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We present an efficient strategy to translate a normal quantum algorithm into a sequence of operations on the
quantum-cellular-automata-like architecture (QCALA) originally proposed by Lloyd. The QCALA assumes
arrays of weakly coupled quantum systems where an interaction exists only between neighboring qubits and
can only perform the same quantum operation onto all the qubits. The sequence obtained by the strategy
proposed by Lloyd needs at most 12n operations, where 7 is the number of qubits for the original circuit. The
sequence obtained by our strategy needs at most 6n operations. We also clarified the relations between the
upper bound of the number of translated operations and the period of the QCALA and between the upper
bound of the number of qubits and the period of the QCALA.

DOI: 10.1103/PhysRevA.72.012301
I. INTRODUCTION

It is widely believed that quantum computers, once they
are actually built, will be much more powerful than today’s
computers. However, the normal quantum circuit model of
quantum computation, where we can perform any unitary
operation onto any pair of qubits, seems to be very difficult
to physically implement by current technologies.

Another quantum computation model, which may be
easier to implement, has been proposed by Lloyd [1]. The
model assumes arrays of weakly coupled quantum systems,
where an interaction exists only between neighboring qubits.
Although this model seems realizable, we cannot construct a
normal quantum circuit directly, i.e., we need to translate a
normal quantum circuit description into a specific description
on a sparse network of qubits. This paper describes the logic
operations that can be performed using the model and pre-
sents an efficient strategy to translate a normal quantum al-
gorithm into a sequence of those operations for the model.
Lloyd’s model also contains a third level for error correction,
which is removed from our model for simplicity, considering
the recent progress in quantum error correction.

After Lloyd’s model, similar models [2-6] have been ex-
tensively studied by Benjamin et al., who have devoted par-
ticular effort to reducing the minimum period of the structure
from three (Lloyd’s ABCABC: - model) to two. They have
shown that the symmetric ABAB- - - model is universal if ev-
ery logical qubit is encoded into four physical qubits [3].
Although the physical system is simplified, a logical qubit
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occupies the two periods of the structure. They have also
shown the asymmetric ABAB--- model is universal if the
interactions between A and B (H®) and those of B and A
(H®4) can be collectively but independently switched on and
off. The ABAB: -+ model with asymmetric interactions H*2
# HP4 could be the minimum periodic structure with unidi-
rectionality and could be realized physically as an ABAB- -
structure [4], where the distance between A and B and that
between B and A is different. However, H*® and H?4 cannot
be decoupled independently by flipping A or B with 7 pulses
or by any other kind of time reversal techniques. Therefore,
the independent switching ability of the interactions must be
facilitated, which is far beyond what Lloyd’s model requires.
Individual or collective Zeeman tuning [5,6] of qubits is also
external to Lloyd’s model. Those interesting models [3-6]
should be regarded as new models rather than the minimum
case of Lloyd’s model.

Lloyd’s model itself has not been developed since the
original proposal [1] and his extended preprint [7]. The
model should be further elaborated in various directions,
such as the hardware (molecules), the pulse shapes and se-
quences [8], the quantum circuit implementation, the input-
output implementation, and the initialization. This paper dis-
cusses the implementation of a quantum circuit with
improved efficiency compared with Lloyd’s original pro-
posal.

Our main purpose here is to introduce a transform algo-
rithm that shortens the sequence of operations compared to
the sequence obtainable by Lloyd’s original transform algo-
rithm. The idea is as follows. In Lloyd’s model, quantum
operations only between adjacent qubits are allowed; there-
fore, operations between remote qubits must be performed
after moving data on these remote qubits to adjacent posi-
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tions by swap operations. In addition, the sequence of opera-
tions obtained by Lloyd’s transform algorithm moves data
back to the initial position after that operation each time.
This back tracking is necessary because without it the maxi-
mum length between qubits having data may increase as op-
erations are performed, which means that the number of nec-
essary qubits (space resource of quantum computation)
cannot be bounded. We propose circumventing this data dif-
fusion by introducing a special region of qubits, called a
bundle in this paper. The data diffusion can be avoided with-
out back tracking, if we perform all meaningful operations in
the bundle. The upper bound of the length of operations
(time resource) obtained by our transform algorithm is about
half of that by Lloyd, since back-tracks are abbreviated.

Lloyd’s model can be naturally extended by changing the
number of types of qubits. The number will be called the
“period,” and the extended model will be called the
quantum-cellular-automata-like architecture (QCALA). (For
example, the period of the model ABCABC: - is three.) We
will give the transform algorithm for the QCA-like architec-
ture. The transform algorithm for Lloyd’s model will be
omitted, because it is just a special case of the algorithm for
the QCA-like architecture. The relations between the period
and the upper bound of time-space resources will be clari-
fied. Counterintuitively, when the period gets large, the upper
bound of the length of operations does not get small mono-
tonically. The upper bound gets small if we can select an
adequate number as the period, whereas it often gets large
even if we make the period large. The upper bound of the
number of qubits (space resource) and the period is also
clarified. It is always bounded by three times of the number
of qubits of the original quantum circuit, independently from
the period; however, it gets small if we can select an ad-
equate number as the period. The clarification of the relations
between the period and the upper bounds of time-space re-
sources is one of the main results of our paper.

II. LOGIC OPERATIONS IN A QCA-LIKE
ARCHITECTURE

A. Physical model

The simplest example of the physical systems we study is
a  one-dimensional  sequential  polymer of the
ABCABC---ABC type, which has been considered as a po-
tentially realizable quantum computer by Lloyd [1]. Each
atom A, B, or C is a two-level system representing a qubit
(quantum bit) with energy 4, f2, or f€, respectively, where f!
(i=A,B,C) represents the resonant frequencies when none of
them are coupled.

In his original proposal [1], each atom is assumed to have
an additional excited state, which is used for error correction.
The third level and the associated error correction feature
have been totally eliminated here for simplicity. The field of
quantum error-correction and fault-tolerant quantum compu-
tation (see, for example, Sec. 10 of Ref. [9], and references
therein) have been much developed since 1995. In view of
these developments, the third level scheme must eventually
be replaced with a legitimate quantum error-correction
scheme. However, it is out of the scope of this paper. Incor-
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FIG. 1. Physical model (a) (ABC),-type sequential polymer with
only neighboring interactions, (b) spectral splittings due to interac-
tions with neighboring qubits, (c) line-selective 7 pulse as a clas-
sical controlled-controlled-NOT, and (d) construction of CNOT.

porating fault tolerance into the quantum circuit on the real-
istic physical model would be a significant future subject.

Only the neighboring atoms are assumed to have interac-
tions. For example, B is coupled with its left neighbor A by
interaction energy J, 5 and its right neighbor C by Jp. If the
interaction Hamiltonian is diagonalized in the computational
basis, the resonant frequency of atom B when A is in |a) and
C is in |c) can be written as

1 1
=f- 5(— 1) 5 — 5(— 1)ge, a=0,1, ¢=0,1.

The spectrum of an atom is split into four lines correspond-
ing to the states of its two neighboring atoms as shown in
Fig. 1(b).

When a qubit is represented by a spin-half or two-level
system, quantum operation corresponding to the classical
NOT logic can be performed by applying a resonant 7 pulse.
When the line-selective 7 pulse is applied at f’fl, B is flipped
(negated) if A and C, which are adjacent to B, are both in |1).
This is classically a controlled-controlled-NOT (CCNOT or
Toffoli) gate, where A and C are the control qubits and B is
the target qubit. Each line-selective 7 pulse corresponds to a
different CCNOT as shown in Fig. 1(c), where the solid circle
means the control is ON if the qubit is in |1) and the open
circle means the control is ON if it is in |0). These line-
selective pulses are similar but not exactly equivalent to
quantum CCNOTSs due to the differences in controlled phases.
The differences can be compensated up to the total phase by
applying additional pulses as shown in Appendix A.

A controlled-NOT (CNOT) can be constructed by combin-
ing two CCNOTs. For example, classical CNOT, where B is
controlled by A, can be constructed by applying 7 pulses at
1%, and f%, as shown in Fig. 2(d). This can be done sequen-
tially in any order since the two operations commute. Also, it
can be done simultaneously by applying two line-selective
pulses at the same time or by applying a band-selective pulse
that excites the two lines without disturbing other lines. Care
must be taken when using band-selective pulses so as not to
stimulate other lines, including the lines of the end atoms,
which we will discuss later. Again by applying additional
pulses, those CNOTs can be made equivalent to quantum
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FIG. 2. Operations on a QCALA, where (a)-(d) are the basic
operations and (e)—(g) are derived ones. The target bit(s) and the
control bit in each operation (a)—(d) must be adjacent. The target
bits in the cCNOT and ccU operations (a) and (c) must be between
the control bits. Operations (a)—(f) are denoted by the types of qu-
bits. However, the SHIFT operation is described by using the qubit
numbers (absolute coordinates of the qubits).

CNOTs up to total phase as shown in Appendix A.

In Appendix A, we show that any controlled®-U and
controlled-U operations can be realized up to total phase by
applying line-selective and additional pulses. CCNOT and
CNOT are the special cases of U=X. Therefore, we will use
these operations as elementary building blocks for our imple-
mentation.

Although we have assumed interactions only between
neighboring atoms, the model is also applicable to cases
where interactions between non-neighboring atoms exist but
are much weaker than those between neighboring ones. This
can be done by replacing each line-selective pulse with an
appropriate band-selective pulse that covers the range of fine
splittings caused by weak non-neighboring interactions.
Since the modification can be done physically by changing
the pulse design and will not affect the discussion afterwards,
we can follow the simplest model of neighboring interactions
without much loss of applicability.

The atom at the end of the polymer has only one interact-
ing neighbor and therefore has different energy from atoms
of the same type in the inner units. The first A has % ="
- %(—l)”JAB when the neighboring B is in state |b). The last C
has fgesz—%(—l)”JBC when the neighboring B is in |b).
This does not mean that the end-qubit atoms are chemically
unterminated. They can be terminated with silent atoms,
which have no interaction with them. Since each end qubit
has a distinct frequency, it can be flipped or rotated indepen-
dently and arbitrarily without affecting inner units. It can be
used for loading quantum data into the circuit as described
by Lloyd [1]. For data loading, we will follow Ref. [1] and
will not discuss it further.

B. Physical applications

The model has a significant application in quantum com-
putation experiments using molecules under nuclear mag-
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netic resonance (NMR) [10,11]. Nuclear spin is one of the
most promising candidates for a qubit because of the rela-
tively long coherence time and suitable couplings for quan-
tum operations between qubits. A nucleus with spin-half,
such as lH, 19F, 31P, 13C, or 15N, can be used as a qubit and
manipulated by the NMR technique. In this scheme, a mol-
ecule in a static magnetic field works as a quantum computer.
Each qubit is addressed by its magnetic resonance frequency.
Any single qubit operation can be performed as rotation(s) of
spin by resonant rf magnetic field pulse(s). Two-qubit opera-
tion can be performed using the interaction between two
nuclear spins, which is called J coupling.

This scheme is so far the most successful in demonstrat-
ing quantum algorithms. Experiments with a few qubits have
been intensively exploited and the factoring of 15 by Shor’s
quantum algorithm [12] has been recently demonstrated us-
ing 7-qubit molecules [13].

In a small molecule with up to several qubits, all qubits
may have distinct frequencies and direct J couplings so that
the qubit can be easily specified and two-qubit operation on
any pair of qubits may be performed easily. However, as the
number of qubits increases, frequencies get closer or degen-
erate because the available spectral resource is limited. It is
difficult to find a molecule with many distinguishable qubits.
Also, J couplings between qubits get weaker or disappear.
Both of these factors not only lead to slower operations but
also require a different strategy for implementing a quantum
circuit on a molecule.

The model discussed here is suitable for implementing a
large-scale quantum circuit on a molecule since it requires
only a finite number of frequencies, regardless of the number
of qubits, and only neighboring couplings. However, the ap-
plication of the model is not limited to the NMR quantum
computation and therefore the specific problem concerning
the NMR is not discussed in this paper.

C. Generalization and notations

Here we consider a general structure of the above ABC
structure, which we call the QCA-like architecture (QCALA)
as follows.

(1) The structure is a repetition of m qubits A,,...,A,,
which is expressed as Aj,A,, ..., A,,,...,A|,As, ..., A,

(2) The interaction between qubits exists only between
neighboring qubits.

(3) We can perform only the same operation to the same
type of qubits.

For logical operations, we consider the following four op-
erations.

(a) An operation that performs CCNOT operation whose
target bit is A; and the control bits are A; and A; (A;, A; and
A, must be placed in this order) to all the sequences. This
operation is denoted by [a;,A;,a;] or [a;,A;,a;]. (The target
bit is always denoted by a capital letter.)

(b) An operation that performs CNOT operation whose tar-
get bit is A; and the control bit is A; (A; must be the neighbor
of A;) to all the sequences, i.e., CNOT gates are operated onto
all the pairs of A; and A; at the same time. This operation is
denoted by [A;,a;] or [a;,A;].

(c) An operation that performs controlled-controlled-U
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(ccu) operation whose target bit is A; and the control bits are
A;and Ay (A;, A; and A, must be placed in this order) to all
the sequences. This operation is denoted by Ula;,A;,a;] or
Ulag.A;.a;].

(d) An operation that performs controlled-U (CU) opera-
tion whose target bit is A; and the control bit is A; (A; must
be the neighbor of A;) to all the sequences, i.e., CU gates are
operated onto all the pairs of A; and A; at the same time. This
operation is denoted by U[A;,a;] or Ula;,A;].

By using the above operations, we can perform the fol-
lowing operations.

(e) A swap operation (SWAP) that swaps bits on the adja-
cent qubits (e.g., A; and A;, where A; must be the neighbor of
A;). This can be done by three CNOT operations. SWAP is
denoted by (A;,A;) or (A;,A;), which is decomposed to
[Aisaj][ai’Aj][Ai’aj] or [aisAj][Ai’aj][ai’Ajl

(f) A controlled swap operation (CSWAP) that swaps bits
on the adjacent qubits (e.g. A; and A;, where A; must be the
neighbor of A;) depending on the state of the adjacent qubit
A;. This can be done by two CNOT operations and one CCNOT
operation. CSWAP is denoted by (a;,A;,A). (The swapped
bits are always denoted by capital letters. (a;,4;,A,) is de-
composed to [a;,A¢lla;.A;, a)[a;,Al.)

(g) A shift operation (SHIFT) that moves a bit on a qubit
onto another qubit. This can be done by SWAP. For example,
let x,y,z be the qubit numbers of qubits A;,A;,;,A;,,, respec-
tively. Here, the “qubit number” means the absolute coordi-
nate of the qubits. (Thus, x,y,z are successive numbers.)
Then, SHIFT p(x,z) is defined as (A;,A;)(A;;,A;,). After
this operation, a bit sequence k;,k,,k3 on A;,A;,;,A; ., will
be changed to k,,ks,k;. SHIFT p(z,x) is defined as
(A, A )AL ,A,). After this operation, a bit sequence
ky,ky, k3 on A;, A ,A;» Will be changed to ks3,k,k,.

Generally, let x,x,...,Xj,,; be the qubit numbers
of qubits A;,..., A modam) respectively, where j=0
and Oslsm-1. SHIFT  p(xp,X;,,,) is  defined
as  (Aj,Agr1 mod m)) -+ (Alitjom—1)+1-1 mod m]>ALi4j(m-1)+1 mod m})-
SHIFT p(Xj4,%0) is defined as (A (s mod m)>A(i+i-1 mod m)) -+«
(ALijom=1)41 mod m]>Afi=j(m=1) mod m])-

Our essential task is to transform a normal quantum
circuit into a sequence of the above seven logic operations
(a)—(g). This is described in the next section.

III. IMPLEMENTATION AND UPPER BOUND

It is well known that any quantum circuit can be imple-
mented by CNOT gates and single-qubit gates. However, as
we saw in the previous section, CNOT gates and single-qubit
gates are not the available (primitive) operations on the
QCALA [1], and, therefore, we need to transform CNOT gates
and single-qubit operations to a sequence of the available
(primitive) operations on the QCALA.

Although Lloyd showed that we can realize a universal
quantum computer on the one-dimensional sequential poly-
mer of the ABCABC---ABC type [1], it has not yet been
clarified how we can translate a given quantum circuit to an
efficient operation sequence on the general QCALA. Thus
we show an efficient algorithm in this section.

PHYSICAL REVIEW A 72, 012301 (2005)

A. Intuitive description of the implementation

In our method, for each CNOT gate (the situation is almost
the same for a single-qubit gate) we perform the following.

(1) By using SWAP and CSWAP operations, we move the
contents of qubits so that the contents of the special bit (ex-
plained later) and the control and the target bits of the given
CNOT gate are placed on the adjacent qubits.

(2) In our algorithm, as we will explain later, it is guar-
anteed that the content of the special bit is always 1, whereas
the other contents on A, are 0’s when the content of the
special bit is on A;. Therefore, we perform the desired CNOT
gate by CCNOT whose control bit is the special bit since only
the CCNOT whose control bit is the special bit becomes ef-
fective.

Note that, for better exposition, we often say “we move
two qubits so that they are adjacent” instead of “we move the
contents of two qubits so that the content of two qubits are
on the two adjacent qubits.”

Although our whole strategy itself is similar to the one in
Ref. [1], our method needs only half the number of opera-
tions as the method implicitly denoted in Ref. [1]. This is
because we carefully omit essentially unnecessary movement
of qubits in the method in Ref. [1] by introducing the con-
cept of the “bundle,” which will be explained in the follow-
ing section.

B. Formal description of the implementation

The formal description of the input to our translation al-
gorithm is as follows.

Input. An n-qubit quantum circuit C consisting of d gates,
ie.,C=G,,G,,...,G, where each G, is a CNOT gate, single-
qubit gate, or controlled-U gate. Each qubit on C is labeled
by one of numbers 1,2,...,n.

Although any quantum circuit can be implemented by
CNOT gates and single-qubit gates only, we assume that we
also have controlled-U gates in initial quantum circuits. The
reason is that controlled-U gates are considered to be almost
the same on the QCALA in terms of the implementation cost,
and they are sometimes useful to describe a quantum algo-
rithm concisely. Note that any quantum algorithm can be
converted to a circuit consisting of CNOT gates, single-qubit
gates, and controlled-U gates.

Let #; and ¢; be the target bit and the control bit of G,,
respectively, i.e., 1=<t;,c;<n. We will introduce an algo-
rithm to translate C to a sequence of operations on a
QCALA, named S, A},A,,...A,,,...A|,A,,...,A,,. The out-
put of the algorithm can be described as follows.

Output. O, which is a sequence of operations on S (O is
the translated result), and V, which is an array with n+1
variables. V specifies the correspondence between the qubit
numbers (which are used to denote the locations of qubits)
on C and S. That is, V[j] is the qubit number on S corre-
sponding to the jth qubit on C. By referring to V, we can
assign each qubit on C to the corresponding qubit on S.

In our algorithm, we select one special qubit on S, and
call it the Oth qubit. This special qubit works as a base to
express the locations of qubits, i.e., each qubit is labeled by
a unique integer, called the qubit number, according to the
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distance from the Oth qubit. Qubits that are on the right side
of the Oth qubit are labeled by positive integers, and ones on
the other side by negative integers.

We say that the xth and yth qubits are in the same group
on § if they are on the same type of A;: In other words, they
are in the same group if and only if x=y mod m (period). We
denote x~y if the xth and yth qubits are in the same group.

The Oth qubit is initially set to 1, and this special bit is
called “the head.” The content of this special bit will be
moved during the operations and used as a control bit for
CSWAP operations as we will see. Thus, the qubit number of
the head is initially 0, and will be changed. We refer to this
number as “the head number,” and this is stored in V[0] in
our algorithm. The other qubits in the same group of the head
are set to 0. Therefore, we can perform a SWAP operation
only at the desired location, i.e., at the head, by using a
CSWAP operation. We use the other groups for storing the
inputs (data) of a given quantum circuit. That is, we assign
X|,X,...,X, of the given quantum circuit to each qubit on &
one by one from the right side of the Oth qubit, but we do not
use qubits in the same group as the Oth qubit. None of the
other qubits are used, i.e., they are just garbage. Thus, the
initialization of O and V can be written as in Appendix B.

Our algorithm takes each gate on C, and translates it into
a sequence of operations on S. Translated sequences are
added one by one to the initial O, and we maintain V so that
it holds the appropriate correspondence between the qubits
on C and S.

While moving (the content of) a qubit to the desired lo-
cation, if we perform CSWAP operations without any consid-
eration, (the content of) a qubit storing data and (the content
of) a qubit without data (garbage qubit) may be swapped.
Then, there is a chance that the data contents of qubits will
be spread widely on S. In such a case, we cannot upper
bound the necessary numbers of qubits on S and operations
such as theorem 1 and theorem 2 in the next section.

To remedy the above situation, we introduce a special
concept called “the bundle.” The bundle is a region of m
(which is equivalent to the period) adjacent qubits such that
it is guaranteed by our algorithm that the bundle always con-
tains the head and all the qubits in the bundle contain data.
Then we restrict ourselves to perform CSWAP operations only
in the bundle. Accordingly, our algorithm guarantees that qu-
bits for storing data stay in some region on C during the
whole operation.

During the translation, we may need to move the bundle
because the head might be moved; therefore, we use an array
B to store a pair of numbers {B~,B*} such that B*—B =m
—1. (In other words, B has the information about the bundle,
i.e., the xth qubit is in the bundle if B-<x<B*.) B is initial-
ized as {0,m—1}.

In contrast to our strategy, that in Ref. [1] always moves
qubits back to their original positions after simulating one
original CNOT gate. By using the bundle concept, we do not
need such restorations. Therefore, our algorithm produces
more efficient results. (We will see this in theorem 2 in the
next section.)

Now we are ready to explain our algorithm. The formal
description of the algorithm is in Appendix B. We just give
an intuitive explanation in this section. The algorithm splits

PHYSICAL REVIEW A 72, 012301 (2005)

bundle

lp(h,c—l)
CX)O ............. ..........

FIG. 3. This shows the case when all the head, control, and
target bits are in the bundle (the situation for step IV), and h<c
<t, where £, ¢, and ¢ are the qubit numbers for the head, control,
and target bits, respectively. In the upper part of the figure, qubits
are moved by p(h,c—1). By this operation, the qubits in the same
group as the head are moved right by c—%—1, and the qubits in the
same group as the qubits between the head and the control bit are
moved left by one. The arrows in the figure show how the contents
of the qubits move, and the number attached to an arrow shows the
change of the qubit number for the content. At the lower part of the
figure, we move the target bit to the left of the control bit by p(z,c).

into three cases according to the gate being translated; the
procedure is different for CNOT gates, single-qubit gates, or
controlled-U. We first explain the case where the target gate
is a CNOT gate.

Case: CNOT gate. To translate a CNOT G; whose target and
control bits are #; and ¢; on C, respectively, into a sequence of
operations on &, our algorithm has four steps according to
the situation.

Step IV. The easiest situation is the case treated by step IV
where the target bit (V[#;]) and the control bit (V[c,;]) on S
are already in the bundle as shown in Fig. 3. In this case, we
just move qubits by SWAP operations so that the head, the
control bit, and the target bit are placed adjacently in this
order. Then, we perform the original CNOT gates by using a
CCNOT operation on S. We need not change the bundle in this
step because all the qubits in the bundle remain in it (they are
just swapped with each other).

Define h,c,t as h:=V[0],c:=V[c;],::=V[z,;]. Then split the
translation algorithm into six cases according to the order of
them as in Appendix B.

We explain case h<<c<t, which is illustrated in Fig. 3.
First, we move the head so that it is next to the control bit.
This is done by p(h,c—1). By this operation, the qubits in
the same group as the head move right by c—hA—1, and the
qubits in the same group as the qubits between the head and
the control bit move left by one. (The arrows in the figure
show how the contents of the qubits moves.)

Next, we move the target bit to the left of the control bit.
This is done by p(z,c). By this operation, the qubits in the
same group as the target bit move left by 7—c, and the qubits
in the same group as the qubits between the target bit and the
head [after p(k,c—1)] move right by one.
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bundle

FIG. 4. This shows the case where we want to move the control
bit into the bundle (step II). Let ¢ be a number such that ¢ and V[c;]
are the qubit numbers for the same group, and the cth qubit is in the
bundle. The figure shows the case when V[¢;]<c. By the operation
p(V[c;],c) (the contents of) the qubits of the same group as the
V[c;]-th qubit and the c-th qubit (denoted by black circles) are
moved to the right by r(m—1), and the others to the left by r, where
r=(c=V[c;])/m. Then, we should move the bundle to the left by r
for the bundle condition.

The other cases are similar to the h<<c<t case. (The
formal description of the translation results can be found in
Appendix B.)

Steps II and I11. Tf the control bit is not in the bundle, we
need to move the bit into it before step IV. This is done by
step II. Likewise, if the target bit is not in the bundle, we
need to move it there before step IV. This is done by step III.
It seems we are able to combine steps II, III, and IV: we just
move the target bit and the control bit so that they are next to
the head by SWAP operations. However, we have the bundle
condition and therefore need to move the bundle for steps II
and III. Accordingly, we describe steps II, III, and IV sepa-
rately.

Here we explain step II by using Fig. 4. (Step III is similar
to step II.) Suppose we want to move the control bit (V[¢;]))
to the bundle. Let ¢ be a number such that ¢ and V[¢;] are the
qubit numbers for the same group, and the cth qubit is in the
bundle. (For better exposition, we often say “c” instead of
“the cth qubit” if the context is clear.) Then, what we should
do is to move V[¢;] to ¢ as denoted in the figure. Therefore,
we need to perform p(V[c¢;],c), and this is added to (the
translated operation sequence) O. Here we consider the case
when V[¢;]<c. By the operation p(V[c;],c), (the contents of)
the qubits of the same group as V[¢;] and ¢ (denoted by black
circles) are moved to the right by r(m—1), and the other
qubits are moved to the left by r, where r=(c-V[c;])/m.
Then, we should move the bundle to the left by r for the
bundle condition. Accordingly, we revise B and V in the
formal description in Appendix B.

Step 1. If V[c;] and V[z;] are in the same group, the con-
tents on V[¢;] and V[c;] move together by SWAP operations.
So we cannot move qubits so that the head, the target and the
control bits are placed adjacently by steps II-IV. Therefore, if
we encounter such a case, we move one of them onto a
different group by using CSWAP. This is done by step L.

We choose the target or control bit that is nearer to the
head. Let this qubit number be y. That is, y is defined to be
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y
c 1 If m=3 and the head
(Case 1) O ......... m ....... O ....... is in the middle

z=V[0]+1

bundle

&

%/_/

bundle

z=V[0]+1

FIG. 5. This shows the three cases for step I. Case 1 is that when
m=3 and the head is in the middle of the bundle. If we encounter
this case, we first swap the head with the right qubit to get case 1’
(see the text for the reason). Then we will move the yth qubit to the
zth qubit, where the yth qubit is either the control or the target bit
that we will move to the next V[0] (the head, denoted by black
circles) in step I, and z is defined as follows to satisfy the bundle
condition: z=V[0]+1 if the head is the leftmost or the or 3). In
other cases, z=V[0]—1, that is, we move the yth qubit to the left of
the head (see the text for more details about y).

VIt if |V[t]-V[0]| <|V[c;]-V[0]|, and V[c;] otherwise.
What we should do first is to move the yth qubit to the right
or left neighbor of the head, and swap the content of the
qubit to a qubit in another group by a CSWAP operation.

Consider case 1 in Fig. 5, where m=3 and the head is in
the middle of the bundle. In this case, we cannot perform the
above CSWAP operation in the bundle because one of the
qubits swapped by CSWAP is not in it. Therefore, if we en-
counter case 1, we first swap the head with the right qubit to
get to case 1'.

After the above modification (case 1 to case 1’), we move
the yth qubit to the zth qubit, where z is defined as follows to
satisfy the bundle condition (Recall that we should perform
CSWAP operations in the bundle): z=V[0]+1 if the head is the
leftmost or the second leftmost in the bundle (case 2 or case
3 in Fig. 5), and z=V[0]-1 otherwise. Thus, we revise O as
Op(y,z) as described in Appendix B.

For the revision of B and V, the algorithm is split into two
cases according to the order of y and z. Here, we explain the
case y <z using Fig. 6.

By the operation p(y,z), qubits are moved in three ways
according to the qubit groups as follows. Here we define
Z’::y+m[(z—y)/m] and Z":: =y+ml(z_y)/mj, and use ZI
and 7" to specify qubit groups. [z’ and z” are the qubit num-
bers for the two qubits such that (i) they are on the same type
of qubit as the yth qubit (denoted by black circles in Fig. 6),
(ii) they are nearest to the head, and (iii) they are on the
right-hand and the left-hand sides of the head, respectively. ]

Group 1. The qubits in the same group as the yth qubit.

Group 2. The qubits in the same group as the wth qubit,
where z<w<7z'.

Group 3. The qubits in the same group as the wth qubit,
where 7" <w=7’.
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Group 1 Group 1 Group 3 Group2  Group 1
! v v
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FIG. 6. This shows the case y <z for step I, where we want to
move the yth qubit to the zth qubit (the left of the head). This is
done by p(y,z), and the contents of qubits are moved in three ways.
Here we define 7' := y+[(z—y)/m] and 7" :=y+|(z—y)/m], and use 7’
and 7" to specify qubit groups as follows. The qubits in group 1 are
those in the same group as the yth qubit. They are moved right by
z=y—|(z—y)/m). The qubits in group 2 are those in the same group
as the wth qubit, where z<w<z'. They are moved left by [(z
—y)/m). The qubits in group 3 are those in the same group as the
wth qubit, where 7’ <w<z'. They are moved left by [(z—y)/m)]
+1.

Between the yth qubit and the head, there are z—y qubits,
and among them there are [(z—y)/m] qubits of the same
group of the yth qubit. Therefore, by p(y,z), the yth qubit is
swapped with the qubits in the other group z—y—-|(z—y)/m|
times. Therefore, the qubit in group 1 moves right by z—y
—|(z=y)/m]. The qubits in group 2 are swapped with those in
group 1 exactly one less time than those in group 3. Thus, the
qubits in group 2 move left by [(z—y)/m), and those in group
3 move left by [(z—y)/m|+1.

According to the above movement of qubits, we change V
in order to maintain the consistency of the correspondence
between the qubit numbers on C and S as written in Appen-
dix B.

For the bundle condition, we need to move the bundle as
the head moves, i.e., to the left by [(z—y)/m]+x, where x is
defined as follows: x=1 if the zth qubit is right of the head,
and x=0 if it is left of the head. (Note that the head is in
group 3 if x=1, and it is in group 2 if x=0.)

By p(y,z), the yth qubit is moved to the neighbor of the
head. In the situation after p(y,z), let A, A,, and A, be the
type of the qubit holding the head, the yth qubit and the other
neighbor of the yth qubit other than the head, respectively.
(The neighbors of A, are A;, and A, as shown in the lower
part of the figure.) What we need to do next is to move the
yth qubit to another qubit group by a CSWAP operation.
Therefore, we further revise O as 0:=0(A,,A.,a,) and
maintain V as written in Appendix B.

Case: controlled-U gate. If the target gate is a controlled-
U gate, the last operation for the CNOT gate case, i.e., the
operation [a;_;,Ay,a.;] in step IV should be replaced with
controlled-controlled-U operation Ulay_;,Ay,d.;]. There-
fore, step IV is modified to step IV’ in this case.
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FIG. 7. This shows the relationship between the upper bound of
the number of the qubits and the period m, when a 100-qubit quan-
tum circuit is translated to a QCALA. The number of qubits that we
need is bounded by n+1+2(m—1){[n/(m—1)]-1}, which is less
than 3n, by theorem 1. So, the graph is bounded by 300 (=3
X 100).

Case: single-qubit gate. If the target gate is a single-qubit
gate, there is no control bit. Therefore, we need neither step
I nor step II. Also we do not need to move the control bit in
step 1V, and step IV is modified to step IV’ in this case.

C. Upper bound of the number of operations

Let C be an n-qubit quantum circuit. Let S be a QCALA
ALAy, LA, ALAS, LA, Let O be the sequence of
operations output by the algorithm.

Lemma 1. The bundle contains the only qubit in each
group during the operations by O.

Proof. This is obvious by the definition of the translation
algorithm.

Lemma 2. For each group, the maximum distance between
qubits in the group is m([n/(m—1)]-1).

Proof. In the initial state of operations, the maximum dis-
tance between qubits in a group is m([n/(m—1)]-1). By the
definition of the translation algorithm, the size holds consis-
tently.

Theorem 1. During the operations by O, the head moves
in the range of [0,7n], and all data bits move in the range of
[-8,n+ 6], where 6=(m—1)(n/(m—1)]-1). We thus need at
most n+1+2(m—1)(n/(m—1)]-1) qubits. It is always less
than 3n since §<n (see Fig. 7).
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FIG. 8. This shows the relationship between the upper bound of
the number of the translated operations and the period m, when one
CNOT (or controlled-U) gate on a 100-qubit quantum circuit is trans-
lated to a QCALA. The number of operations is bounded by 6(m
—1)[n/(m—1)]-3m+1 by theorem 2. It is about six times the num-
ber of the qubits in the original circuit if m is small. When one
single-qubit gate on a 100-qubit quantum circuit is translated to a
QCALA, the upper bound of the translated operations is much
smaller than this.

Proof. The head number has the minimum value when the
head is in the leftmost position of all data bits, e.g., the initial
state. So, the minimum value of the head number is 0. The
head number has the maximum value when all data bits
move left and they pass the head. The head moves right by
one if a data bit passes the head by SWAP. The number of the
data bits is n, so the maximum value of the head number is 7.

The left-most qubit number used in the operations of
O is obtained as follows. We consider the case that the
(m—1)-th qubit in the initial state moves to the left-most
position, because the left-most qubit is used in this case.
Then, the head is on the [n/(m—1)]-th qubit. The rightmost
data bit in the group is adjacent at the left side of the head, so
it is on the ([n/(m—1)]-1)-th qubit. The distance between
the leftmost and the rightmost data bits in the group is
m([n/(m—1)]-1). Hence, the leftmost data bit in the group is
on the ([n/(m-1)]-1-m(n/(m-1)]-1))-th qubit. It is 4.
The rightmost qubit used in the operations of O is obtained
in the same way.

Theorem 2. When m=<n, a single-qubit gate in C is trans-
lated to a sequence of at most 3(m—1)[n/(m—1)]+1 logic
operations, and a two-qubit gate (CNOT or controlled-U) in C
is translated to a sequence of at most 6(m—1)[n/(m—1)]
—3m+1 logic operations. When m > n, each gate is translated
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FIG. 9. This shows a circuit of discrete quantum Fourier trans-
form DFT ;¢ on four qubits. Single-qubit gate H is the Hadamard
gate, and U; is the control phase shift by 27/ 2/. The output values
are described as y;,...,y4 when xy,...,x4 are input to the circuit.
Each gate is labeled by a number 1, ..., 10 from the left-hand side.
When we translate this circuit by the translation algorithm, the se-
quence of operations represented in Fig. 10 is obtained.

to a sequence of at most 3n—2 logic operations (see Fig. 8).

Proof. When m>n, all data are contained in the bundle,
so we consider only step IV, IV’, or IV”. They need
3(n—1)+1 operations. Hence, the number of the operations
is bounded by 3n-2.

Suppose m<n. When the gate that we want to translate is
a single-qubit one, we calculate the maximum number of
operations in steps III and IV”. Step III needs at most
3(m—-1)(n/(m-1)]-1) operations. Step IV" needs at most
3(m—1)+1 operations. Hence, at most 3(m—1)[n/(m-1)]
+1 operations are necessary in this case.

When the gate G, that we want to translate is a two-qubit
one, we count the maximum number of operations such that
V[c;] and V[¢;] are not in the same group, because this is the
worst case. Step I is then skipped. Both steps II and III need
at most 3(m—1)(n/(m-1)]-1) operations. Step IV (IV’)
needs at most 3(m—2)+1 operations. We thus need at most
6(m—1)[n/(m—1)]-3m+1 operations for each two-qubit
gate in the original quantum circuit.

D. Examples of translation

Figure 9 shows a quantum circuit for the quantum discrete
Fourier transform DFT4 on four qubits. It has 10 gates. The
gate represented by H is the Hadamard gate, i.e.,

1(1 1)
H=—F .
V2.1 -1

The gate represented by U; means the control phase shift by
2m/2, ie.,

1 00 O
010 O

Uj b 5
001 O
00 0 &Y%

where 6;=21/2.
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(a) The diagram of translated operators
Ist gate Znd gate Jth gate Sth gate Tth gate Yth gate
¢ 3rd gate ¢ oth gate * 8t gate 10th gate
gUbi7 aber ¢ ¢ * ¢
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7
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Fl1/=/ 1747274
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The traces of variables in V~’

FIG. 10. This represents a sequence of operations translated from Fig. 9. [Panels (a) and (b) show the same sequence of operations.] Since
m=4, n=4, and 6=3 by theorem 1, using 11(=n+1+26) qubits is sufficient for implementing the translated operations. The qubit numbers
(absolute coordinates of the qubits) are set to —3,-2,...,6,7. Each qubit is initialized as 0,0,0,1,x;,x,,x3,0,x4,0,0, since the Oth qubit is
always initialized as 1 and input values of Fig. 9 are input to ones having positive qubit numbers except for the same type qubits as the Oth
qubit. The first to tenth gates in Fig. 9 correspond to the 1st, 5th, 6th, 16th, 20th, 21st, 40th, 44th, 60th, 61st operations in this figure,
respectively. All of the remaining operators are used for moving variables. Panel (b) shows the traces of the head and variables x;, ..., x, in
Fig. 9. They are started from the qubit numbers 0, 1, 2, 3, 5 (shown by V[0],...,V[4] in the left-hand side terminal), and finally they are
achieved at the qubit numbers 0, 3, 6, 2, 1 (shown by V[0],...,V[4] in the right-hand side terminal). Thus, by observing the values of the
qubits at 3, 6, 2, 1 after the operations, we can obtain the same values of y;,...,y4 in Fig. 9.

When we translate the circuit to a sequence of operations
on a QCALA consisting of a repetition of four qubits, we
obtain the following as the translation result:

Hlay,Al(A1,A)U\lag, Ay ax]H ag,A1](A1,A2)(A2,A3)
(A1, AY)Uslag,Aray](Ay,A3)Uilag, Ay ay]Hl ag, A ]
(A, A3)(A1,A))(a4,A1,A2)(Ag, A1) (A3,A4)(Ag,Az)
Uslay,As,a3)(A3,A) Usla,Ag,az](ar,AzA3)(As,A3)

(A3,A4) (A47A1)(A 1 aAz) U, [614,14 1 7a2]H[a4,Al] .

By theorem 2, the number of translated operations is at
most 226[=4 X (3 X 3X[4]+1)+6 X (6 X 3 X[$]-3 X 4+1)],
since DFT ¢4 has four single-qubit gates and six two-qubit
gates. However, it is only 61 in this case [see Fig. 10].

By theorem 1, the translation operations can be achieved
on a 11-qubit QCALA, because 6=3 (=3 % ([2]-1)). Figure
10 shows the sequence of translated operations.

IV. CONCLUSIONS

We have proposed an explicit implementation to translate
a quantum circuit that consists of single-qubit, CNOT, and
controlled-U gates to a sequence of operations on a QCALA.
The translated operations is more efficient than that proposed
by Lloyd [1,7].

When we compare the sequences of operations translated
from a two-qubit gate in the case that the period m of the
QCALA is three (i.e., ABCABC---ABC), the sequence ob-
tained by our strategy needs at most 6n operations (theorem
2), while the one obtained by Lloyd’s strategy needs at most
12n operations. Here, n is the number of qubits for the origi-
nal circuit. Thus, the upper bound of the length of operations
obtained by our transform algorithm is about half of that by
Lloyd.

Our translation strategy can be used in the case that m is
larger than three, though Lloyd’s papers did not give an ex-
plicit strategy to translate a quantum circuit to a QCALA
with a period m larger than three. We clarified the relation
between the upper bound of the number of translated opera-
tions and the period of the QCALA (theorem 2). The upper
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FIG. 11. Realizations of con-
trolled gates; (a) cNOT and (b)
controlled-U. The scalar phase

factor indicated at the end of each
quantum circuit is the total phase,

which can be safely omitted in ac-

B B ﬂ—T—T—{Rx(—g) HR@HRD | )
&0 HR® HR.® I R HRM HRB) | ‘
(b)

bound gets small if we can select an adequate number as the
period, whereas it often gets large even if we make the pe-
riod large. However, it is always bounded by 9n, which is
less than the upper bound of one obtained by Lloyd’s strat-
egy. The upper bound of the translated operations in the case
n=100 is figured in Fig. 8.

We also clarified the relation between the upper bound of
the number of qubits and the period of the QCALA (theorem
1, Fig. 7). The number of qubits that we need is always less
than 3n, and gets small if we select a good m value.
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APPENDIX A: IMPLEMENTATIONS OF ELEMENTARY
QUANTUM GATES

We show that any controlled-U and controlled’-U opera-
tions, which include CNOT and CCNOT as special cases of
U=X, can be realized up to the total phase by applying line-
selective and additional pulses in liquid state NMR. A single
qubit NOT operation can be realized as a rotation about the x
axis by an angle 7 by applying a 7 pulse on resonance. The
actual unitary transformation performed R, (7)=-iX is not
exactly a NOT (=X) operation. However, the difference is
only in the total phase factor —i=exp(—i7/2), which has no
physical effect.

When two qubits, A and B, are J-coupled, it is known that
controlled rotation, such as controlled-R,(6), can be realized
by applying a line-selective weak pulse to the target qubit
(B) on the transition frequency corresponding to the state of
the control qubit (A) being |1) [14]. At this time, controlled-
R.(mr) is different from controlled-NOT by the conditional
phase, which may have a major impact. However, it can be
fixed rather easily by applying R.(/2)
=R (m/2)R(m/2)R(~/2) to the control qubit as shown in
Fig. 11(a).

This can be systematically generalized to any controlled-
U by decomposing U as follows:

U=e“RABIR(VR(I),

where a, 8,7y, [0,2). Then controlled-U can be decom-
posed into controlled-¢’®, controlled-R (5), controlled-R,(y),
and controlled-R,(5) as shown in the middle of Fig. 11(b).
The controlled rotations can be realized as line-selective
pulses. The controlled phase shift is equivalent [9] to total
phase factor ¢’“? and R (a)=R (m/2)R (a)R (-7/2) on the

(A1)

tual implementations.

control qubit which can be realized by three pulses as shown
in the right of Fig. 11(b).

CNOT can be realized as a special case of a=-m/2,
B=m, and y=6=0 as already shown in Fig. 11(a).

Next, we consider the case of the three qubits, A, B, and
C, linearly aligned with J couplings only between neighbor-
ing qubits as shown in Fig. 1. We consider the case that B is
the target qubit and A and C the controlled qubits. By using
the decomposition in Eq. (A1), controlled-controlled-U can
be decomposed into controlled-controlled-¢'®, controlled-
controlled-R (), controlled-controlled-R (), and
controlled-controlled-R () as shown in Fig. 12(a). The three
doubly controlled rotations can be realized as line-selective
pulses in a manner similar to the case of two qubits [8]. The
doubly controlled phase shift can be decomposed into the
total phase factor ¢/“* and R_(a/2) on A and controlled ro-
tation on C by A as shown in the middle of Fig. 12(b). Since
A and C are not J coupled, the last part cannot be directly
realized by the method described so far. We have to swap A
and B, apply controlled rotations on C by B, and then swap A
and B back, as shown in the right of Fig. 12(b). The whole
procedure of controlled-controlled-U is shown in Fig. 12(c)
and that of CCNOT as a special case of U=X is shown in Fig.
12(d).

Time evolutions of the qubits not involved in the intended
operations must be decoupled or refocused [8]. It can be
done efficiently by applying decoupling m-pulse sequences
based on Walsh orthogonal functions [15] or equivalently on
Hadamard matrices [16]. The detailed physical implementa-
tions of controlled-controlled-U, including pulse conditions
and decouplings, will be discussed elsewhere [8]. For the
purpose of this paper, it is sufficient to know whether any
controlled-U, controlled-controlled-U, CNOT, and CCNOT are
efficiently realizable up to the total phase.

APPENDIX B: EXPLICIT ALGORITHM

We give an explicit algorithm to translate an n-qubit
quantum circuit C consisting of CNOT gates, single-qubit
gates, and controlled-U gates to a sequence of operations on
a QCALA S consisting of a repetition of m qubits.

Variables i,0,V,B are used in the algorithm, where i is
the variable of the gate number, and V is the array with n
+1 variables. V[0] stores the head number, and V[j] is the
qubit number on S, which corresponds to the jth qubit on C.
O is a variable that stores a sequence of operations on S, and
B is the array storing a pair of numbers {B~,B*} such that
B*—B =m—1. The xth qubit is called in the bundle B if B~
<x=<B". The bundle B will be defined as always containing
the head. C is input to the algorithm, and O and V are output.
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FIG. 12. Realizations of
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1. Initialization V[0]-1 if y<V[0] and x=0,
Our method initially assigns each input of a given Vo] if y<V[0] and x=1,
quantum circuit, say x;,x,, ... ,X,, to each qubit on S one by = V[0] if V[0]<y and x=0
one from the right side of the Oth qubit, but we do not use .
Vio]+1 if V[0]<y and x=1.

qubits that are in the same group as the Oth qubit. The Oth
qubit is initialized as 1. All the others are set to 0. We thus
initialize V as follows: V[0]=0 and V[j]=j+|(j—1)/(m—1)]

for j=1,2,...,n. For example, when
m=4 and n=5, the input sequence of
bits are ...,0,0,0,1,x;,x5,x3,0,x4,%5,0,0,0,... . Then,

V={0,1,2,3,5,6}. i is initialized as 1. O is initialized as an
empty set. B is initialized as {0,m—1}.

2. Step 1

Suppose V|[c;] and V[s;] are in the same group. In this
case, bits on V[7;] and V[¢,;] move the same together by SWAP
operations. So, we move one of them onto a different group
by CSWAP.

As a special case, if m=3 and B-<V[0]<B" (i.e., the
head is in the middle of the bundle), then A; and A; are
swapped by a SWAP operation, where A; and A; are the types
of the qubit numbers V[0] and V[0]+1, respectively. Other-
wise, this operation is skipped.

0= O[A,A]].
VIjl+1 if  V[j]~ VIo],
Vjil=\VIjl-1 if V[jJ~V[0]+1,

Unchanged otherwise.

Define x=1 if the head is the leftmost or the second left in
the bundle (case 2 or case 3 in Fig. 5), and x=0 otherwise.
Define y as V[t] if |V[#;]-V[0]|<|V[c;]-V[0]|, and other-
wise as V[c;]. Define z as

The translation algorithm is split into two cases according to
the order of y and z.

Case z<y. Define 7z :=y-m[(y—z)/m]
—m|(y=z)/ml:

and 7":=y

0 :=0p(y,z),

B := {B‘+ J

y-z
m

m

-x,B T+

|

i
VU]—(y—z—Pm;ZJ) it VL]~

= 4 VD]+{uJ if  V[j]~w for some 7/ <w <z,
m

un 451 if  V[j]~w for some z<w<7".
\ m

”

Define and 7=y

7 =y +[(z=y)/m]

§

Case y<z.
+(z=y)/ml:

0 :=0p(y,z),

B= {B‘—{—Z_y —x,B*—{—Z_y
m

m
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4
.

vm+(z—y—\%yb it VG~

==<V[i]—lz;y if  V[j]~w for some z<w <7,
m

-

V[j]—[—y if  V[j]~w for some " <w <z.
m

\

By (one of) the above operations, the bit on the yth qubit
(before the operation) moves on the neighbor of the head.
Let Aj, be the type of qubit holding the head. Let A, be the
type of the qubit to which the yth qubit moved. Then, A,
adjoins A,. Let A, be another neighbor of A,. '

We further revise O and V as follows:

0= 0(A, ALy,

z if V[j]=y,
Vijl=1y if V=g,

Unchanged otherwise.

3. Step 11

Suppose V[¢,] is out of the bundle. (Otherwise, go to step
II1.) Let ¢ be a number such that ¢ and V[c;] are in the same
group, and c is in the bundle. Define r=(V[c;]-c)/m.

0 = 0p(V[c;].0),

B:=={B +r,B"+r},

VIj]l=r(m-1)
VIjl+r

it Vijl~e,
otherwise.

4. Step II1

Suppose V[¢,] is out of the bundle. (Otherwise, go to the
step IV.) Let ¢ be a number such that ¢ and V[z;] are in the
same group, and 7 is in the bundle. Define r=(V[t;]-1)/m:

0 = 0p(V[1].1),

B:={B +r,B*+r},

il {t—r(m—l) i V[j]~1,

V[j]1+r otherwise.

5. Step IV

Suppose V[c¢;], VIt;], and V[O] (the head) are in the
bundle. We move them so that they are adjacent in order of
the head V[¢,] and V[z,]. Then, we perform the original CNOT
gates by using a CCNOT operation on S.

Define h,c,r as h:=V[0], c:=V[¢;], t:= V[1;]. The transla-
tion algorithm is split into six cases according to the order of

PHYSICAL REVIEW A 72, 012301 (2005)

them. The bundle is not changed in each case.
Case h<c<t.

0:= Op(h»c - 1)p(tsc)[ac—l’Acsac+l]s

rVU]+c—h—1 it V[j]~h,

VIj1-1 if V[j]~ w for some h <w <c,
VI[jl:==4 VIj1+1 if V[j]~w for some c <w <t,
Vil+c—t if V[j]~1,

L Unchanged otherwise.

Case h<<r<c.

0:= Op(h’t_ 1)p(c7t+ 1)[at—l’At7at+1]’
.
Vijl+t—h-1 if V[j]~h,
V[j1-1 if V[j]~ w for some h <w <t,
V[j]::{V[j]+1 if  V[j]~ wfor some t<w<c,
VIjl+t—c+1 if V[j]~c,

L Unchanged otherwise.

Case c<h<t.

0:= OP(th - l)p(l’h)[ah—l’AhsahH]s

rVU]+h—c—1 if V[j]~ec,

VIj1-1 if V[j]~ w for some ¢ <w < h,
VI[jl:==§ VIjl1+1 if V[j]~w forsome h<w<t,
VUl+h-t if V[j]~1,

L Unchanged otherwise.

Case t<h<c.

0 = Op(t,h)p(c,h + 1)[ay_1,Apap ],

rV[j]+h—t it V[jl~1t,

VIjl-1 if V[j]~ w for some t <w < h,
V[j1:=9 VIjl+1 if V[j]~w for some h<w <c,
Vijl+h—c+1 if V[j]~c,

L Unchanged otherwise.

Case c<t<h.

0:= OP(C,Z— 1)p(hst+ 1)[at—l’At’at+l]s

fV[i]+t—c—1 it V[j]~ec,

V[j1-1 if V[j]~w for some ¢ <w <t,
V[j1:=9 V[j1+1 if V[j]~w for some t <w < h,
Vijl+t=h+1 if V[j]~h,

L Unchanged otherwise.

Case t<c<h.

0 = 0p(t,c)p(h,c + D]a,_1.A 041 ],
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rV[j]+c—t it V[jl~1t,

VIj]-1 if V[j]~w for some t<w=<c,
V[j]::{V[j]+1 if  V[j]~ w for some c <w <h,
Vijl+h-c+1 if V[j]~h,

\Unchanged otherwise.

We need (m—2) SWAPS [3(m—2) CNOT operations] at
most to move them so that they are adjacent. Thus, we need
at most 3(m—2)+1 operations at step IV.

6. Step IV’

The difference between step IV’ and step IV is the last
operation in the revised O; the operation [a;_;,A;, .| in
step IV is replaced with controlled-controlled-U operation
Ulay_,,A;,a,]. All the index numbers are the same.

7. Step IV”

Unlike step IV, we do not consider the control bit, so the
procedure is modified as follows.

Case h<t.
0 := 0p(h,t - 1)Ula,_,A,],
VIjl+t-h-1 if V[j]l~h,
VIjl:=\Vljl-1 if V[j]~ w for some h <w <1,
Unchanged otherwise.
Case t<h.
0 := Op(h,t + 1)Ula,,,A,]
Vjl+t—h+1 if V[j]~h,
VUjl:=Vljl+1 if V[j]~w for some t <w <h,

Unchanged otherwise.

8. Output and flow chart

Figure 13 is the flow chart of the translation algorithm.
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dnput [J—-—G, .G,

Yes
15 G, a single-qubit gate?
o

STEPT
STEPIT
STEPIIT

N
¢ 55 G.a CNOT gate?

v Yes
STEPTV |

Set /=71

STEPIIT

[ srerrvy | [ sTEPIV ]|

= No
Yes

Output O and V

FIG. 13. This is the flow chart of the algorithm translating an
n-qubit quantum circuit C consisting of d gates (CNOT gates, single-
qubit gates, or controlled-U gates) to a sequence O of operations on
a QCALA S. C is input and O is output. The array V of n+1 variables
is also output. C can be written as G,G,,...,Gy a sequence of
CNOT gates. The translation is performed for each gate from G, to
G,. O is initialized as empty. New operations are added to the end
of O at each step.

We explain here how to obtain output values of a quantum
circuit C by using the translation algorithm.

We suppose that a quantum circuit C is input into the
algorithm, and the algorithm outputs O and V. Let x be a
sequence of bits xq, ...,x,. We denote the output sequence of
C as C(x);,...,C(x),. The x is transformed to the input se-
quence of O according to the method described in Appendix
B 1. Let x’ be the transformed input sequence of x on S.
When x’ is input to O, the output sequence is denoted by
..,0(x");,0(x")}11,..., where j’s are qubit numbers. Then, it
is inductively proved that

Cx)= 0" )ypyg

for all k (1 <k=<n). Thus, we are able to know the kth output
qubit value of C by observing the V[k]-th output qubit value
of O.
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