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Numerical analysis of boosting scheme for scalable NMR quantum computation
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Among initialization schemes for ensemble quantum computation beginning at thermal equilibrium, the
scheme proposed by Schulman and Vazifani Proceedings of the 31st ACM Symposium on Theory of
Computing (STOC'99)ACM Press, New York, 1999 pp. 322-329is known for the simple quantum circuit
to redistribute the biasegolarization$ of qubits and small time complexity. However, our numerical simu-
lation shows that the number of qubits initialized by the scheme is rather smaller than expected from the von
Neumann entropy because of an increase in the sum of the binary entropies of individual qubits, which
indicates a growth in the total classical correlation. This result—namely, that there is such a significant growth
in the total binary entropy—disagrees with that of their analysis.

DOI: 10.1103/PhysRevA.71.022303 PACS nuntber03.67.Lx, 05.30.Ch, 05.20.Gg

I. INTRODUCTION Shor’s algorithm[14]); those are designed to work with a

Initialization is an indispensable stage in ensemble quandignly mixed state, even with an input string that comprises

tum computation beginning at thermal equilibrium, espe-a single pure qubitnamely, an initialized qubjitand the rest

cially in NMR computationg1-5]. For a model of the NMR qubits in a maximally mixed state. As the family of DQC1
system, it is customary to consider a mixture of moleculeéﬂOOIeIS does n_ot pm‘.’"?'? ‘?‘" t_he replacements_of standard
with n spins-1/2 under a strong static magnetic field aduantum algorithms, |n|t|allzatlon of many qubits for en-
shown in Fig. 1 on the assumption of the independencéemble quantum computers Is Sft'" 9f Importance. .
among initial spins; local couplings among spins in a mol- There are two types of initialization methods: one is av-

ecule are negligible compared with their Zeeman energiegragir)g(e.g., effective pure stat¢8)); a’?O‘her is data com- .
E,. The original biagpolarization ¢ of a spin at temperature pression. The latter has an advantage in respect of scalability

T is given by because the former needs resources growing exponentially in
n while the latter does not. The boosting scheme proposed by
s:tanl'( Ea ) 1) Schulman and Vazirani9,10] is one of the latter type of
2ksT/’ methods. Actually, their scheme is a sort of polarization

. , _ o i transfer which has been commonly used and thoroughly
wherekg is Boltzmann's constant. This spin is | with  gygied in the realm of NMR spectroscopy as pointed out in
probability (1+£)/2 and in||) with probability (1-£)/2. We  Ret. [15]. There have been notable studies of the general
regard the up spin as the bit of 0 and the down spin as the bifyper limit on a polarization enhancement in a polarization
of 1. Quantum operations are performed in thigubit[6,7]  (ransfer(e.g., Refs[16-1§). The principle of the boosting

ensemble system. However, it contaifsc@mponent states scheme is the bias-enhancing permutation as we will see in
[0---0),...,|1---1), unIess_T:O; we have to extract the flr_1al Sec. II. In the scheme, a quantum circi6] properly com-

state evolved from a particular component state to obtain thgpsed of basic bias-boosting circuits is used for redistribut-

outcome of a quantum computation for any standard quanng the biases to generate the block lofold qubits with
tum algorithm. Suppose that the correct input is only thepiases greater thas., such that

state|0)®". While its original population is largest among alll

the component states, the product of probabilities of each bit

being 0 is small for larga. The more bits we need, the larger

biases are required to extract the final state. As it is impos- —l— |1)
£y I

sible to achieves =1 by cooling sample materials, algorith-
mic initializations[4,5,8—1] are utilized to prepare an ini- ? |0)
tialized state: namely, a particular component state with an

enhanced signal.

Standard quantum algorithms are designed to work with a OO&OOOO

pure-state input. In contrast, there are a few quantum algo- /

rithms for the model of deterministic quantum computation OOCQCO / 00
with a single pure qubitDQC1) [12] and similar models,

including one for prime factorizatiofil3] (an extension of %m) %
I 0000 05

*Electronic address: saitoh@qc.ee.es.osaka-u.ac.jp
"Electronic address: kitagawa.m@ee.es.osaka-u.ac.jp FIG. 1. A model of the NMR system for spin-1/2 nuclei.
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l+e ! a Pan I
Prot{0,0, -+ 0,0} 2 (T'd> e b 1 N
D
is large enough to distinguigl®)®' among the signals of' 2 T _ —b- —
component states. Their analysegs10] resulted in that a CNOT NOT g)"dk’” (b)
compression down to almost the entropic limit is possilrie
the limit of largen) in O(nlogn) time in the scheme to FIG. 2. Basic quantum circuits for constructing an initialization

generaten(1-0(1))-S initialized qubits each of which has circuit in the boosting scheme. ThavoT gate performs a bit flip
bias 1-exp-n®®) (which converges to 1 as becomes (namely, aNoT operation on the qubitc whenb=1. The Fredkin
large), where S is the von Neumann entropjl9] of the  date swaps the qubét with the qubitb whenc=1.

ensemblé. However, this is incorrect unless the original bi-

ases are in the neighborhood of 0 of ltrespectively ofn, 1+¢(0)

the condition of original biasesQe ;1 leads to the circum- N 0

stance that the probability of a spin being up has classical pid= . (4)
correlationg classical dependendgesith those of other spins 0 1L.(0)

within several steps after the beginning of the scheme. Ow- 2

ing to the correlations| can be much smaller than-S
Especially for the practical setting of<10°, an accurate
evaluation of the scheme is of importance since a large me

Let c,=c,(t) denote the population of component stideat
aWe stept. Then it is also represented as

bias, such ag)=0.42is required to obtain a sufficient num- -1
ber of initialized qubitd20]. Peq= > C(0)[K)(K
In this paper, we report a numerical analysis of the boost- k=0

ing scheme based on a molecular simulation. Several fea- .
tu?es of the scheme relating to the total binary entropy have = diagco(0),1(0), . Con-2(0),Cona (O}, (5)
been investigated by using the simulation with the aid ofwherec,(0) are the original populations. The bias of title
matrix calculations. It has revealed the fact that the numbegpin is enhanced by any unitary operation that permutes a
of qubits initialized by the scheme is rather smaller thancomponent state with a large population to some component
expected from the von Neumann entropy even for large state whoséth bit is 0, since such an operation increases the

This is not a surprise; it is quite possible according to thepopulation of a set of component states whithebit is 0:
theory of macroscopic entropy described in Sec. Ill.
P= > oc (6)

Kiith bit is 0

Il. BOOSTING SCHEME This population is identical to the probability that tih bit

Enhancing the biag; of the ith spin is an operation IS 0. Because a component state which consists of a larger
equivalent to increasing the population of a set of moleculegiumber of 0’s and a smaller number of 1's has a larger popu-
whoseith spin is up[e;=&;(t) wheret denotes time stdp  lation among the 2 component states in most cases, any
This is a general conception of initializations for mixed unitary transformation that maps a sufficient number of com-
states. As we consider a large number of molecules under RPnent states with more thamw'2 0's to those with 0's in
strong static magnetic field such as those in a commogPecificl’ bits enhances the biases of thespins. The ini-
liquid- or solid-state NMR system, amqubit thermal equi- tialization ofl =1’ qubits can be realized by a combination of

librium state can be written as the density matrix such transformations. When the transformations only a
product of permutations of component states, as it is nothing
Peq=PI0® p5I® - ® ppdy @ prd, (3)  but the exchanges of values @, ... ,C,n_, the evolved den-
. - - -I- - .
wherep{fis the density matrix representing the original stateSlty matrix p=UpedJ" is still represented as
of theith spin with the biag;(0): -1
p= 2 kK, ()
k=0

YFor an original ensemble in a common NMR system, the sum of
the binary entropies of individual qubits is equal to the von Neu-although it is often impossible to writg in the form of
mann entropy of the ensemble. Eq. (3).

Their analyses of the scheme were based on the optimistic as- In Schulman and Vazirani’s boosting schetoe simply
sumption that the sum of the binary entropies is preserved duringa|led the boosting schemehe total operation for an initial-

the initialization process of it. = o ization can be composed of the 3-qubit basic circuits, shown
An average polarization of 0.4 is a realistic value. It was reported, Fig. 24 or the 4-qubit circuit shown in Fig. 3, which

that an average proton polarization of 0.7 was attained in naphthaﬁerform permutations of component states as mentioned
lene by using photoexcited triplet electron spi@6,37. It was also

recently reported that a pair of almost pure qubits were achieved by
a parahydrogen-induced polarization technif@@ and a quantum “An experiment of this boosting operation in a three-spin system
algorithm was implemented with the qubjt39]. was reported in Ref.15].
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_1
“— P £4= 3(Ea* &0+ 80~ Satpeo), (10
b o ande; becomes larger thas, under the condition
¢ — ept g
< . 11
—o—o D— " Treg, "
CC-SWAP Similar calculations give the biases forandc in the same
output:
FIG. 3. Another boosting circuit with a 4-qubit input. Tlee- P
SWAP gate swaps with ¢ whenbd=11. gé = %(Sa +ep— e+ €48p80) (12
above. It should be noted that these circuits were not dis- &L= pse. (13

tinctly written in the original description of the boosting N . . .
scheme. Either the 3-qubit circuits or the 4-qubit circuit canAfter the circuit of Fig. 2a), the bias of the qubib may be

be a basic operation of the scheme. If one interprets thémaller than 0; the circuit of Fig.(B) is added to invert the
original description as it is, one may have the 4-qubit circuitPias in this case. In the case where three spins are polarized
We, however, use the 3-qubit circuits rather than thedniformly with the biase,y in the input, Eq(10) leads to

4-qubit circuit because the 3-qubit circuits are better with el =3 1.3 (14)
respect to the rate of initialization. We do not write details a 2munt 2muni
about it here, but we will describe a reason in Sec. IV. FromThus, the basic circuits can be used for boosting the biases of
now on, we will regard only the 3-qubit circuits as the basictarget qubits. It is expected that one can achieve the compo-
circuits of the scheme. nent statg0)®' with a very large population simply by col-
The operation of the basic circuits is illustrated in thelecting initialized qubits after sufficient steps of application
truth table of Table I. By the circuit of Fig.(2), a component of these circuits to every subgroup which consists of three
state with a large population—i.e., a component state imubits that satisfy inequatit§ll) (although the initialization
which two of the three qubits are 0—is mapped to a comporate is another subjectEquations(10), (12), and (13) may
nent state in which the first of the three qubits is 0. Thebe used for a rough estimation of the behavior of a quantum
probability that the first qubia is O after this basic operation circuit composed of the basic circuits.

is However, the designing of a whole circuit in the boosting
scheme is not so simple. At every step in the scheme, one
Prolda = 0},,;= Prod000};, + Prod001};, + Prod010}, recreates subgroups by picking up every three qubits from
+ Prob{100} 8) the n qubits in the order of their biases, from larger to
n»

smaller, so that the condition of inequatitil) is satisfied in
where, for given qubits, b, andc (from upper to lower in ~ @lmost every subgroup. It is better to avoid applying the
the circuid with their binary values,, x,, andx,, basic circuits to those in which the condition is not satisfied
or undo it afterward. In order to recreate the subgroups, one
9) has to forecast the distribution of biases correctly, which re-
quires a more precise estimation owing to the following rea-
son: After several steps in the scheme, the bias of a qubit is
Suppose that no correlation exists améhg P, andP, and  not independent of those of others—i.e.,
that the biases,, ¢, ande. are positive, in the input. Then o D.
the bias of the qubia in the output of the circuit is Prokiij =00} # PiP, (15

ProdX X = > G

Klabc=xXpXc

for a pair of qubitg(i, j) in then-qubit string. This is because
TABLE I. Truth table for the basic circuits in Fig. 2 for the the ensemble after anoOT operation on(i, j) is not deter-

boosting scheme. Here, the input(f is the output of(a). mined by the biase@;, ¢;) alone but dependent on the popu-
lations{c,}. The exception is only the case where the original

3-qubit boosting biases are very close to 0 or 1. Therefore, the use of inde-

pendent probabilities for representing spins in constructing

Input Output of(a) Output of (b) the circuit induces inaccuracy for the large size and/or large

000 000 010 depth of the circuit. Each molecule has to be dealt with for

correct forecasts of the bias distribution.

8(1)(1) ggi géi o Morgover, even with the fqrecasts of thg bias distribution,
it is quite possible that the bias of the quhits not boosted

011 100 110 in some subgroups at almost every step except for several

100 010 000 beginning steps in the scheme. This is due to classical cor-

101 101 111 relations among qubits. The condition of inequalifii) is

110 111 101 not an accurate condition for the success of bias boosting in

111 110 100 a subgroup of correlated qubits. It is nothing but a rough

estimation of a correct condition. Thus, one ought to undo

022303-3
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X X X X X X KX X XK diagonalization of the reduced density operator of the qubit.

The reduced density operator of til qubit can be given by

l U the partial trace
G000 X X X X X X X NS
small entropy large entropy pi= % (Wleli, (18)

FIG. 4. A unitary compression operatit@hfor redistributing the wherep=p(t) is the density matrix for the whole ensemble;
biases to create the block of qubits with small binary entropies aan—)}_{W ) | i - |
; . . = - te orthonormal system
that with large binary entropies. K o) - [ ipr1y)} IS @ comple
g y P of the state space of the rest qubits, such as

the operations that fail in enhancing the biases of target qu- {]0,0,+ - 0,_10j41 - ** 0n—10p)
bits so as to achieve better bias enhancements. The details of
the circuit designing based on the forecasts and undo opera-
tions are described in Sec. V and Appendix C.

Note that even the circuits that succeed in enhancing the
biases alter the amount of correlation. Although the three
qubits in each subgroup are nearly equally biased, this does
not mean the binomial probability distribution—i.e., it is not 1115 LisgLivs - Lno1Op),
relevant to the independence of the qubits; their biases can
be correlatedtheir individual probabilities given by Ed6)
can be dependehto each other. The classical correlations 11150 Lisg g Lpa 1} (19
affect the efficiency of initialization—this “efficiency” is not
the efficiency in running time nor that in working space—as
described in the next section.

|010, -+ 01210541+ Op-91y),

Let %p; be the matrix with the diagonal elemefits, and®c; ;

obtained from a unitary diagonalization pf such thatdciyo

>dci'1>0. Then the intrinsic bias of thigh qubit is defined
as

I1l. CLASSICAL CORRELATIONS HIDDEN g g

IN MACROSCOPIC BINARY ENTROPIES ~_ Go= G

; 20
I d‘3i,o+d‘3i,1 (20

The initialization of an NMR quantum computer with a

method that uses a data compression is equivalent to redigys gefinition of intrinsic bias is valid in the sense that its
tributing the binary entropies of qubifthe entropies of mac- a1 is independent of a macroscopic spin direction. The

roscopic bit, direction of theith macroscopic bip; can be modified even
1+e 2 1-¢ 2 with only single-qubit rotation gates. If we restrict the sub-
H;= > log, 1+e + 5 log, 1-g' sequent quantum gates to single-qubit rotations at a particu-
& gi lar time step(1+2;)/2 is the maximum achievable probabil-
to create two different blocks of qubits: one has a very smallty of the ith qubit being O after that step. Thus the intrinsic
entropy close to 0 and the other has a very large entropy dsias is a plain measure of purity of a qubit. Since an initial-
illustrated in Fig. 4. The block of qubits with very small ization is to produce pure qubits, we regasdas the actual
binary entropies is used #®'. In this respect, an important bias of theith qubit denoted by; in the definition ofS.:
entropy measure is the sum of the binary entropies of indinamely, in Eq.(16). When completely initialized qubits are

vidual qubits: let the effective entropy required, S, is a lower bound for the length of the com-
N pressed string at a particular time step in an initialization
sH=-3 1+g; o 1+eg; . 1-g o 1-¢g; processn—-S. is an upper bound for the number of initialized
Tl 2 % o %) qubits at that step.S, varies step by step during the initial-
ization.
(16) Now we will see an upper bound for the number of ini-

where ;=¢;(t) is the bias of theth qubit at time steg.  tialized qubits under a realistic condition. Suppose that we
When the state of the whokequbit ensemble is represented do not need completely initialized qubits. Then initialized

as a diagonal density matrix, it is given by qubits are allowed t(lJ have.small binary entrogils) whose
average vaIué(l/I)Ejlej] is equal to or less than some real
5§=-1+2 2 ¢ 17 numbera (0<a<1). The total binary entropy of initial-
Klith bit is 0 ized qubits is equal to or less thard. The block of rest

On the other hand, when there can be nonzero off-diagonal

elements of the density matrix for the system, we have to The optimal initialization for a time stefpis the one that achieves
consider the intrinsic bias defined below rather than the sun-S,(t)| qubits with biases of 1 an&(t)] qubits with biases of 0;
perficial bias that is calculated only from populations. Thethere may be the rest one qubit, which is included into the com-
intrinsic bias of a qubit is a quantity obtained from a unitary pressed string.

022303-4
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n-1 qubits(namely, the compressed strjriperefore has the S(o) == Tr(o log, o) (25)
total binary entropye = S.— al. Hence the following inequal-
ity holds: is its von Neumann entropy. It is desirable, and believed to
n-1=E=>S-al. (21) b(_e possible, to generate a quantum _circuit to acpomplish it
within the depth of the circuit increasing polynomially rn
This leads to Indeed any unitary transformation of a density matrix con-
1 serves its von Neumann entropy, but it would be probably
l<s—0n-%). (22) impossible for a compression scheme which generates a
l-a guantum circuit according only to macroscopic quantities of

individual qubits—e.g., biases—to do such an ideal com-
pression for an arbitrary input state. For the initialization of
I<s(1+B)(n-S)<n(1-S/n+p). (23 NMR quantum computers, this is somewhat clear when we
rewrite S, by using the reduced density operatdfs} of
individual qubits. Regarding; as the actual bias of thi¢gh
qubit, we haveH;=S(p;). ConsequentlyS, is rewritten as

SettingB=a/(1-a), we have

In an initialization, even if there is no need of completely
initialized qubits, one picks up cold qubits at the terminal
step of it in order to achieve Prly---0}=c (0<c=<lisa
real numbey. The value ofc is chosen by one’s need. Ac- N
cordingly, a limitation of the value of can be estimated as _
follows: Suppose that the density matrix for a state after Se—ng(Z)i). (26)
initialization has no nonzero off-diagonal element. Let us
assume for a moment that one obtalnmitialized qubits  From this notation, it is clear that
with independent biases and the rest qubits with biases that
may be correlated. If the joint probability of the initialized _c= ~ e
qubits being zeros is Prédy...Q}=b (0<b<1), then the S S=Sblp e P, 27
bilnary entropiesH; for the qubits satisfy the ipequa}lity whereS=S(p) andS(plp,® - - ®py,) is the Umegaki relative
ZjgHj<-I[b" log, b+ (1-b)logy(1-b")], which is  entropy[21] of p with respect t, ® --- © . In general, the
easy to prove by mathematical induction. From the ContraUmegaki relative entropy between two density operatq_rs
pOSition, if EI::LH] >—|[blll |092 b1/|+(1—b1/|)|092(1 and o is defined as
—-b™], then Prok0;- --0,} <b. Therefore, on the present as-
sumption that the biases of initialized qubits are independent, oy
a necessary condition for achieving Pfop--0}=c is that Sloyllor) = Tr(‘fl log, ;) (28)

2
a<-cMlog, - (1 -cMlogy,(1-c).  (24)
_ ) It is a measure of the distan¢er dissimilarity) between the

Hence, on the present assumptiartends to 0 asincreases, o operators. On the right-hand side of Eg7), p repre-
gnd SO Fjoe;ﬁ%. Possible_ vglues ot andpg are estimatgd with  gants the whole ensemble whjle® - - ® p,, is a tensor prod-
inequality (24) by specifying a value of and assuming that ¢t in which correlations are fredie., correlations among
I'is in a realistic range. For example, when one needs 7 7 are obliterated in taking the tensor produétence
=0.99 and assumds> 16, the values ofx and B are esti- g _gis a measure of total correlatid@2] of p: namely, a
mated to be at most 7.5910° and 7.64<10°% respec- measure of total correlation of each qubit to the other qubits.
tlvel_y. Indeed, _|t is, howe\(er, possible thadoes not tend to Obviously, S, can be much larger thas when there is a
0 with increasing to achieve Prof);---0j}=c when there  growth in the total correlation during the initialization. There
are correlations among initialized qubits, but even for suchs ngo known way to avoid the creation and growth of corre-
qubits, of course, the conditioa<-clog, c-(1-c)logx(1  |ations among biases when a data-compression circuit is de-
—c) is necessary. Moreover, in the case where one needs tR@yned by using solely the values of biases at every step
bias of an initialized qubit to converge to 1 mgrows—e.g., instead of those of commonly used quantities such as the
&cold= 1 —€X[—n¥) (constanx>0)—a and B tend to 0 an  (approximatg populations of possible bit sequend@s], the
increases—i.e.3=0(1) in this case. As we have seen, in- (approximate length and frequency of patterns in micro-
equality (23) gives an upper bound for the number of initial- scopic strings, etc.
ized qubits at a particular time step for a realistic initializa- Let us consider the boosting scheme, in which every op-
tion. In other wordsS.,—B(n—-S,) is a lower bound for the eration is a permutation of diagonal elements in a diagonal
length of the compressed string at that st@pis a small  density matrix which is originallyeq as we have seen in the
number, which is estimated to be less than?li most  previous section. Then, clearly, there is no entanglement dur-
realistic initializations to make several bytes almost pure. ing and after a bias boosting proceSs-Sis a measure of

Generally, it is believed to be possible to almost faithfully total classical correlation hidden in the macroscopic string
compress the string of amqubit ensemble, represented by (the string which consists af macroscopic bit$, ... ,p,).
density matrixo, down to the entropic limit with the rate Thus, in the boosting scheme, an increas&Jmeasures a
S(o)/n for largen in all kinds of quantum computer includ- growth in the total classical correlation.
ing NMR computergas long as can be largebecause of In addition, the maximal efficiency of initialization of the
the analogy to the quantum noiseless coding where macroscopic string is defined by

022303-5
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FIG. 5. Plots of", S, and "'~ S for 3 qubits as functions of FIG. 6. Plots ofs"!, S, and X"~ S for 4 qubits as functions of

&, the uniform original bias of the qubit§"' is the effective en- . SMis the effective entropy of them after one step of the circuit
tropy of the output state after one step of the basic circuit shown ishown in Fig. 3.

Fig. 2(@ andSis the von Neumann entropy of the system.

correlation in comparison with the 3-qubit basic circuits. The
discrepancy between the effective entropy of the out§ift,
fe= n-s’ and the von Neumann entroi®/is shown in Fig. 6.

- o o When one compares the mean discrepatgy"-S)/
where " is the value ofS, after the application of an ini- n, (Ny=3,4 is thenumber of wires for the 3-qubit circuit

tialization scheme. This is the ratio of an upper bound for th&yii, that for the 4-qubit circuit, as shown in Fig. 7, it is clear

number of completely initialized qubits that can be achievedya; the increase in the amount of correlation in one time step
by the scheme to the one that is expected from the von Neys sq |arge that the 4-qubit circuit should not be used as a

mann entropy. Similarly, the maximal efficiency of compres-y5sic boosting operation. This is the reason why we have
sion of the macroscopic string is defined by chosen the 3-qubit circuits.

re= g (30)

One can evaluate the performance of the scheme by calcu- V. AUTOMATIC CIRCUIT GENERATION
lating these efficiencies.

_ﬂ—ind

(29)

A molecular simulation is applied for designing a quan-
tum initialization circuit in the boosting scheme on conven-
IV. GROWTH IN THE AMOUNT OF CORRELATION tional computers. It is implemented as a circuit composer for

FOR A BASIC BOOSTING STEP the scheme, offering forecasts of the bias distribution during

. . . e initialization. The details of the algorithm for the design-
As we have seen in Sec. lll, an increase in the amount 0I

lati b dt hi hiah initiali g are described in program 1 of Appendix C. In this sec-
correlation must be Suppressed to achieve a high initializ fion, instead of the long program, the brief flowing chart of it
tion rate. In this section, we therefore evaluate the amount 9

. ) . 1S shown in Fig. 8. It utilizes a virtual molecular system to
cIaSSI_caI qorr(_elatlon generated by a single step of bas'ﬁwimic an n-qubit ensemble as illustrated in Fig. 1. As we
boosting circuits.

Suppose that there are three qulaitd, andc with uni- conju-nue to use .the same ba{;ln@---O), [1---1)}, super-
form biase at thermal equilibrium. For this initial state, the positions of multiple computational basis vectors are not pro-
effective entropy defined by Ed16) is equal to the von
Neumann entropys. Now we apply the 3-qubit circuit of
Fig. 2@ to the qubits. The biases of the qubits become

0.1

-3 3 2 i i i 0.08 - 7~ 4-qubit circuit -
(3e—¢°)/2, (e+£°)/2, ande* respectively. By this operation, /. 3 qubit circuit

classical correlations are induced, and the effective entropy 006 |/

of the output state", is greater thars as shown in Fig. 5. “|

The discrepancy betwee®" and S is rather serious for the %a‘ £
highly but not completely polarized qubits beca§é-Sis 0.04
fairly large despite the small values 8f 0.02

Similarly, we can evaluate the amount of classical corre-
lation generated by the 4-qubit circuit shown in Fig. 3. When
there are 4 input qubitg, b, ¢, andd with uniform biase at 0
thermal equilibrium, the biases in the output of it 48z
-£9)/2, &2 (e+€%)/2, ande?, respectively. Thus the effect of
bias enhancement looks almost the same as that of the FIG. 7. Plots of(S"-S)/n, for the 3-qubit circuit(n,=3) and
3-qubit basic circuits. It, however, induces a larger amount ofhe 4-qubit circuit(n,=4) as functions of the original bias.

-1 -0.5 0 0.5 1
Original bias ¢
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GEN_INIT_CIRCUIT —— TABLE II. The initialization circuit generated for the spin sys-
tem, *H—H—H—H—'H—H—H. The spins are labeled
CREATE_SYSTEM 1,...7, from left to right, respectively. The transformations in this

‘ table are executed from left to right and upper to lowerCN, and
Rearrange the pointers to the qubits. <= Fr readnoOT gate, controlledvoT gate, and Fredkin gateontrolled-
SWAP gate, respectively, followed by numbers in parentheses indi-
; cating which qubits are handled. In €&b), the control bit isa
BOOST in every three pointers: and the target bit ib; in Fr(a b, c), the control bit isc and the target
bits area andb.
Apply the basic boosting
circuits to the three pointers. CN(2,3):X(3):Fr(1 2, 3:X(3);
{ CN(5,6);X(6);Fr(4 5, 6);X(6);
UPDATE_BIAS CN(2,6); X(6);Fr(7 2, 6);X(6);
CN(2,3);X(3);Fr(6 2, 3;X(3);
Output the circuits iff the CN(6,5); X(5);Fr(3 6, 5;X(5);
boosting is successful; CN(5,3);X(3);Fr(6 5, 3;X(3);
otherwise, undo the circuits CN(4,7);X(7);Fr(1 4, 7;X(7);
and the biases.

! bits with very large biases are pointed from pointers located
near the top of the table; the component s{@é' with a
FIG. 8. The brief flowing chart of the simulation algorithm of Vvery large population is achieved by collecting them.
program 1 to generate an initialization circuit on the basis of the This algorithm assumes thataoT operation can be used
boosting scheme. We show the program in Appendix C. with any two qubits in the system. When this is not guaran-
) ) ) teed for dispersed qubitswap operations are used to gather
duced by the boosting operations. Hence a molecule is rehem into one location in the molecule. This change is easily
resented as an array ofbinary digits in the simulation. We gglized by arranging the qubits witswaP gates in
considerN molecules that consist of spins with biase; i gen INIT_ciRcuIT instead of arranging only the pointers.
theith spin (N>n). The complexity of the algorithm i®(nx N) in space and
The outline of program 1 is as follows: A table of pointers o(n2x N in time in conventional computers. For a practical
to qubits is used instead of direct handling of them. We conyse of the simulation fon< 10%, it would be proper to set
sider the subgroups which consist of every three pointerg — 1 on and s=5+0.1n]. Our simulation can be used for

from the upper side to the lower side in the table, althougrbenerating circuits up to fQubits for arbitrary biases
those are not explicitly written in the program. Let frande  \yithin 1 Thit of memory space.

a function which returns a pseudorandom real number be- |, addition, the present algorithm is equivalent to the

tween 0 and 1. This is called>§ N times in the procedure original one proposed by Schulman and Vazirani in Ref.
CREATE SYSTEM to set up the virtual molecular system. At |y the jteration of the original algorithm, at each step, qubits
each call of fran@, the bit representing thth spin in the 416 rearranged so that qubits with large biases appear first
mth molecule is set to 0 when frafd<P; and set to 1 oth- fo|lowed by qubits with relatively small biases, discarding
erwise. The desired original bias distribution is prepared inpose with very-low biases. Note that we do not need to
this way. Then the pointers are arranged in the order of thgjscard the very-low-biased qubits actually. They are dis-
biases, from the larger to the smaller, in the talitem the  persed far away from those with large biases by the rear-
upper side to the lower sifleThe main part of this simula-  rangement automatically. In the present algorithm, in the it-
tion after the setup is an iteration in the proceduregration, the pointers to qubits are rearranged in the order of

GEN_INIT_CIRCUIT. This iteration contains the following op- the piases. Therefore, it is equivalent to the original one.
erations: First,B00ST is applied to every subgroup men-

tioned aboveBOOST is the boosting operation for three qu- Example A
bits a, b, andc. We apply the circuit of Fig. @) to them. N
When the bias ob becomes negative, the circuit of Figh? An exa”?p'é of th.e output circuit from the program of

is also applied. The boosting circuits applied to the 3 qubitd"09ram L 'Sl shciwn {n T?blelll. It1|s glenera_\ted for th_e seven-
are written out if the bias oé is increased by them; other- SPIN system, H—"H—"H—"H—"H—"H—"H. with the uniform

wise, we undo the boosting. The biases after the boosting artélas.o'& F|gu_re I tha}t, accordl_ng to _th_e numerical
calculated by USIngPDATE BIAS in each call ofs00ST. Sec- matrix calculation result, the bias of the first spin is enhanced

ond, we rearrange the table so that the pointers to qubits with

larger biases appear in the upper side of it and those with®The matrix calculation in these two examples was done with an
smaller in the lower side. The iteration of above operations isnterpreter-type quantum circuit  simulator (http://
terminated when cold qubits are not newly produced in thevww.qc.ee.es.osaka-u.acgditoh/silgqcs/ that internally uses the
lasts; steps or when the depth of generated circuits reaches@wmmva c++ library (http://gamma.magnet.fsu.edu¢reated by
specified terminal depth of circuits. After this iteration, qu- Smith et al. [40].
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FIG. 9. The result from a matrix calculation for the first ex-
ample.(a) The original biases of the seven-spin systém.Redis-  example.(a) The original biases of the nine-spin systdiy). Redis-
tributed biases after the operations of Table II. One of'tHespin  tributed biases after the operations of Table Iil. One offi@spin
biases is boosted under the preset low temperature such that théases is boosted under the preset low temperature such that the
original bias of the hydrogen is 0.6, in this matrix calculation. original bias of the hydrogen is 0.8, in this matrix calculation.

FIG. 10. The result from a matrix calculation for the second

as it is designed to. Although it appears to be possible tqvas set to % 0.9Y/"SI-1 (this is larger than 0.99 when
enhance the bias further at a glance, it is impossible for the S=22) in program 1.(Sis the von Neumann entropy of a
boosting scheme owing to strong classical correlationsimulated systemAs described in Sec. lll, we propose to
among the qubits. An NMR experiment of this bias boostingcompute the sum of the binary entropies of individual qubits

will be hopefully possible in future.

Example B

The second example is an output circuit for initially
nonuniformly biased qubits. The circuit shown in Table
[l is generated for the nine-spin  system
HAH-H-H-Bc-Bc-c2P-2P. We used a modi-
fied program to boost mainly the bias of the fifth spin. The
numerical matrix calculation of the boosting with the circuit
results in an increase in the bias of one of i@ spins as
expected from the molecular simulati@ig. 10. Of course,
the effect of the boosting is too small to obtain an initialize
qubit in such a small molecule.

d

VI. RESULTS FROM SIMULATION

during the simulation because it is a lower bound for the
length of the compressed string at a particular time step
least approximately, in the boosting scheme. Recall that the
effective entropy is thus the total binary entropy given by

lo 2 )
92 1-s,

(16)

1_8i
2

i, 1+e¢ 2
_ i
se<t>-i§1< 5 10g 1+

[ei=¢i(t)] and thatS, can be increased by the growth of
classical correlations among qubits in the scheme. At the last
step in the simulation, we ignored the preset valuegf;

and picked upl cold qubits so that the condition of
Prod0;...0}>0.9 was satisfied, although this does not af-

The simulation of program 1 has been conducted undelect the initialization process itself or the time evolution of
several different conditions of the original biases and thdhe effective entropy. Here we adopt the circuit of Figa)2

number of qubits, with the number of virtual moleculds
=5.0x 10°. This value ofN is large enough to ensure the
reliability of the simulation as we show in AppendiX Ay

TABLE lll. The initialization circuit generated for the spin sys-
tem, H—H—H-H_Bc—_Bc_c_3p_3p  The
spins are labeled 1,,9, from left to right, respectively. The nota-
tion of the operations in this table is the same as that in Table II.

CN(6,7);X(7);Fr(5 6, 7);X(7);
CN(9,2);X(2);Fr(8 9, 2;X(2);
CN(6,9);X(9);Fr(7 6, 9;X(9
CN(1,4);X(4);Fr(2 1, 4;X(4

)
)
)
)
CN(6,1);X(1);Fr(9 6, 1;X(1)
)
)
)

)

)

CN(4,3); X(3);Fr(7 4, 3;X(3);
CN(4,3);X(3);Fr(9 4, 3;X(3);X(4);
CN(7,8);X(8);Fr(5 7, 8;X(8);

as the unit quantum circuit for measuring the depth of cir-
cuits constructed by the scheme. In addition, detlenote
uniform original bias for qubits. We assume that®<1
because a negative original bias can be inverted in advance.

The logs recorded during each run of the simulation show
that although the von Neumann entropyS
=-Tr(p log, p) is preserved, the number of qubits initialized
after the boosting operations is much less thais because
S is increased in the early steps of the boosting procedure.
This is well illustrated as the plots & against the depth of
the circuits(denoted byd) for originally uniformly biased
1000 qubits, as shown in Fig. 11. For an example, let us take
£=0.7 in the figure. Although the value of the von Neumann
entropy is 609.8, the value & atd=40 is 806.8. The num-
ber of qubits that can be initialized is reduced from 390 to
193 approximately.

The relation of " (the terminal value ofs,) to S was
found to be of interest. We pl&"Y/n againstS/n for several
different values ofi in Fig. 12. The original bias distribution
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FIG. 11. Plots of the effective entrogs against the depth of

circuits from the simulation logs fon=1000. The simulation FIG. 13. Plots ofs"/n againsteyq for several different values
started with uniformly biased qubits. The data points were obtaine®f original uniform biass. n was set to 100 for the data points in
for the different values of original biag:=0.3,£=0.5,£=0.7, and this figure.
£=0.9.

figure also shows that the data_pointsS§f%/n for n=1000
was set to be uniform and the data were taken fe¥e0 are slightly closer to the curve afS/n than those for smaller
=<0.975. It suggests values ofn. Furthermore, more than 60% of the increase in

Sf;”d/n _ V,% (31) S occurs duringd_$5 Whe_nn=1000; the ngmber of qubits

to which a qubit is classically correlated is near§=243

for n=70. In addition to this relation, it suggests that, for <1000 for this depth. Hence the growth &/n during d

n=70 and G<e=<0.65, <5 is almost uncdhanged for larger valuesrofThus, asn
— becomes largeS"%/n varies only slightly, getting closer to
n / — e 1
&"In> s, (32 VS/n. Therefore, Eq(31) for 0<e=<0.975 and inequality

in consequence of the fact that a valuesg/n was found to  (32) for 0<&=<0.65 are true for the circuits with larger
be insensitive to a value of=70 for this range ok. The  Widths;i.e, they are true fom=70. Because the data points

of S"Yn are in the interval of y'S/n-0.044 /S/n+0.032
el when n=1000, the relation o&"to S for n=1000 and 0
<e=0.975 is given by

S=n(\Sn+ ), (33

where § is a real numbef-0.05< §<0.04). This phenom-
enon originates from the fact that the basic circuits increase
the effective entropy of 3 qubits input with independent uni-
form biases unless their value is 0 or £1 as we have already
seen in Fig. 5. In addition, the value §"%n is not sensitive
E\ /5' to the preset value of., 4 as long aseq,q=0.9 for e 0.5
8 © %,ﬁ? =70 O and e.,¢=0.99 fore 0.5 as shown in Fig. 13. Therefore,
/|
/

1.0 0.9
1

1

08

0.044 7] the above relations, inequality82) and Eq.(33), are un-
changed even if one presets, in another way at one’s
Vi n=1000 + option as long as,q is suitably large.
0.2/ I Moreover, the initialization raté/n is not rapidly im-
proved by increasing the value of as shown in Fig. 14,
wherel is the number of cold qubits picked up at the end of
0 o 0'2 0'4 0I6 0I8 ] the program. Althoughis expected to be close to- S for
: ‘ ‘ ‘ large values oh, only | =0.7(n-S"Y is achieved even when
S/n Nn=1000 and=0.9. This is due to the increase in the thresh-
FIG. 12. Plots of5"¥n againstS/n for the different values af: o!d of _the bias for cold qubits pi_cked up at the_terminal_step,
n=70, n=200, andn=1000. The values of original uniform bias  SiNCe it becomes large for largein order to avoid reduction
are also shown on the horizontal axis. Each run of the simulatio the population of the component St@'_"oo- There are
was terminated at the depth df100. The plots are data points Still some other plots of data: The maximal efficiency of
from the simulation, all of which approximately lie on the curve of initialization, re=(n-S"9/(n-9), is plotted in Fig. 15. It is
i““/n:\s“%. The facing arrow pairs indicate the most distant datanot large enough unless the original bias is almost 1 if we
points from the curve in the vertical direction for=1000, accom- regard the scheme as a classical data-compression method.
panied by the distance valuésoth upper and lower sidle Matrix calculations were conducted to verify the behavior of
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0.45 T In addition, combining one of the results, inequali2)
0.4 | i with inequality (23), we find that, forn=70 and O<e
S 035} oo <0.65,
g 037 o e | <n(1-\Sn+p). (35)
S 025 o
= £=0.3 ~oae-
= 02} %, £=0.5 -+
o 015 F £=0.7 e VII. DISCUSSION
= ' £=0.9 e
& 01} i | S e e R Much work has been done on the theory of quantum data
0.05 | ) - o compression of mixed statgd,24—29. Nevertheless, our
Y I Y A . o S S numerical analysis is the first evaluation of large quantum
1 10 100 1000 circuits actually generated by a compression scheme for en-

R

semble gquantum computing as far as the authors know. Cal-

culating an actual compression rate for a specific case is

FIG. 14. The initialization raté¢/n againstn for the values of  quite another subject than a theoretical proof of a limit to a
uniform original bias:e=0.3,£=0.5,£=0.7, ande=0.9.1 is the  compression rate. For an initialization of ensemble comput-
number of cold qubits picked up at the last step in the simulationgrs, the string to be compressed is a macroscopic string
For each data point, we chose the largest of five samplédi@t  \which is a probabilistic mixture of microscopic strings. It is
were calculated with different random seeds. probably impossible to generate a quantum circuit providing

the optimal compression rate for this case as long as only the
the automatically generated circuits fo 13, indicating the  biases of qubits are referred to at each step of the circuit
reliability of our molecular simulation. Two of them have designing. It would be possible to construct the optimal com-
been already shown in the examples of Sec. V. The reliabilitypression circuit when it is generated by referring to the popu-
of the simulation is also statistically evaluated in Appendixlations of component states. So far, efficient and effective
A. The relation ofsgnd to Swas obtained also for the biases initialization schemes are those which target the typical se-
that are originally nonuniform when=70, showing almost quenceg428,30.
the same amount of increase ﬁ“d as that for originally The general difficulty in the evaluation of a quantum data-
uniform biaseqsee Appendix B compression scheme is caused by correlations among qubits

One can conclude from the results of our molecular simuafter multiple-qubit operations. Our program has demon-
lation, especially from Eq(33), that the number of initial- strated that it does not cost so much resources to simulate a
ized qubits after the application of the boosting scheme is scheme for initial thermal states in which only permutations
of component states are used since only classical correlations
can be induced. The boosting scheme is one of this special
type of compression methods although its initialization rate
is not large. There are many polynomial-time classical data-
compression schemes offering the average code length ap-
number that has appeared in inequa(@®) of Sec. lll. Bis  proximately equal to the Shannon entropy of the original
negligible for largel, in particular forn=1000 ande £0.3.  probability distribution for suitably large—e.g., enumera-
When it is required that the bias of an initialized qubit pickedtive coding [31]—some of which were reconstructed as
up at the terminal step tend to 1 with increasmg=0(1).  quantum algorithm$32-35. A common efficient classical

data compression may be used for a more effective initial-
1 : : : : ization as long as the number of required clean qubits of
workspace is log O(poly(n))] [30]. With a proper molecular
simulation, a quantum circuit constructed by a classical data-
compression scheme would be easily evaluated.

To realize a high initialization rate, the value of the total
binary entropyS, at the terminal step in an initialization
scheme must be nearly equal to that of the von Neumann
entropy of the system. In the boosting scheme, as illustrated
in Fig. 11, although the growth o, is a little suppressed,
the suppression is not sufficiently strong. The amount of cor-
relation S,— S grows step by step, mainly in the early steps,
in the bias-boosting process. In other words, a classical string
whose macroscopic bits are strongly correlated to each other
can only be compressed by the scheme without an increase

FIG. 15. The maximal efficiency of initializations.=(n in the amount of correlation, although such a string does not
—S‘;"Cb/(n—S), for n=1000 against the uniform original bias The ~ €xist initially in a common NMR system. An effective ini-
crosses are data points from the simulation and the curve is théialization scheme must have an ability to suppress the
spline fit. growth in the total correlation.

l<n(1-VSIn-5+p) (34)

for n=1000 and G<&£=<0.975, whereSis the von Neumann
entropy of the system¢ e (-0.05,0.04, and B8 is a small

< = <
+ [« o]

Maximal efficiency r,

<
o

0 0.2 0.4 0.6 0.8 1
Original bias &
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Finally, we have to discuss the curious relationstto 100
Sthat has been suggested by the simulation results. The re-
lation given by Eq.(31) is simple despite the complicated %
process of the growth ir§. It is difficult to predict the %96-

growth without the molecular simulation. Indeed, there are
nothing but a few trivial things that support an intuitive in- e

e

o w” +’+‘H‘ "'++‘+'1‘~+-—-+-+-_*-¢

terpretation of the relatiorti) i”d:SWhens:O ore=1 and «

(i) " increases monotonically &increases, at least ap- 92t
proximately. But there might be also a profound physics in

the simple relation, although it is, of course, a result for a 90

special scheme. We have calculated the growt8.afly in
the circuits that comprise the basic circuits shown in Fig. 2.
It is of interest to examine a growth in the sum of binary
entropies in a similar scheme with another basic circuits as |G, 16. The average values 88" (solid squaresagainst the
well as that in other compression schemes. number of virtual moleculesl whene=0.5 andn=100. The error

bars represent 99% confidence intervals associated with each mean.

88

10° 104 109 108
N

VIIl. CONCLUSION
the number of qubitsn=100. The data were obtained by

A molecular simulation has been demonstrated to evaluatgxecuting the program 60 times for each valueNofvith
the effectiveness of Schulman and Vazirani's boostingjifferent random seeds. In the figure, the error bars represent
scheme for the initialization of NMR quantum computers.gg9o, confidence intervals associated with each mean. The
We have confirmed that a generated quantum circuit willhalf width of the confidence interval is smaller than 0.4 bit
enhance the biases of target qubits as it is designed to. HOWgr the values ofN=5.0X 1C°. Because the mean value of
ever, our results have also indicated that the scheme is rathgénd was found to be insensitive to the value Mfand we
inefficient with reSpeCt to the initialization rate even for aused the same number of Samples for each data point, this
large number of qubits. When we use 3-qubit basic circuitsingicates that the systematic errors are negligibly small for
the rate is at most approximately 1S/neven fon=10°as  such large values oN. Along with the growth ofN, the
long as G<&=<0.975, whereS is the von Neumann entropy errors are reduced even further. Moreover, the variance of the
of a wholen-qubit ensemble. This is owing to a large in- samples,V,, is less than 0.1 Bitwhen N=5.0x 10° (Fig.
crease in the sum of the binary entropies of individual qultSl?) Each value of\/s was calculated with the 60 Samp|es of
This increase means that a large amount of classical correlggnd at the corresponding value &f This result shows that
tion is induced in the macroscopiequbit string. It is to be e do not need to employ a statistical average value of
hoped that an advanced algorithm that suppresses the grow@nd_i_e_, a single sample value 6" is reliable enough—
in the amount of correlation will be constructed to improvewhen N is set to such a |arge number. The nonaveraged
the rate. sample values o&" used in Sec. VI are reliable since we

have seN=5.0x 1(°.
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formly distributed biases is as effective as that for uniformly
APPENDIX A: RELIABILITY OF THE SIMULATION

Because our simulation uses a limited number of virtual 10 O
molecules, there are, to some extent, errors in the output “\
data. The errors comprise both systematic and statistical er- =
rors, since the time evolution of the virtual molecular system «
is deterministic in program 1 while the setup of the system is
dependent on the random sesée also Appendix JCHere,
we present a statistical evaluation of the reliability of the N/
simulation system although the errors are expected to be 0.1 ~a.
small in the data used in Sec. VI as we have set the number
of molecules suitably large.

t)

Vs (bi

In order to evaluate the reliability, the average of sample
values ofS" was plotted against the number of molecules,
N, as shown in Fig. 165" is the value of the effective
entropy at the depth afi=100 as no further increase B

the simulation, we chose the original uniform bias0.5 and

0.01

103

hol _ . FIG. 17. Plots ofVg against the number of virtual moleculés,
was found at larger depth. Considering the running time ofv is the variance of the sample valuesS§f“at each value oN.
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° - +g+«+.>%-’*'*‘)‘"' """""" lag S N(1-\S) (B4)
80| ,(.gif_f.’-l'—-—*: """""" | for any realistic value of (0.1< y=<1). Although the rela-
50 fa e 1 tion has been verified in the structure that comprises two
« 40 [ | species of qubits, similar results are expected to be given for
:: molecules that consist of atoms with many different original
30 ¢ i biases.
20 | §;8;i .
10 & x=07  + | APPENDIX C: DETAILS OF THE SIMULATION
= ALGORITHM
0 . Sy
30 35 40 45 50 55 60 65 70 Here, we show the details of the simulation algorithm for
s the bias-boosting scheme in the following program of pro-
gram 1, which has been explained in Sec. V.
FIG. 18. Plots ofS'x; againstS for x=0.1, y=0.4, x=0.7, and Program 1 The simulation algorithm for generating an
x=1 whenn=70. initialization circuit based on the boosting scheme. Here,

frand) is a function that returns a pseudo random real num-
biased qubits, in the boosting scheme. Considgubits in  ber between 0 and 1. A qubit with a bias greater thgg is
the structure - --A-B-A-B-A-B---- wheren is even;A andB  regarded as a cold qubit.
represent the atom with original biag=0 and that with  procedure GEN_INIT_CIRCUIT:
eg=0, respectively. The initialization for this structure is begin

equivalent to the one for the structui-A-----A-A-B- call CREATE SYSTEM
B-----B-B since we arrange the pointers to the qubits in the  Create tHl], a table of pointers to individual qubits
order of the biases. (tbl[1] is the uppermost end

When g,>¢g (i.e., O<gg<<1), a pointer toA is rarely Arrange th[] so that the pointer to a qubit with a
grouped with a pointer t8 in early time steps in the scheme; larger bias appears upper side and that with a
the increase in the effective entrofyg occurs separately smaller appears lower side.
in A-A-----A-A and inB-B-----B-B. Together with Eq(31), while new cold qubits are obtained in laststeps
this leads to that the terminal value 8f,g is given by and depth of output circuits preset max-

imum depth;do
o N =% N~ j<—_minimumj such thatsy,j;=< €col
he = 5 V2SN + SV2S5T, (B1) while j<n-2 do
call BoosT(thl[j], thI[j+1], tbl[j+2])
if eyj; is increasedhen
Output the circuit applied in the last
call of BOOST procedure with the
indication of handled qubits, tgl],
tbl[j +1], and tb[j+2].

whereS'%, <n/2 andSY'% <n/2 are the von Neumann en-
tropies in the original distribution foA-----A andB-----B,
respectively. The increase in the effective entropy is smaller
than or approximately equal to that for the uniform bias dis-
tribution, since

else
1 - Undo the lasBOOST.
o= =(/S%+ KW = \sh, (B2 endit
V2n j<—j+3
endwhile
whereS="9, +3'9.. On the other hand, whes,= &g, the Rearrange th].
increase in the effective entropy is almost the same as that Take a log of tH]] and ey for simulation use.
calculated for the originally uniform bias distribution. In this endwhile
case, end
,r}de ~ns (B3) procedure CREATE SYSTEM

CreateN molecules(A molecule consists afl binary digits)
Now we utilize the coefficienf and seteg=yxep to cal-  begin
culate the increase in the effective entropy in the scheme for m«—1 to N do

whenn=70 for several different values gf (0< y<1). The fori—1tondo

relation of ,TB to Sis well depicted in Fig. 18. The figure if frand) <(1+¢;)/2 then
shows that, as long as Gsly<1, S‘éTB is not sensitive to the ith bit of mth molecule—0
value of y and all the points approximately lie on the curve else

of f‘A"B: VnS Hence, the use of EdB3) is justified forn ith bit of mth molecule—1
=70. One can conclude that the number of initialized qubits endif

is endfor
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endfor endfor
end call upDATE BIAS(b)
endif
procedure BOOST(a, b, ¢): end
begin
Consider the trioath bit, bth bit, andcth bit. procedure UPDATE BIAS(i):
for m«—1to N do begin
Apply Fig. 2(a) to the trio onmth molecule. s—0
endfor for m«—1to N do
call UPDATE BIAS(a) if ith bit of mth molecule is Gthen
call urPDATE BIAS(b) S—s+1
call UPDATE BIAS(C) endif
if &,<0 then endfor
for m—1to N do p«s/N
Apply Fig. 2(b) to the trio onmth g—2'p-1
molecule. end
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