec�. Vs�vs� needs a stack of ms floating-point
memory blocks. In addition, the calculation of �, �l+1. . .n, etc.
uses a memory space proportional to at most 2mmax

2 . There-
fore, the simulation of n-qubit quantum computation using
the MPS decomposition requires

O�mmax,max
2 nnprec� �46�

memory space. In general, we need the precision less than
1/2n because the elements of the tensor Vs are square roots
of the eigenvalues of the reduced density operator �s+1,. . .,n.
How small precision is required is dependent on a quantum
algorithm and input states. In the simulation of fast unsorted-
database searching, nprec=��n�.

Second, we estimate the required number of time steps.
This is dependent on the number g of quantum gates in a
quantum circuit after it is decomposed into one-qubit or two-
qubit quantum gates. We first evaluate how many arithmetic
operations are used for simulations of individual quantum
gates: The simulation of the time evolution for a single-qubit
quantum gate on qubit l requires O�ml−1ml� floating-point
basic operations. The simulation for a unitary transformation
acting on two consecutive qubits requires O�mmax

3 � floating-
point basic operations. This is due to the computation of Eq.
�35� and the diagonalization. �The diagonalization of �l+1,. . .,n

needs O�ml+1
3 � operations.� Next, it is known that O�n� quan-

tum SWAP gates can make any two qubits consecutive. There-
fore, the required number of floating-point basic operations
is

Nfp = O�gmmax,max
3 n� . �47�

A single floating-point arithmetic operation is often regarded
as an O�1� time step in computer programs because most
CPUs can do it in a few clocks. Nevertheless, this is not
correct when nprec is larger than the length that a CPU can
read and write in O�1� clocks. It is more accurate to write
that the number of required time steps is

Ntime = O�gmmax,max
3 n � poly�nprec�� . �48�

Of course, the factor n is omitted when the number of SWAP

gates for making nonconsecutive qubits consecutive is in-
cluded in the factor g.

The value of mmax,max is dependent on a quantum circuit
that should be simulated. Thus the above estimation of com-
plexities is incomplete in this sense. Complexities of a par-
ticular simulation can be calculated by tracking the time evo-
lution of mmax to find its largest value.

It is thus important to find an increase of the value of ms
through a single simulation time step that involves a single
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gate so as to calculate complexities of a particular simulation
of one’s interest. Let us consider ml�t�, the number of ele-
ments of tensor Vl at time step t. First, it is obvious that
ml�t+1�=ml�t� when a gate is a single-qubit gate. Second,
when a gate is a two-qubit gate acting on the lth and �l+1�th
qubits

ml�t + 1� � 2ml+1�t� . �49�

This is directly derived from Eq. �36� in the diagonalization
of a density operator under the basis 	�il+1vl+1

l+2,. . .,n�
. ml+1 is
unchanged because the updated tensors are Ql, Vl, and Ql+1.

D. Some techniques of the MPS simulation

1. CkNOT gates in the simulation

CNOT gate. Controlled-U gates are gates with two input
wires, with which �2,2� matrix U is applied to the lower qubit
of states in which the upper is in �1�,

controlled-U = �1

1

U
� . �50�

U may be any �2,2� unitary transformation. When U is set to
X= � 0

1
1
0

�, the gate is called the CNOT gate. The graphical sym-
bols of them used in quantum circuits are illustrated in Fig.
2�a�. The time evolution caused by controlled-U gates is
simulated in procedure 2 as we have seen.

CCNOT gate. The CCNOT gate is a gate with three inputs, in
which X is applied to the last input qubit of states that have
the upper two qubits in �11�. This can be realized by the
quantum circuit composed of two-qubit quantum gates as
shown in Fig. 2�b�. In the figure, X1/2= 1

2
� 1+i

1−i
1−i
1+i

� and X−1/2

= �X1/2�†. The simulation of this circuit is realized by the
procedure 2.

CkNOT for k�3. CkNOT for k�3 is a quantum gate with k
control qubits c1 , . . . , ck and a target qubit t. This gate applies
X to the target qubit of states in which all the control qubits
are in �1�. This can be realized by the quantum circuit com-
posed of the CNOT gates and CCNOT gates, as was written by
Kawaguchi et al. �22�, using k−1 ancillary qubits
a1 , . . . ,ak−1 as shown in Fig. 2�c�. The method to use ancil-
lary qubits in the simulation is described below.

2. How to use ancillary qubits in a simulation

It is possible to use dynamic memory allocations to add
and delete ancillary qubits in the following simulation
scheme. We impose a condition: ancillary qubits must be
disentangled with the other qubits before and after use; oth-
erwise they should not be called ancillary qubits.

Before adding ancillary qubits, the state is represented in
the MPS form

��� = �
i1,. . .,in

�
v1,. . .,vn−1

Q1V1, . . . ,Qn−1Vn−1Qn�i1, . . . ,in� .

�51�

To add ancillary qubits, we first allocate a new memory to
keep the state of ancillary qubits in the style of the MPS

��a� = �
a1,. . .,al=0¯0

1,. . .,1

� �
w1,. . .,wl−1

P1�a1,w1�W1�w1�

� P2�a2,w1,w2� ¯ Wl−1�wl−1�Pl�al,wl−1��
� �a1, . . . ,al� . �52�

For ancillary qubits, we write tensors and variables as Ps, Ws,
as, and ws instead of Qs, Vs, is, and vs respectively. It is usual
to have all the ancillary qubits in �0� initially. Then
Ps�0,1 ,1�=1, Ps�1,1 ,1�=0, and Ws�1�=1 for all s. We use
the tensor Va�va� �it contains Va�1�=1� to concatenate ��a�
and ���. The state �T� of the total of qubits after adding
ancillary qubits is written as

�T� = �
va=1

1

Va�va���a,va
���va

� , �53�

where ��a,va
� has the same tensors as ��a� except for

Pl�al ,wl−1 ,va� and ��va
� has the same tensors as ��� except

for Q1�i1 ,va ,v1�. In short, we concatenate the two MPS ��a�
and ��� by inserting the intermediate layer
Pl�al ,wl−1 ,va�Va�va�Q1�i1 ,va ,v1�. Because the element of Va

is Va�1�=1 at this point, the values of Pl�al ,wl−1� and
Q1�i1 ,v1� are kept unchanged in Pl�al ,wl−1 ,va� and
Q1�i1 ,va ,v1�, respectively.

At the next step, SWAP gates are used to put ancillary
qubits to some locations where they are needed. Then the
time evolution under a quantum circuit using ancillary qubits

FIG. 2. �a� The illustration of
the controlled-U gate and the
CNOT gate. �b� The CCNOT gate
composed of the CNOT gate, the
controlled-X1/2 gate, and the
controlled-X−1/2 gate. �c� The
CkNOT gate composed of the CNOT

gates and CCNOT gates �see Ref.
�22��. k−1 ancillary qubits are
used. The garbages �the qubits
thrown into garbage cans� are col-
lected later.
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is simulated. After this simulation, SWAP gates are used again
to gather ancillary qubits to the original position. There is no
entanglement between the block of ancillary qubits and the
block of the rest qubits if the imposed condition holds.
Hence, the state after the time evolution is

�T�� = �
va=1

1

Va�va���a,va
� ���va

� � . �54�

Finally, we delete the memory allocated to the tensors for
ancillary qubits after the time evolution,
P1� ,W1� , . . . ,Wl−1� , Pl�, and the tensor Va. By replacing
Q1��i1 ,va ,v1� with Q1��i1 ,v1�, we have the state after truncat-
ing ancillary qubits out

���� = �
i1,. . .,in

�
v1,. . .,vn−1

Q1�V1�, . . . ,Qn−1� Vn−1� Qn��i1, . . . ,in� . �55�

3. The reduced density operator of a single qubit

It is easy to obtain the reduced density operator of a single
qubit from the state in the MPS representation. Let the state
for the whole system be ���. Let the set of kept eigenvectors
for the qubits 1 , . . . , l−1 be 	�vl−1

1,. . .,l−1�
 and the set of those
for the qubits l+1, . . . ,n be 	�vl

l+1,. . .,n�
. Then, ��� may be
written as

��� = �
vl−1=1

ml−1

�
vl=1

ml

�
il=0

1

Vl−1�vl−1�Ql�il,vl−1,vl�Vl�vl�

� �vl−1

1,. . .,l−1��il��vl

l+1,. . .,n� . �56�

The density operator for the whole system is

������ = �
vl−1=1

ml−1

�
vl=1

ml

�
il=0

1

�
vl−1� =1

ml−1

�
vl�=1

ml

�
il�=0

1

�Vl−1�vl−1�

�Ql�il,vl−1,vl�Vl�vl�Vl−1�vl−1� �

� Ql
*�il�,vl−1� ,vl��Vl�vl���vl−1

1,. . .,l−1��il��vl

l+1,. . .,n�

��vl−1�
1,. . .,l−1��il���vl�

l+1,. . .,n�� . �57�

The reduced density operator of the lth qubit is given by

�l = �
vl−1=1

ml−1

�
vl=1

ml

�vl−1

1,. . .,l−1��vl

l+1,. . .,n������vl−1

1,. . .,l−1��vl

l+1,. . .,n� .

�58�

This leads to that

�l = �
vl−1=1

ml−1

�
vl=1

ml

�
il=0

1

�
il�=0

1

�Vl−1�vl−1�Ql�il,vl−1,vl�Vl�vl�

� Vl−1�vl−1�Ql
*�il�,vl−1,vl�Vl�vl��il��il���

= �
vl−1=1

ml−1

�
vl=1

ml

�
il=0

1

�
il�=0

1

	�Vl−1�vl−1��2�Vl�vl��2

� Ql�il,vl−1,vl�Ql
*�il�,vl−1,vl��il��il��
 . �59�

Therefore, the calculation of �l is accomplished within
��ml−1ml� floating-point basic operations.

4. Simulation of a projective measurement on a single qubit

It is also possible to simulate the time evolution of a state
in the process of a projective measurement on a single qubit.
This is not used in simulations that we will see in Sec. VI
because we do not consider a standard model of quantum
computation but a bulk-ensemble model. Nevertheless, it is
necessary if one intends to simulate a standard quantum
computation that involves projective measurements. We will
easily find that the number of floating-point operations used
for the simulation of a projective measurement on a single
qubit is O�mmax,max

3 n�. The details are available in a supple-
mentary electronic file �27�.

5. A simple example of the MPS simulation

To understand the process of the MPS simulation, an ex-
ample is helpful. A simple example is available as an addi-
tional electronic file �27�. In this electronic file, we will see
the simulation process of a time evolution of elements of
tensors for a simple quantum circuit. The simulation process
of an projective measurement on a single qubit is also writ-
ten in the example.

V. EXTENSIONS OF BRÜSCHWEILER’S ALGORITHM

We will show two extensions of Brüschweiler’s algo-
rithm.

A. Single-query algorithm

In the following algorithm, one has only to send a single
query to an oracle with a single solution to find it with O�n�
postoracle quantum gates. It is an algorithm similar to one
that Xiao and Long �18� published. The different part is that
we do not use the frequencies of peaks caused by J or DD
couplings in observation but standard ensemble average
measurements with the observable Z.

The problem is the same one as we have had before:
Consider the function f : 	0,1
n� 	0,1
 such that f�x�=0 for
all inputs x except for the input w for which it returns 1. The
problem is to find w.

Algorithm. We utilize 2n+1 qubits in the state

1

2n �„�0,0� + �1,1�…A
�n�0,0�o„p�0,0� + q�1,1�…B

�n� , �60�

where the subscripts A, o, and B denote the block A with n
qubits �with the initial polarization of 0�, the oracle qubit,
and the block B with n qubits �with the initial polarization of
p−q�, respectively. The block A is input to the oracle func-
tion �Eq. �11�� that has a solution w=w1 , . . . ,wn. In the out-
put of it, we have the state

1

2n �w,w�A�1,1�o„p�0,0� + q�1,1�…B
�n

+
1

2n �
k�w

��k,k�A�0,0�o„p�0,0� + q�1,1�…B
�n� . �61�
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The C-SWAP gate is used n times, with the oracle qubit as the
control qubit, to swap A and B for the states with the oracle
qubit in �1,1�. The state becomes

1

2n„p�0,0� + q�1,1�…A
�n�1,1�o�w,w�B

+
1

2n �
k�w

��k,k�A�0,0�o„p�0,0� + q�1,1�…B
�n� . �62�

An ensemble measurement is performed on each of n qubits
of the block B with the observable Z to get signals s1 , . . . ,sn.
si is the polarization of the ith qubit, �p−q��1−2−n�±2−n.
This measurement can be done simultaneously if we can use
different frequencies for n qubits originated from chemical
shifts and/or different gyromagnetic ratios in an experiment
�it requires at most n different NMR probes�. To get the bit
wi, we check si. If si
 �p−q��1−2−n�, wi is found to be 0;
otherwise it is found to be 1. Consequently, w=w1 , . . . ,wn is
found by using O�n� quantum gates subsequent to the oracle
if the variation of signals, ±2−n, is large enough to detect. In
NMR experiments, this leads to an exponential increase in
the number of experiments to find the sign of the variation
disturbed by random noise.

B. Algorithm for the oracle with multiple
solutions—How to find all of them

It is possible to extend Brüschweiler’s algorithm to work
with an oracle with multiple solutions. It is tacitly assumed
that the number r of solutions may be unknown in advance.

A database of present interest is similar to the one that we
have had in Sec. III. It is a set of N=2n records each of which
has an n-bit-length key. r keys are marked but they are un-
known in public. A table of keys is open to the public, except
for marking information. We call this database in three dif-
ferent ways according to its style of a query-and-answer be-
havior.

�a�� It is called an unsorted database when it returns yes
or no when one queries it as to whether a key is one of
marked keys.

�b�� It is called a sorted database when it answers a query
as to whether a key is equal to, larger than, or smaller than
the nearest one of marked keys.

�c�� It is called a partition-structured database when one
can query as to whether a part of a key is equal to that of
some of marked keys.

The problem of unsorted-database searching in the
present context is to find all the marked keys in a database
�a’�. The mathematical definition is as follows.

Definition 2: The problem of unsorted-database searching
for an oracle with multiple solutions is defined as follows.

Consider the function f : 	0,1
n� 	0,1
 such that f�x�=0
for all inputs x except for r different inputs w1 , . . . ,wr with
which f�w1�= ¯ = f�wr�=1. The problem is to find the all of
w1 , . . . ,wr.

Outline of the algorithm. To solve this problem, we add
the wire of an ancillary qubit a beneath the wires of n qubits
and an oracle qubit. We will use subscripts o and a to repre-
sent the state space of an oracle qubit and that of an ancillary

qubit, respectively. The oracle is realized as a quantum gate
that takes the input string x1 , . . . ,xn0o and outputs the string
x1 , . . . ,xnf�x�o �here, x=x1 , . . . ,xn and xi� 	0,1
�. Here is an
outline: In every step to survey the ith bit of solutions, we
prepare the input state such that the ith qubit, the oracle
qubit, and the ancillary qubit are in �0,0� and the rest in
maximally mixed states. A signal intensity measured after the
oracle function is proportional to the polarization �Zoracle� of
the oracle qubit in starting steps and in later steps the polar-
ization �Za� of the ancillary qubit, which is one of 1 ,1
−2−n+2 ,1−2�2−n+2 , . . . ,1−r�2−n+2. Using measured sig-
nals, all the solutions will be found. The details are as fol-
lows.

Algorithm. In the first step, the initial state is set to
2−n+1 �0,0���0,0�+ �1,1���n−1 �0,0�o �0,0�a. The oracle func-
tion is applied to this state. This operation inverts the oracle
qubit of the states that have a solution with 0 in the first bit.
�Zoracle� is measured, which is then equal to s1=1−c12−n+2.
We find that c1 solutions among r solutions have 0 in their
first bits. When the value of r is unknown in advance, the
oracle function is also applied to the initial state
2−n+1 �1,1���0,0�+ �1,1���n−1 �0,0�o �0,0�a to get the value of
�Zoracle�, s1�=1−c1�2

−n+2. r=c1+c1� is immediately found in
this way. We label the solutions that have 0 in the first bit by
w1 , . . . ,wc1

. The solutions with the first bit 1 are
wc1+1 , . . . ,wr.

After the first step, we continue to use the following sub-
routine. This subroutine is used at every node except for the
root node, bottom nodes, and nodes from which no solution
will be found in the tree illustrated in Fig. 4 �an example is
shown in Fig. 4�a��.

Subroutine. Suppose that we are trying to determine a
solution w j and we have already determined its first k bits,
wj,1 , . . . ,wj,k. Suppose we have found that m solutions
w j , . . . ,w j+m−1 have the same sequence wj,1 , . . . ,wj,k in their
first k bits, i.e., wj,1 , . . . ,wj,k = wj+1,1 , . . . ,wj+1,k = ¯

= wj+m−1,1 , . . . ,wj+m−1,k. Then we use the following method
to determine the �k+1�th bit in each of those solutions.

The initial state is set to 2−n+1��0,0�
+ �1,1���k �0,0���0,0�+ �1,1���n−k−1 �0,0�o �0,0�a. After the
oracle function is used, the state is

2−n+1��
x

�x,x��1,1�o�0,0�a + �
y�	x


�y,y��0,0�o�0,0�a� ,

�63�

where x are solutions with 0 in the �k+1�th bit among r
solutions and y are other strings having 0 in the �k+1�th bit.
Then we operate with the transposition

�wj,1, . . . ,wj,k1o0a, wj,1, . . . ,wj,k1o1a� �64�

on the qubits 1 , . . . ,k, the oracle qubit, and the ancillary qu-
bit. This can be composed of the Ck+1NOT gate and NOT gates.
The state becomes
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2−n+1��
x�

�x�,x���1,1�o�1,1�a + �
x�

�x�,x���1,1�o�0,0�a

+ �
y�	x


�y,y��0,0�o�0,0�a� , �65�

where x� are those with the sequence wj,1 , . . . ,wj,k in the first
k qubits among x and x� are those without the sequence
among x. We conduct a measurement on a with Z to get
�Za�=1−h2−n+2. h is the number of those represented as x�.
We find that wj,k+1= ¯ =wj+h−1,k+1=0 and wj+h,k+1= ¯

=wj+m−1,k+1=1. In this way, the �k+1�th bit is found in each
of solutions w j , . . . ,w j+m−1. By this subroutine, two children
are created from a node as illustrated in Fig. 4�b�.

This subroutine may be illustrated as a quantum circuit of
Fig. 3. In the figure, the dashed box surrounds control qubits
each of which may be zero control �open circle� or one con-
trol �solid circle� according to the value of wj,s �s=1, . . . ,k�
in Eq. �64�. As we have mentioned, this subroutine is used in
every node except for the root node, bottom nodes, and
nodes from which no solution is located, from upper nodes to
lower nodes. The whole of this scheme is done with O�nr�
queries.

Let goracle be a number of one-qubit or two-qubit quantum
gates composing an oracle quantum circuit. Then
O(max�goracle ,n�nr) quantum gates are involved in total. For
example of an oracle structure, consider the oracle function
internally decomposed into r CkNOT gates and O�nr� NOT

gates. Then O�n2r2� quantum gates are involved in total. One

cannot find a computational time and/or space complexity
correctly as long as the internal circuit of the oracle function
is unknown and/or ignored.

An example of the use of the algorithm is shown in Fig.
4�a�. In the example, the oracle has solutions w1=0100,w2
=0101,w3=1011,w4=1100. At every node k from the root
�k=0� in the tree, we use the above algorithm with that sub-
routine to find how many solutions have 0 or 1 in the bit next
to the already-determined sequence wj,1 , . . . ,wj,k.

The above problem is to find all the solutions. If it is
enough to find a single solution among w1 , . . . ,wr, a single
path from the root to a final node in the tree is taken. There-
fore, it is terminated in O�n� queries to find a single solution.
The reason why we impose the task of finding all the solu-
tions on that problem is because it is a natural situation
where one needs to find all the solutions.

There is a benefit of this algorithm in comparison with the
Xiao-Long algorithm that can find solutions with a single
query. The Xiao-Long algorithm uses the split of frequency
peaks caused by J or DD couplings in finding solutions—the
inversion of peaks owing to an oracle function are used for
the purpose. Therefore, it is possible that one cannot find
some of solutions if one does not know some labels of peaks
and/or if some peaks overlap each other. In contrast, in the
above algorithm, one can find all the solutions by using stan-
dard average measurements of the polarization of an oracle
qubit. It is more robust against the overlap of frequency
peaks, which is a common phenomenon for a large number
of qubits. In addition, it has another benefit: the simulation of
polarization measurements can be performed efficiently in
the process of the MPS simulation because the reduced den-
sity operator of a single qubit can be achieved quickly as was
described in Sec. IV D 3.

VI. SIMULATION OF BRÜSCHWEILER’S DATABASE
SEARCH AND COMPLEXITIES

This section is to describe explicit methods to conduct
simulations for the three algorithms that we have seen. It is
tacitly assumed that the quantum circuit of an oracle function
f is composed of NOT gates and r CnNOT gates �r is the num-
ber of solutions� unless another construction is stated by sen-
tences. Computational complexities are dependent on a cir-
cuit construction of an oracle f : �x ,0�→ (x , f�x�); a
consumed resource can be larger when a more complicated

FIG. 3. The subroutine illustrated as a quantum circuit. The
dashed box surrounds control qubits each of which may be zero
control �open circle� or one control �solid circle� according to the
value of wj,s �s=1, . . . ,k� in Eq. �64�. �0���0,0� and �1���1,1�.

FIG. 4. A tree in which we track the number of solutions from the root in order to determine all solutions. A number in a solid box is the
number of solutions. See the text for details. �a� An example where solutions are 0100, 0101, 1011, and 1100. �b� Illustration of how node’s
children are generated by a call of the subroutine.
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construction is chosen. If it is ignored, one cannot quantify
the computational complexity of a simulation except for the
query complexity that has already been found O�nr�. When
we speak of a complexity of an MPS simulation, mmax
=mmax�t� defined in Eq. �44� is the main source with which a
complexity is estimated. t is a time step and it points a hori-
zontal position in a quantum circuit. We also use Eqs.
�45�–�49� for deriving complexities. �Note: Although the
symbol n was used to denote the number of qubits in those
equations, n is the bit length of a key in the present context.�
Hereafter, the largest value of mmax in the internal oracle
circuit is expressed as mmax,max

oracle and that in the circuits out-
side the oracle is expressed as mmax,max

circuit �hence, mmax,max
=max�mmax,max

oracle ,mmax,max
circuit � holds�.

A. Simulation of the Brüschweiler’s original algorithm

The Brüschweiler’s original algorithm that we have seen
in Sec. III can be simulated in an MPS simulation. Let us set
p=0.5, i.e., �	�=0.5 �0,0�+0.5 �1,1�, to simplify the simula-
tion. As shown by Zwolak and Vidal �17�, a time evolution
of a mixed state may also be simulated by Vidal’s MPS
method with some technique in the choice of a basis. Nev-
ertheless, we use a simpler technique to perform a
simulation because Brüschweiler’s algorithm uses operations
only for exchanging populations of bit strings. We use
the notations: �0�= �0,0�= �0��0� and �1�= �1,1�= �1��1�. In
Brüschweiler’s algorithm, �0,1� and �1,0� are not used.
Therefore, we consider the subspace spanned by basis
vectors �0¯0� , . . . , �1¯1�. In this notation, the maximally
mixed state of a qubit is written as �0�+�1�

2 , and the maximally

mixed state of � qubits is 1
2�

� �0�+�1�
2

���. A �-qubit state of an

ensemble that is represented as a diagonal density matrix can
also be written in the above notation

���t�� = �
i1,. . .,i�=0¯0

1¯1

ci1,. . .,i�
�t��i1, . . . ,i�� , �66�

where t is time step and ci1,. . .,i�
is the population of

�i1 , . . . , i��. Unless a time evolution of this vector involves a
vector out of the subspace, such a time evolution can be
simulated with the MPS method because the subspace

spanned by 	�k�
k=0
2�−1 is equivalent to the space spanned by

	�k�
k=0
2�−1. One can use the same computer-program library of

MPS as that handling pure states. This is clear from the
following explanation: A time evolution of ���t�� caused by a
permutation operation Up with respect to computational basis
vectors �i.e., a conditional logical single/multiple-bit-flip op-
eration usually consisting of the NOT gate, the CNOT gate, the
CCNOT gate, etc.� can be simulated by the time evolution of

����t�� = �
i1,. . .,i�=0¯0

1¯1

ci1,. . .,i�
�t��i1, . . . ,i�� �67�

using Up. There is no difficulty in simulating exchanges of
values among 	ci1,. . .,i�

�t�
; one has only to regard superkets
as ket vectors and simulate a time evolution. For example,
p �0�+ �1− p� �1� �0� p�1� is handled as if they were

p �0�+1− p �1� internally in a computer simulation pro-
gram. Therefore, the MPS decomposition

���� = �
i1,. . .,i�=0¯0

1¯1 � �
v1,. . .,v�−1=1¯1

m1,. . .,m�−1

Q1�i1,v1�V1�v1�

� Q2�i2,v1,v2� ¯ Q�−1�i�−1,v�−2,v�−1�

� V�−1�v�−1�Q��i�,v�−1���i1, . . . ,i�� �68�

can be used for the simulation of the time evolution of ���.
Using the tensors Q1 , . . . ,Qn ,V1 , . . . ,Vn−1 of Eq. �68�, ���
can be expressed as

��� = �
i1,. . .,i�=0¯0

1¯1 � �
v1,. . .,v�−1=1,. . .,1

m1,. . .,m�−1

Q1�i1,v1�V1�v1�

� Q2�i2,v1,v2� ¯ Q�−1�i�−1,v�−2,v�−1�

� V�−1�v�−1�Q��i�,v�−1��2

�i1, . . . ,i�� . �69�

In this way, a time evolution of ��� may be calculated from
the MPS simulation of a time evolution of ���� without
changing computational procedures. For the search algorithm
of present interest, �=��n� when � is the total number of
qubits.

The quantum circuit that should be simulated is one illus-
trated in Fig. 1 in Sec. III. In the circuit, the ith qubit is set to
�0� in the input state at the ith step in the Brüschweiler
scheme. Then an oracle function comprising the NOT and
CnNOT gates is used. There is an assumption that the oracle
has a single solution in his original algorithm. Then, measur-
ing the polarization �Zoracle� of the oracle qubit, we find that
the ith bit wi of the solution w is 0 when �Zoracle��1 is
apparent; otherwise it is 1. This step is easy because the
density operator of the oracle qubit is calculated in
O�mmax,max

circuit 2� basic floating-point operations in the simula-
tion.

The reduced density operator �s of a single qubit s is
obtained using the same routine as we have seen in Sec.
IV D 3. First, we make the reduced density operator �̂s of the
sth qubit from the MPS decomposition of ����t��. Second,
we delete off-diagonal elements of �̂s. Third, we normalize it
to avoid a propagation of a numerical error. Then we have �s.
This is, of course, because there is no term that comprises
�0,1� and/or �1,0� in the process of Brüschweiler’s search.

Let us look at the amount of computational resources
required in the simulation step by step. For a moment, we
omit coefficients and write superkets only. From i=1 to n,
the iteration of the following routine is used: First,
the initial state is ��0�1+ �1�1�¯ ��0�i−1+ �1�i−1� �0�i��0�i+1

+ �1�i+1�¯ ��0�n+ �1�n� �0�o �o represents the oracle qubit�
stored as an MPS with mmax=1. This goes into the
oracle function. In the oracle function, n−1 ancillary
bits are inserted: ��0�1+ �1�1� �0�a¯ �0�a��0�i−1

+ �1�i−1� �0�a �0�i �0�a��0�i+1+ �1�i+1� �0�a¯ �0�a��0�n+ �1�n� �0�o

by using SWAP gates with mmax=1 unchanged �or indeed, it is
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possible to prepare this state as the initial state�. We assume
that an oracle with a single solution is realized by NOT gates
and a single CnNOT gate. Among them, the two NOT gates
acting on the ith qubit and the CnNOT gate do effect on the
state. A NOT gate does not change the value of mmax. Let us
use the decomposition of the CnNOT gate illustrated in Fig. 2.
Then, in the top of the decomposed circuit of the CnNOT gate,
a CNOT gate acting on the first qubit and the first ancillary
qubit will change the value of mmax to 2. In considering the
other parts in the CnNOT gate �see Fig. 2�c��, let us take the
first CCNOT gate pertaining to the qubits as−1csas, namely, the
�s−1�th ancillary qubit, the sth control qubit, and the sth
ancillary qubit. Before the CCNOT, mas−1

=2 and mcs
=mas

=1.
In the CCNOT, realized as the combination of two-qubit op-
erations, as−1 is used as a control bit. Thus, for every value of
vas−1

, some �4,4� unitary transformation acts on csas in the
simulation. The values of mas−1

, mcs
, and mas

become 2 after
the CCNOT gate. In the inside of the CCNOT gate, it is at most
4 �this is calculated from Eq. �49��. The second CCNOT gate
acting on as−1csas is to restore the ancillary bits independent.
Before the CCNOT gate, the value of mas

is already restored to
1. In the inside of the CCNOT gate, the value of mas−1

is not
more than 4 and the value of mcs

is not more than 2. This is
again calculated according to Eq. �49�. After the CCNOT gate,
the value of mas−1

is restored to 1, but the value of mcs
can be

remained 2. In consequence, mmax,max
oracle is not more than 4, and

the CnNOT gate changes the value of mmax from 1 to 2, which
is the value of mmax,max

circuit . Thus the simulation time is
O(n2poly�nprec�) and the memory space consumed is
O�nnprec�.

For convenience, the largest value of mmax�t� for t in the
external �internal� circuit of CCNOT gates is represented as
mmax,max

ext �mmax,max
int � hereafter. Here, the internal circuit of

CCNOT gates is one illustrated in Fig. 2�b�. Then the above
result may be stated in other words: the value of mmax,max

ext is
2 and that of mmax,max

int is not more than 4.
When an oracle is constructed in a different way, the

value of mmax,max
circuit is unchanged while the value of mmax,max

oracle

may be altered. Let goracle be the number of one-qubit or
two-qubit quantum gates composing the quantum circuit of
an oracle. Let noracle�n be the number of qubits used in the
oracle quantum circuit �hence, O�noracle� SWAP gates can
make a pair of nonconsecutive qubits consecutive�. Then the
simulation time is O(mmax,max

circuit 3goraclenoraclenpoly�nprec�) and
the memory space consumed is O�mmax,max

circuit 2noraclenprec�; these
are dependent on mmax,max

oracle and noracle. In simulations that we
performed, such a different construction was not examined.

It should be noted that a threshold should be set properly
in truncation of eigenvalues. Because the size of every reg-
ister is limited, it is inevitable that rounding operations are
accumulated and we cannot judge whether an eigenvalue is
actually zero or not. To truncate out eigenvalues of zero, the
threshold should be more than the possible largest rounding
error. In the present simulation, we can truncate out eigen-
values less than 2−n. �Considering the errors of internal
floating-point operations, a practical threshold is c�2−n with
c�0.01.� This needs the size of each floating-point register
more than n.

B. Simulation of the single-query algorithm

Similarly, the algorithm described in Sec. V A is also
simulated. The controlled-SWAP �CSWAP� gate used in this
algorithm is decomposed into the CNOT and CCNOT gates as
shown in Fig. 5. Although the number of quantum gates used
in the algorithm is O�n�, O�n2� quantum gates are used in the
MPS simulation. This is because the MPS simulation is con-
ducted after decomposing the whole quantum circuit into
two-qubit quantum gates acting on consecutive qubits. In
addition to the oracle circuit assumed to be composed of the
CNOT and the CCNOT gates here, O�n� SWAP gates acting on
consecutive qubits are used to decompose every CSWAP gate
on dispersed qubits.

In this simulation, first the CnNOT gate in the oracle
changes the value of mmax from 1 to 2 �it may be larger in the
inside of each CCNOT gate�, which is equal to the value of
mmax in its output. Second, CSWAP gates change it to at most
3 �it may be also larger in the inside of each CCNOT gate�.
According to Eq. �49�, the value of mmax in the internal cir-
cuit of a CCNOT gate is not more than 3�2�2=12. Thus
mmax,max

ext �4 and mmax,max
int �13 for this simulation. The time

consumed in the simulation is O(n2poly�nprec�) and the
memory space consumed is O�nnprec�. In general for different
constructions of an oracle, the running time is
O(mmax,max

oracle 3max�goracle ,n�noraclepoly�nprec�) and the con-
sumed memory space is O�mmax,max

oracle 2noraclenprec�.

FIG. 6. A simulation result for the example of the solution
00110010. Every bar shows the value of �Zoracle� against the label of
a particular qubit that was set to �0� in the input. The original
Brüschweiler’s algorithm was used.

FIG. 5. �a� The CSWAP gate to swap the second and the third
qubits under the control of the first qubit. �b� The CSWAP gate for
dispersed qubits. The solid circle is the control qubit; when it is 1,
SWAP of the other two qubits occurs.
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C. Simulation of the algorithm for the oracle
with multiple solutions

In the simulation of the algorithm for finding multiple
solutions, we use the array ls� � of already-found strings and
the array ns� � of corresponding numbers of solutions, i.e.,
ns�i� is the number of solutions that have ls�i� in their heads.
ls� � looks like ls�0�=010, ls�1�=011, . . . and ns� � looks like
ns�0�=3,ns�1�=2, . . .. A pair �ls�i� ,ns�i�� is located in the ith
location of a location table. The operations of deletion and
insertion of a pair in the ith location are equivalent to the
operations in the ith elements of both the arrays. We use the
algorithm described in Sec. V B in the MPS simulation to
update ls� � and ns� � step by step. In a call of the subroutine
in the algorithm, a pair �ls�i� ,ns�i�� makes two pairs �l1 ,n1�
and �l2 ,n2� as its children where l1= ls�i�0 and l2= ls�i�1; n1

�n2� is the number of solutions that have l1 �l2� in their heads
�hence, n1+n2=ns�i��. The parent �ls�i� ,ns�i�� is deleted from
the location of i and one or both of children with a non-zero
value in n1 �n2� are inserted in this location. This updates the
values of ls�i� , ls�i+1� , . . . and ns�i� ,ns�i+1� , . . ..

Each step involves a single call of an oracle �here, it is
assumed to comprise r CnNOT gates and some NOT gates� and
a single Ck+1NOT gate. r different computational basis vectors
should be separated out from the maximally mixed state in
the MPS decomposition of the output state, i.e., we have r
+1 different combinations of nonzero values of v1 ,v2 , . . . in
the MPS decomposition. Therefore, the value of mmax,max

ext in
the simulation is at most r+1. In the internal circuit of the
CCNOT gate, the value of mmax,max

oracle �equal to mmax,max
int � is not

more than 4r+4. This is easily calculated by using Eq. �49�,
although this is possibly an overestimation. This leads to the
results: The simulation time is O(r5n2poly�nprec�) because
O�mmax,max

3 �=O�r3� and O�r2n2� two-qubit quantum gates are
used in total in the tree. In addition, the consumed memory
space is O�r2nnprec�.

In general for an unspecified internal construction of an
oracle, the running time is

O„�max�mmax,max
oracle ,r��3max�goraclenoracle,n�

� nr � poly�nprec�… �70�

and the memory space consumed is

O„�max�mmax,max
oracle ,r��2noraclenprec… , �71�

where the function max�a ,b� returns the larger one of inte-
gers a and b, goracle is the number of one-qubit or two-qubit
quantum gates composing the quantum circuit of an oracle,
and noracle�n is the number of qubits used in the oracle
quantum circuit �hence, O�noracle� SWAP gates can make a
pair of nonconsecutive qubits consecutive�. The above run-
ning time is easily derived from Eq. �48� by considering
compositions of the oracle and postoracle quantum circuits
and the number of queries O�nr�. The memory space is also
easily derived from Eq. �46�. Note that n is the bit length of
a key in the current context while the symbol n was used to
denote the number of qubits in Eqs. �46� and �48�.

FIG. 7. Another simulation result for the example of the solution
00110010. Data points show the values of mmax in the outside of
CCNOT gates against steps in the simulation. We took 16 steps in the
decomposition of the CnNOT gate in a single call of the oracle to find
wi �thus 128 steps in total�. The original Brüschweiler’s algorithm
was used.

FIG. 8. Plots of the values of mmax,max
int against n=log2 N. For

each value of n, ten trials were performed, each of which involved
a randomly chosen solution of an oracle. Thus multiple data points
may appear for a single value of n.

FIG. 9. The plots of the simulation time against the number N of
keys in a database. The oracle used here is one with a single solu-
tion chosen randomly. The original Brüschweiler’s algorithm was
used. The solid curve is a least-squares fitting �b1=0.00660 and
b2=0.0746� to the data points of average values. The error bars are
drawn from the shortest time to the longest time in five different
trials.
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VII. SIMULATION RESULTS

A simulation library for a general MPS simulation has
been made as a class of C++ language. With this library, a
C++ class of the oracle function has been written, in which
solutions are chosen randomly at the moment that a compu-
tational object of the oracle is constructed. This class is sepa-
rated from the classes for the simulation of other quantum
circuits. The computer used for the simulation is the Alpha
ES45 Server �EV68 dual CPUs with 32 GB main memory,
produced by Compaq Computer Corporation� with a custom-
ized LinuxTM operating system. The compiler was GCC
4.0.0 with binutils 2.1.5.90 �produced by Free Software
Foundation, Inc.�. In addition, a simulation time in figures is
a real time including a CPU processing time, a memory ac-
cess time, and I /O times. It is assumed that an oracle is
simply constructed by NOT gates and r CnNOT gates as we
stated in the previous section.

A. Simulation results for the Brüschweiler’s original algorithm

The simulation described in Sec. VI A was conducted to
simulate the Brüschweiler’s original algorithm. For every
particular value of n, the simulation found the single solution
of the function f �randomly chosen� from the values of
�Zoracle� obtained in individual steps in the iteration. For an
example, the values of �Zoracle� gotten in the simulation to
find the eight-bit solution 00110010 are shown in Fig. 6. As
we have seen in Sec. VI A, the value of mmax,max

ext is at most 2
irrespectively of n. The time evolution of mmax in the out side
of CCNOT gates in the same simulation of the example is
shown in Fig. 7. In addition, mmax,max

int is at most 4 according
to the theory. The simulation results are consistent with it
and the value seems 3 for n�4 as shown in Fig. 8. Thus the
value of 4 is probably an overestimate as long as the value of
n is in a range for practical use.

The simulation time is expected to be on the curve
b1log2

2 N+b2log2 N �here, N=2n and coefficients b1 ,b2�R�
because it is O(n2poly�nprec�) and nprec is a constant when n
is small �n�30�. This is found to be correct and well de-
picted in Fig. 9.

B. Simulation results for the single-query algorithm

An extension of Brüschweiler’s search, the single-query
algorithm described in Sec. V A, was also simulated. The
value of p in B �introduced in that section� was initially set to
1 in a simulation. First, let us look at the results of a simple
example in which we find the single solution 01100101. The
polarizations of qubits in B in the output were obtained as
illustrated in Fig. 10. The time evolution of mmax in the out-
side of CCNOT gates is shown in Fig. 11. As we have seen in
Sec. VI, the value of mmax,max

ext is at most 3 irrespectively of n.
This is well depicted. Second, we show some data plotted
against n. The value of mmax,max

int is found to be 3 as long as n
is in a practical range from simulation results as illustrated in
Fig. 12. This is smaller than the calculated upper bound of 12
that we have seen in Sec. VI B and, hence, these are consis-
tent.

For the simulation of the single-query algorithm, we also
expect the data points of the consumed time to be on the
curve c1log2

2 N+c2log2 N �coefficients c1 ,c2�R� owing to
the decomposition of CSWAP gates as we have seen in Sec.
VI B. This is found to be approximately valid as shown in

FIG. 10. A simulation result for the eight-bit solution 01100101
in the single-query algorithm. �Zi� for i=1, . . . ,8 in the block B are
shown.

FIG. 11. A simulation result for the eight-bit solution 01100101
in the single-query algorithm. The time evolution of mmax in the
outside of CCNOT gates is shown against time steps. The steps 0 to
15 are for the simulation of the CnNOT gate and the rest steps are for
the simulation of CSWAP gates.

FIG. 12. Plots of the values of mmax,max
int against n=log2 N. For

each value of n, ten trials were performed, each of which involved
a randomly chosen solution of an oracle. Thus multiple data points
may appear for a single value of n. The single-query algorithm was
used.
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Fig. 13. In the figure, there is an abrupt increase in the simu-
lation time as pointed by the arrow. This is originated from
the limitation in the range of floating-point registers to which
digits are correctly computed in trigonometric operations for
the diagonalization of a density matrix; this is a trouble of a
program library irrelevant to computational complexities.
Hence, we ignored that data point in fitting.

C. Simulation results for the algorithm
to find multiple solutions

Simulations of the algorithm to find all solutions of an
oracle function with multiple solutions were also performed.
It takes two algorithmic steps to find the value of the number
r of solutions as we have seen in Sec. V B. The simulation
time shown in this section is a consumed time to find all
solutions after the value of r is found.

The running time of simulations is plotted against N=2n

with the values of r fixed, in Fig. 14, and it is plotted against
r with the values of n fixed, in Fig. 15. These figures show
that an average running time is in accord with the theory in
which the running time has been found to be
O(r5n2poly�nprec�). Because floating-point basic operations
were terminated in particular clock times in the used CPU,
the factor of poly�nprec� is not clear. In contrast, the factors of
r2 and n2 are well depicted in the figures. These are due to
the number of two-qubit quantum gates, O�r2n2�. Although it
is certain that mmax,max

ext �r+1 �see the next paragraph�, the
factor r3 seems to be hidden. This is because only a few of
the values of m1 , . . . ,mn−1 reaches the value of mmax,max in a
single run of a simulation, and partly because matrix calcu-
lations, such as a diagonalization, are implemented in a more
effective manner than that for other operations; the number
of conditional jump operations for matrix calculations is
relatively small in an executable binary program. Because
the running time was smaller than expected from the factors,
one can state that the fittings to the data points of the average
running time is in accord with the theoretical asymptotic
upper bound on the running time.

The value of mmax,max
ext was demonstrated to be less than or

equal to r+1 in simulations, which agrees with the prediction
that we have seen in Sec. VI C. For an example, the values of
mmax,max

ext in individual simulations are plotted against r par-
ticularly when n=7 in Fig. 16. This is true for other values of
n. In addition, as mentioned in Sec. VI C, the upper bound to
the value of mmax,max

int is 4r+4. This is probably an overesti-
mate according to a simulation result. As shown in Fig. 17, it
seems not more than r+2 when n=7 although this is not
certain for large n and/or large r. The achieved data in the
figure are still justified in the sense that they are consistent
with the bound.

VIII. DISCUSSION

We have obtained simulation results in accord with the
theory of the MPS simulation method: the three
algorithms—the original Brüschweiler’s search algorithm,
the single-query algorithm, and the algorithm for an oracle
with multiple solutions—were simulated in a polynomial

FIG. 13. The plots of the simulation time against the number N
of keys in a database. The oracle used here is one with a single
solution chosen randomly. The algorithm used here was the single-
query algorithm that we have seen in Sec. V A. The solid curve is a
least-squares fitting �c1=0.0128 and c2=−0.0211� to the data points
�average values� except for the one pointed by the arrow. The error
bars are drawn from the shortest time to the longest time in five
different trials.

FIG. 14. The time spent in finding all the solutions in each
simulation is plotted against the number N of keys in a database.
The number r of solutions was fixed to 1, 2, or 3. The curves are
least-squares fittings with the function a log2

2 N+b log2 N by finding
coefficients a and b. The error bars are drawn from the shortest time
to the longest time in five different trials.

FIG. 15. Plots of the time spent in simulations to find all solu-
tions against the number r of solutions. The key length n was fixed
to 5, 7, or 9. The curves are least-squares fittings with the function
ar2+br by finding coefficients a and b. The error bars are drawn
from the shortest time to the longest time in five different trials.
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time and a polynomial memory space for some explicit
oracle structure. A simulation with a polynomial cost is gen-
erally possible as long as a simple oracle that keeps
mmax,max

oracle =poly�n ,r� and noracle=poly�n� is used. Moreover,
the MPS simulation of Brüschweiler’s search does not suffer
from the error in a detection as long as the precision 2−n is
kept, unlike the fact that an experiment of it suffers from an
exponential increase in the number of accumulations to trun-
cate noise out. This is a typical example that an emulation of
some machine is faster and more accurate for a particular
problem. There is no advantage for an NMR computer for
those algorithms when simple oracles are involved.

Nevertheless, if it were a true unsorted database that we
use together with those algorithms, the fast simulations
might be regarded as the proof for the proposition: “An un-
sorted oracle-based search is a P problem under the condi-
tion that a database answers a query by using an MPS simu-
lation of an oracle quantum circuit for which the database
chooses a simple circuit construction such that mmax,max

oracle

=poly�n ,r� and noracle=poly�n�.” This is incorrect because of
the abuse of the word “unsorted” as we will see below.

What is the meaning of “unsorted database”? An unsorted
database is a one-dimensional array in which O�N�=O�2n�
records are stored, to which a table consisting of record keys
is attached; there is no arrangement of the ordering in record

keys in the table that is open to the public. An oracle attached
to the database can check whether a key is a marked one �the
mark is not written in the table�, but it does not have another
functionality. In contrast, a vector in a Liouville space in the
form of �v�=�kck �k ,k� should be considered a key table for a
database with a special arrangement of key positions in a
natural sense. Indeed, it is a custom in quantum computation
theories to regard it as a key table of an unsorted database,
but we believe that it is nothing but a gadget used for an
exaggeration of the power of a quantum computer and that of
a bulk-ensemble computer. Although one can dare to state
that there is no order among keys �k ,k�, all the keys are
placed in the head of a table simultaneously when a super-
position is utilized; one can send an oracle the whole key
table in a single query. This is in contrast to a classical query
in which a single key placed in some location of a table is
sent. In this context, an MPS simulation to solve the search
problem does not involve a classical query because it uses a
matrix product state in which all the keys may be placed; this
is sent in a single query. The difference in these three types
of a query is illustrated in Fig. 18. It is apparent that the
original meaning of unsorted is abused in quantum compu-
tation theories. Taking it into account, we will consider the
speed-up effect in simulations that looks as if we had a
sorted database or a database with a structure.

FIG. 16. The values of mmax,max
ext in individual simulations for

finding all the solutions are displayed as crosses. r is the number of
solutions and data points for each value of r are those taken in ten
runs with different sets of solutions randomly chosen.

FIG. 17. The values of mmax,max
int in individual simulations for

finding all the solutions are displayed as crosses. r is the number of
solutions and data points for each value of r are those taken in ten
runs with different sets of solutions randomly chosen.

FIG. 18. A comparison of unsorted database searches: classical one, one in a quantum or bulk-ensemble model, one in a MPS simulation.
N=2n is a number of keys.
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Let us consider the speed-up effect of a conventional
“sorted database.” Sorting is to order data-record keys so that
it is convenient to find a key that satisfies some condition. In
an oracle-based search, sorting is to have an oracle function
that can answer whether a key is equal to, smaller than, or
larger than the nearest one of solutions as we have seen in
�b�� of Sec. V B. This enables a single query to eliminate
approximately a half of candidate keys, and thus an exponen-
tial speed-up is possible. The speed-up achieved by sorting,
which is an exponential speed-up, had been understood as
the factorization of a search process according to Patel �23�.
Nevertheless, his definition is not common; a factorization of
an oracle is relevant to a “structured database” as we employ
the description �c�� of Sec. V B.

If we can use a factorized oracle f�x�=�k=1
r �i=1

n f i
k�xi�

where x=x1 , . . . ,xn is a string of letters xi and f i
k are sepa-

rately usable functions, a search with the oracle is regarded
as a search by using a speed-up owing to structuring. A fac-
torized oracle is a sum of products of functions f1

k , . . . , fn
k,

each of which maps 	0,1
 to 	0,1
 and is used to find each
bit of the kth solution. In this case, the number of queries is
O�nr�=O�r log2 N� to find all solutions. Although we do not
have a factorized oracle in the problem of searching in a
so-called unsorted database, searches that we have seen in
the descriptions of Brüschweiler’s algorithm and its exten-
sions are equivalent to what Patel called searches using a
factorized oracle. Thus it has been shown that a simple
oracle whose structure is feasible to keep a simulation cost
polynomial �this structure may be hidden to a user�, espe-
cially one implemented as a set of r CnNOT gates and some
NOT gates, can be factorized in a polynomial time with an
extended Brüschweiler’s algorithm on a conventional com-
puter with an MPS simulation as well as on a bulk-ensemble
computer. This is, of course, due to the fact that an input
query for an oracle function is a superposition �or its MPS
decomposition� of all record keys.

Usually, it is unfair to compare a search in a raw key table
and a search in a compressed key table. It is, however, fair to
use a compressed key table when one has to compare a clas-
sical search with a quantum search or a bulk-ensemble par-
allel search because the use of the powerful machines, quan-
tum computers or bulk-ensemble parallel computers, packs
O�2�� strings in a �-bit length sequence of sites in principle.
By using the MPS method, we can use the similar effect:
O�2�� strings are packed in the tensors Q1 ,V1 , . . . ,V�−1 ,Q�.
In addition, there is another point to suggest the fairness of
this comparison: A state space of n qubits is spanned by 2n

basis vectors, and the space of the states
�i1,. . .,in

��v1,. . .,vn−1
Q1 ,V1 , . . . ,Vn−1 ,Qn�2 � i1 , . . . , in� is also

spanned by 2n basis vectors �01¯0n� , . . . , �11¯1n�. The
MPS simulation of Brüschweiler’s search scans in the space
with the same dimension as a real n-qubit state space.

A mechanism has been revealed; there is a context behind
the problem of database searching using quantum machines
or bulk-ensemble machines: one can use a superposition for
an input and unitary transformations for an oracle function.
The search algorithms for quantum computers and those for
NMR parallel computers search in a sort of parallel key
tables, namely superpositions of vectors. When it is allowed

to use precise ensemble measurements, a superposition may
be regarded as a key table for a highly structured database if
the internal cost of an oracle grows polynomially in n and r
because the factorization of an oracle function can be done in
a polynomial time. Of course a search in such a database is
fast, in terms of query complexity, also on conventional com-
puters if it is allowed to use a compressed key table produced
by the MPS decomposition, and classical simulations are ac-
tually practical owing to the lack of noise. It is easy to let
nprec scale linearly in n to perform an error-free simulation.

It has been found that the problems of database searching
for the extensions and the original of Brüschweiler’s algo-
rithm can be solved with a poly�n ,r� cost on conventional
computers as long as mmax,max

oracle =poly�n ,r� and noracle

=poly�n�. Nevertheless, it is still a controversial issue if the
problem for Grover’s search is equivalent to those problems.
If an ensemble measurement is not allowed to use, it is the
optimal search; if one does not mention the style of measure-
ments, the problem is occasionally efficiently solved in a
classical manner. It is obvious that the difficulty of the prob-
lem is dependent on the context.

In addition, it is curious to find a practical application of
those simulations, particularly in NP problems. A quantum
oracle may be constructed �5� to tell whether an input num-
ber is a factor of some number to solve the problem of prime
factorization. SAT problems are also of public interest �see,
e.g., Ref. �24� for recent developments�, which may be
solved by a database search using oracles. Although it was
shown by Viamontes et al. �12� that Grover’s search is often
inferior to classical specialized search algorithms for SAT
problems with respect to query complexity, Brüschweiler’s
search is different. An extension of Brüschweiler’s search is
terminated in O�nr� query complexity, which is exponen-
tially smaller than that of Grover’s search. It was shown by
Hogg �25� that a SAT problem under a certain strong con-
straint can be solved in a linear time on a classical computer
and in a single step on a quantum computer in the limit of
large n. It is usual that constraints and conditions for an
oracle structure affect computational complexities very
much. Thus a motivation will hopefully be raised to find
some condition for the construction of an oracle under which
mmax,max

oracle =poly�n ,r� and noracle=poly�n� is satisfied in an
MPS simulation.

IX. CONCLUSION

Two extensions of the Brüschweiler’s database search
have been shown: a single-query algorithm and an algorithm
for an oracle with multiple solutions; all of r solutions can be
found in O�nr� queries, where n is the key length asymptoti-
cally proportional to the number of qubits. By using the
Vidal’s MPS decomposition method, numerical simulations
of these algorithms as well as that of the original Brüsch-
weiler’s algorithm have been demonstrated. The theory of
the simulation has shown that those simulations finish in a
polynomial time within a polynomial memory space with
respect to n and r as long as the internal circuit of an oracle
does not prevent us from truncating many eigenvalues out
and poly�n� qubits are used in the oracle quantum circuit �see
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Eqs. �70� and �71��. The floating-point register length to
simulate a precise ensemble measurement scales linearly in
n. These facts were consistent with the results from simula-
tions. Because of those fast classical simulations, one should
be sceptical about the power of quantum computation
andthat of bulk-ensemble computation for the problem of
database searching of an unsorted database. Our discussion
has led to the suggestion that what they called an unsorted
database should be regarded as a highly structured database
when a precise ensemble average measurement or its simu-

lation is available and the internal cost of an oracle or that of
a simulated oracle grows polynomially in n and r.
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