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Realization of number-phase minimum-uncertainty states and number states
by quantum nondemolition measurement

M. Kitagawa, N. Imoto, and Y. Yamamoto
NTT Electrical Communications Laboratories, 3-9-11 Midori-cho, Musashrno-shi, Tokyo 180, Japan

(Received 24 November 1986j

Number-phase minimum uncertainty states and number states are shown to be realized by quan-
tum nondemolition measurements of the photon number. Interphase modulation in a Kerr medium
establishes a quantum-mechanical correlation between the signal and probe waves initially in

coherent states. State reduction is realized by homodyne detection of a probe quadrature-phase am-

plitude. The number uncertainty can be arbitrarily reduced by increasing the probe intensity. The
minimum uncertainty relation between the number and sine operators approximately holds until a
near-number state is realized.

A number-phase minimum uncertainty state (NUS) is
mathematically defined as an eigenstate of the operator
e'n +ie 'S, ' where n is the number operator, S
=(n+1) '~ al2i +H.c. (the sine operator), and r is a
squeezing parameter. When the parameter r is greater
than —( —, )I (n2(n)), the photon-number uncertainty is
smaller than the standard quantum limit, ( b, n ) sQL= ( n ), while the minimum uncertainty relation,
(bn )(b,S ) =( —,

' )(C), is still preserved, where

C=(n+ I) '~ a/2+H. c. is the cosine operator. As r in-
creases, NUS's approach number states which feature the
maximum channel capacity in optical communication
and also improve the performance of a gravity-wave-
detection interferometer. The generation of NUS's as
well as squeezed states is of potential importance in infor-
mation transmission and precision-measurement systems.

We have proposed three schemes for generating NUS's:
That utilizing self-phase modulation in a Kerr medium,
that using a highly saturated laser oscillator with
suppressed pump noise, and that using negative feedback
of the photon number measured by a quantum nondemoli-
tion (QND) scheme to a laser pumping.

In a previous paper on the QND measurement of the
photon number Haus and two of the present authors
(N.I. and Y.Y.) demonstrated that the measurement error
An of the signal photon number and the back-action noise
AP imposed on the signal phase satisfy the minimum un-
certainty relation. The result suggests that the signal
quantum state after the QND tneasurement is a NUS with
the photon-number uncertainty determined by measure-
ment error hn and the sine uncertainty determined by
back-action noise b,P. This paper examines this predic-
tion within the present framework of quantum theory of
measurement, ' and discusses the conditions for generat-
ing NUS's and number states by state reduction in QND
measurement.

The QND measurement scheme is depicted in Fig. 1.
The first stage of the QND measurement, i.e., the estab-
lishment of a quantum-mechanical correlation between
the signal and probe waves, is achieved by a unitary inter-
phase modulation in a Kerr medium. The second stage,

i.e., the nonunitary reduction of the state, is realized by
homodyne detection of a quadrature-phase amplitude of
the probe wave.

The signal (suffix a) and probe (b) waves are assumed
to be initially in coherent states P, o ——

~
ao)„(ao

~

and

pbo ——
~
Po)b&(/3o ~, respectively. The initial density opera-

tor (DO) of the total system is

Hr =&+n nb

where n, =a a and nb ——b b are the photon-number
operators of the signal and probe waves. The creation and
annihilation operators for the signal and those for the
probe are denoted by a and a, and b and b, respective-
ly. The coupling constant 7 is proportional to third-order
nonlinear susceptibility X' '(cu„'cu„—cuz, co& ). Self-phase
modulation processes are assumed to be negligible due to
the resonance which only enhances the IPM process.

The equation of motion for the spatial translation
operator U(z) in the interaction picture is readily integrat-
ed to give

U(z) =exp( igzn, nb IU ),
where U is the speed of light in the Kerr medium. After

- l~-)-Signal a = Kerr medium
- ln. )~

Propre g - Hl = 6+'6~6(

-(meas)
Pa

Homo dyne
det. on bq

Readout P2

FIG. 1. QND measurement scheme of photon number.

PO=PaOPbO-

The interaction Hamiltonian for interphase modulation
(IPM) in the optical Kerr medium is expressed by
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passage through the Kerr medium of length L, the DO
for the total system becomes

p, b =exp(ipn, nb )po exp( —ipn, nb ), (4)

Here

p, =Trq p,„=g Pb (n )
I

aoe'""
& o & aoe

'""
I

where p =XL /U.
The signal and probe photon-number distributions are

still Poissonian, P, (n ) =exp( —n, o)n,"o ln! and Pt, ( n )

=exp( nl,—o)nbo!n!, where n o=
I
ao

I
and nbo=

I Po I

are the initial mean photon numbers. However,
quantum-mechanical correlation has been established be-
tween the signal and probe at this stage. The signal ex-
periences an increase in phase uncertainty due to IPM.
This can be visualized by a quasiprobability density (Q
representation)

Q, (a)=, (a Ip, I
a),

=g Pb(n)exp(
I
a aoe'""

I

the cosine mean from initial value =1,

( C, )'=exp( p—znbo) .

The signal state after the homodyne measurement of a
quadrature phase amplitude bz ——(iz b—)/2i of the probe
is given by the projection into an eigenstate,

I
Pz)b, of

bz. 'o The DO p,' '"' of the signal after the readout of Pz
1s

~(meas) gr ~ ~(read)~
p ~ =~V Trbp b p~b

k, m

&& b & n
I pbo I

k & b I aoe
™&..&

aoe'"" I, (9)

where X is a normalization constant determined by
Tr,p,' "' =1. pb"' ' ——

I Pz)bb(pz I

is the DO corre-
sponding to readout Pz. The DO p,' "' describes the
quantum statistical properties of the signal ensemble
which features specific readout Pz.

The signal photon-number distribution becomes

is the reduced density operator for the signal. The Q, (a)
with weak and strong nonlinear interactions are shown in
Figs. 2(a) and 2(c).

The sine uncertainty after IPM calculated from p, is

P,' '"'(n) =P, (n)G(n),

where

b (Pz
I

Poe'"" &b

(loa)

( AS ) 1 /(4n o) + [ 1 —exp( —2p nbo)]/2

where n, o»1 (say, n, o& 10) and p «1 are assumed.
Moreover, ao ——

I
ao

I
exp( —in', osis) is chosen so that

(S, ) =0. ' The second term is the increase by IPM and is
regarded as a back-action noise. An increase in phase
uncertainty is also observed as a decrease in the square of

=X' expI —2[
I Po I

sin(pn —n, osinp, ) —Pz] I,
( lob)

is a modification factor and X is a constant. Here,
Po ——

I Po I
exp( —in, osinltt) is chosen so that the reduced

density operator pb =Tr,p, b gives (Sb ) =0. This sets the
most probable readout for bz around Pz ——0. In practice,

(6,6) (6,6)

6,

(-6,-6) (6,6) (-6,-6)
(6,6)

(-6

-6)

(-6,-6) (-6,-6)
FIG. 2. Q representations of signal states. (a) Q(a)=(a p, a& before readout, and (b) Q' ""(a)=(a

I p,' "'
I
a& after readout

Pz ——0, both with weak nonlinear interaction p. =0.15 and n, o
——nqo=16. (c) and (d) are the same as (a) and (b), but both with strong

nonlinear interaction p =0.35. Contours are, from lowest, at 0.005, 0.05, 0.1, 0.15, . . . , 1.0.
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G(n)=N'e px[ —2[
~

/3o
~
p(n —n, o) —/32] } . (12)

Q. 5

Q.4- (a) @=0.1 5

-0-3-C

0.2

this is done by choosing the appropriate local oscillator
phase in the homodyne measurement of b2. The photon-
number distributions for p,' '"' are compared with those
for p, in Fig. 3. The photon-number distribution is con-
centrated more on the average value after the selection
based on the readout P2 when p is small, as shown in Fig.
3(a). On the other hand, the distribution with large p ap-
parently possesses side lobes as shown in Fig. 3(b)." This
is because the factor G(n) is a multiple-peaked function
of signal photon-number n with average peak interval
nip. To avoid side lobes in P,' "'(n), this interval
should be far greater than the initial photon-number un-
certainty n,'o . This implies a limit on the nonlinear cou-
pling strength,

/ «~/I ~o
I

Moreover,
~
Pz ~

should be much less than ~/3o ~, other-
wise the intervals between the nearest-neighbor peaks be-
come so small that a side lobe is unavoidable. However,
the probability of obtaining such a large

~
P2 ~

is negligi-
ble as long as

~
/3o

~

&&1 since (11) also assures that /32 is
concentrated in the

~
/3z

~

&&
~
Po ~

region.
For a weak nonlinear interaction p «1, G(n) is well

approximated around n =n 0 sincp =n, o by Gaussian
function

The initial Poisson distribution P, (n) can also be approxi-
mated by a Gaussian distribution with variance n, o when
n, o»1. Then P,' "'(n) is rewritten as

P,' "'(n)=N" exp[ —(n n—,o d—n) /2cr ], (13a)

where dn =4tr p I/3o
I
4=/32//J

I
/3o I

is a shift of the
mean from n, o and N" is a normalization constant. The
photon-number uncertainty is

(b,n, ) =o =[(1/n, o)+4@ nbo] (13b)

This is determined by measurement error 1/4p nbo, and
can be arbitrarily reduced by increasing the probe ampli-
tude ~/3o ~. The Fano factor F=(b,n, )/(n, ) calculated
by (13b) is shown for the case of P2 ——0 in Fig. 4.

The means and variances of the photon number n„and
the sine S„and cosine C, operators are numerically cal-
culated using p,' "'. The Fano factor F, the sine uncer-

tainty ( bS, ), the square of the cosine mean ( C, ), and
the number-phase uncertainty product defined by

P„=(Sn.') (SS.')/(C. )', (14)

are calculated from these results and are shown in Fig. 4
by bold curves. Here ao is chosen so that (S, ) =0 is sa-
tisfied. ' The readout P2 ——0 is chosen as an example.

In the region of weak nonlinearity, the Fano factor is
reduced by increasing p. It is then in good agreement
with that obtained by (13) assuming that there is no side
lobe. In this region, the uncertainty product remains
very close to the minimum of 0.25. Q,

' ""(a)

=, (a
~ p,' "'

~
a), shown in Fig. 2(b) exhibits typical

characteristics of NUS, namely, squeezing in photon
number (radial direction).

The Fano factor increases beyond a certain value for p.
This is attributed to side lobes in the photon-number dis-

0.1-

0

0.7

0.6

p5-

P.2-

(b)

8 12 16 20 24 28
n

0=0.35

1

I
1 ~ I I

I
I ~

~~r j 3
~/

'~— 1ps.
r«Cj:

0.1-

0
8 12 16 20 24 28

FIG. 3. Photon-number distributions of signal states. (a)
Weak nonlinear interaction p, =O. 15, and (b) strong nonlinear in-

teraction p =O. 35. n, o
——nbo ——16. Open distributions are P, (n)

before readout, and cross-hatched distributions are P,' "'(n)
after readout /32 ——0.

0 0 05 0 10 015 .20 .25
Nonlinearity p,

FICs. 4. Fano factor F (solid curves), sine uncertainty
(dashed), square of cosine mean (dotted), and number-phase un-

certainty product P„z (dashed-dotted) of the state after readout

P2 ——0. Bold curves are exact numerical results and thin curves
are approximate analytical results assuming single-peaked
photon-number distribution. n, o

——nba ——16.
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Pns = ( 4 )sinh(ILt nbo) /(Itt nbo) . (15)

As shown by the thin dashed-dotted curve in Fig. 4, this
uncertainty product remains very close to the minimum

4, even when p nb 0 is increased to 4 to achieve
(, An, ) &1 in (13b). This is an NUS and also a near-
number state. A further increase in p nbo may degrade
P„z, but still reduces ( An, ). Such an increase allows the
states to approach number states.

tribution. As a result, the uncertainty product also in-
creases. Spurious substructure is observed in Q,' "'(ct) in
Fig. 2(d). These phenomena could be avoided if p has
been kept small enough to satisfy (11) and

I
/3o I

has been
increased instead. Phase uncertainty is hardly affected by

b2 measurement on the probe as observed in Fig. 2. In
fact, ( AS, ) and ( C, ) of the state after the measure-
ment are well approximated by those before the measure-
ment given in (7) and (8) which are plotted by thin curves
in Fig. 4. Therefore, the uncertainty product can be writ-
ten by using (7), (8), and (13b) as

Each signal state after the QND measurement is re-
duced to a different NUS corresponding to different
readout 13q. The probability of finding out the prescribed
P2, i.e., the desirable NUS, decreases with the Fano factor.
The continuous generation of the desirable NUS would
only be possible when the deviation in /3z from the
prescribed value is fed back to initial state p, o,

' or fed
forward to the state after the measurement, p

'

In conclusion, the states after QND measurement of the
photon number are NUS when the signal and probe are
initially in coherent states, and the nonlinear interaction p
is small enough to eliminate side lobes in the photon-
number distribution. Near-number states, (An, ) & 1, can
be achieved within the NUS, and the states still approach
the number states by increasing the probe amplitude

I &o I.
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