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ABSTRACT

We have conducted direct numerical simulations of a turbulent boundary layer for the
momentum-thickness-based Reynolds number Reθ = 180�4600. To extract the largest-
scale vortices, we coarse-grain the �uctuating velocity �elds by using a Gaussian �lter
with the �lter width comparable to the boundary layer thickness. Most of the largest-
scale vortices identi�ed by isosurfaces of the second invariant of the coarse-grained ve-
locity gradient tensor are similar to coherent vortices observed in low-Reynolds-number
regions, that is, hairpin vortices or quasi-streamwise vortices inclined to the wall. We
also develop a percolation analysis to investigate the threshold-dependence of the iso-
surfaces and objectively identify the largest-scale hairpin vortices in terms of the coarse-
grained vorticity, which leads to the quantitative evidence that they never disappear
even in fully developed turbulent regions. Hence, we conclude that hairpin vortices
exist in the largest-scale structures irrespective of the Reynolds number.

1. Introduction

It is now a common sense that there exist coherent
structures even in developed turbulence. Since coherent
structures are a key to understanding the dynamics of
turbulence, it is desired to reveal what kind of structure
is dominant. For example, quasi-streamwise vortices,
which are inclined to the wall-normal and spanwise di-
rections, are dominant structures in the bu�er layer of
wall-bounded turbulence. Direct numerical simulations
(DNS) of turbulent channel �ow (e.g. Jiménez and
Moin, 1991; Jeong et al., 1997) and turbulent bound-
ary layers (e.g. Spalart, 1988; Robinson, 1991) signi�-
cantly contributed to understanding the turbulence in
terms of the coherent structures. In addition to the
quasi-streamwise vortices, it is also known that hairpin-
shaped vortices exist in turbulent boundary layers. Fig-
ure 1 shows typical hairpin vortices which are induced
by an arti�cial body force in the present DNS (see
Section 2.1 for the details). Their downstream part
is lifted up from the wall and orients to the spanwise
direction to form hairpin vortices. We emphasize that
these hairpin vortices are not numerical artifacts, but
in fact, many experiments (e.g. Kline et al., 1967;
Falco, 1977; Bandyopadhyay, 1980; Head and Bandy-
opadhyay, 1981; Smith et al., 1991) also showed the ex-
istence of hairpin vortices in turbulent boundary layers,
and many models and theories have been developed to
explain the statistics of the turbulence in terms of hair-
pin vortices (e.g. Theodorsen, 1952, 1955; Townsend,
1976; Perry and Chong, 1982; Perry et al., 1986; Perry
and Marusic, 1995; Hwang, 2015; Marusic and Monty,
2019).

It is then natural to examine whether these coher-
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ent vortices (i.e. quasi-streamwise vortices and hairpin
vortices) are also dominant in developed turbulence.
To investigate this issue, Adrian et al. (2000) exam-
ined the two-dimensional velocity �elds on the spanwise
plane which are obtained by particle image velocime-
try (PIV). Their study found hairpin vortex signatures
(HVS) which are described by the combination of �ow
elements: a swirling region, an ejection, a stagnation
point between the ejection and an upstream sweep, and
a low-speed region near the wall (see Fig. 10 in Adrian
et al., 2000). The swirling region corresponds to the
head of a hairpin vortex, whereas the ejection corre-
sponds to the up�ow in the low-speed region between
the two legs and the ejection collides with the sweep
from the upstream to form a stagnation point. Ac-
cording to the PIV studies (e.g. Adrian et al., 2000;
Ganapathisubramani et al., 2003; Adrian, 2007; Dennis
and Nickels, 2011a) on the turbulent boundary layers
at high Reynolds numbers, the HVS are frequently to
form a so-called hairpin packet in the streamwise direc-
tion.

For the last decade, quite a few authors investigated
the details of three-dimensional vortical structures by
using DNS of turbulent boundary layers. For exam-
ple, the visualization of small-scale vortices by Wu and
Moin (2009a,b) showed the forest of hairpins in an up-
stream region with low Reynolds numbers, where the
e�ect of the transition remains. The result is consistent
with those by the experiments (e.g. Kline et al., 1967;
Falco, 1977; Bandyopadhyay, 1980; Head and Bandy-
opadhyay, 1981; Smith et al., 1991; Adrian et al., 2000;
Ganapathisubramani et al., 2003; Adrian, 2007; Den-
nis and Nickels, 2011a). On the other hand, it was also
reported that, as the Reynolds number increases, vor-
tical structures viewed from the top (i.e. vortices in the
log or outer layers) are not hairpin-shaped (Jiménez
et al., 2010; Schlatter et al., 2014; Eitel-Amor et al.,
2015). Although arch-like vortices are observed around
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the boundary layer thickness (i.e. the turbulent/non-
turbulent interface) in these DNS, Schlatter et al.
(2014) and Rahgozar and Maciel (2016) showed that
most of the spanwise vorticity, which is an element of
the HVS, does not correspond to the head of a hairpin
but arch-like vortex without legs attached to the wall.
In summary, these studies of the DNS of high-Reynolds-
number turbulent boundary layers concluded that the
spanwise vorticity is not a su�cient condition for the
existence of hairpin vortices and that the smallest-scale
vortices in the log and outer layers are not hairpin-
shaped. This seems to be con�icting with the experi-
mental results where the hairpin vortices are observed
as the HVS. A purpose of the present study is to get
rid of this super�cial inconsistency. Although it is not
conclusive whether or not hairpin vortices exist in the
bu�er layer of the developed turbulent boundary lay-
ers (e.g. Schlatter et al., 2014; Jodai and Elsinga, 2016),
the targets of the present study are vortices larger than
them, that is, boundary-layer-thickness-scale vortices.

Noting that the magnitude of the velocity gra-
dient in turbulence is determined mainly by the
smallest-scale structures, vortices identi�ed by the DNS
(e.g. Jiménez et al., 2010; Schlatter et al., 2014) are
at the smallest scale. On the other hand, the veloc-
ity is determined by the largest-scale structures. Since
the HVS is based on the structures (ejections, sweeps
and low-speed regions) related to the velocity, the ob-
served structures are related to the largest-scale vor-
tices. Therefore, we can infer that vortices observed in
the DNS and experiments are at di�erent scales. This
inference is consistent with our previous DNS study
(Motoori and Goto, 2019a), where we identi�ed the
hierarchy of multiscale vortices by coarse-graining the
velocity �elds at di�erent scales. Our visualization of
the coarse-grained turbulent �elds qualitatively showed
that the largest-scale vortices are likely to be hairpin
vortices (which correspond to the HVS in the exper-
iments), whereas the smaller-scale vortices in the log
layer are randomly oriented [which correspond to vor-
tices in the DNS by Jiménez et al. (2010) and Schlat-
ter et al. (2014)]. The observation of the largest-
scale hairpin vortices is also consistent with the studies
(e.g. Ganapathisubramani et al., 2003; Lee and Sung,
2011; Lee et al., 2014) on (very) large-scale motions
(LSM). For example, Lee and Sung (2011) identi�ed
LSM with the �ltered velocity to show that they are re-
lated to the large-scale hairpin vortices. Thus, �ltering
is necessary to identify large-scale structures, which was
used by many authors (e.g. Abe et al., 2004; Hutchins
and Marusic, 2007; Elsinga et al., 2010; Lee and Sung,
2011; Lee et al., 2014, 2015, 2017; Hwang et al., 2016;
Lozano-Durán et al., 2016; Deshpande et al., 2019;
Kevin et al., 2019a,b). Incidentally, del Álamo et al.
(2006) and Dennis and Nickels (2011a) extracted large-
scale vortical structures by conditionally averaging the
turbulent �elds, which may be regarded as a kind of

x = 25δ∗in

50δ∗in

y

z

Fig. 1: Hairpin vortices induced by the body force. Isosurfaces
of the second invariant of the velocity gradient tensor (with the
threshold Q+ = 0.1) are shown. The grid width indicates the
boundary thickness at the exit plane of this visualization.
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Fig. 2: Schematic of the computational domains of the
present two DNS. The inlet condition of the simulation (Shigh)
for higher Reynolds numbers is the time-series of turbulent
�elds at the streamwise location (Reθ = 994; x = 3Lx/4)
obtained by the simulation (Slow) for lower Reynolds numbers.

coarse-graining.
In the present study, we conduct DNS of

a streamwisely-elongated turbulent boundary layer
for the momentum-thickness-based Reynolds number
Reθ = 180�4600. We focus on vortices at the largest
scale comparable to the boundary layer thickness so
that we can quantitatively show the dominance of hair-
pin vortices and its Reynolds-number independence.
For this purpose, we apply a Gaussian �lter with the �l-
ter width comparable to the boundary layer thickness.
In the rest of the present paper, we �rst describe the
methods of the DNS (Section 2.1) and coarse-graining
(Section 2.2). We then objectively identify the largest-
scale vortices (Section 3.1) to quantitatively show that
hairpin vortices exist in the largest-scale structures ir-
respective of the Reynolds number (Section 3.2). Then,
we will show that the present result is not con�icting
with the previous numerical and experimental results
(Section 4).

2. Methods

2.1. Direct numerical simulation
We numerically simulate turbulent boundary layers

with zero pressure gradient over a �at plate by solving
the Navier-Stokes equations of an incompressible �uid
by a standard �nite di�erence scheme. Although the
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Table 1

Numerical parameters of the DNS for the low (Slow) and high (Shigh) Reynolds numbers. Here, Lx, Ly and Lz

are the sides of the computational domain, Nx, Ny and Nz are the numbers of the grid points, and ∆x+, ∆y+
min

(the smallest grid width) and ∆z+ are the resolutions at the domain exit. δ∗in is the displacement thickness at
the inlet of Slow.

(Lx, Ly, Lz) (Nx, Ny, Nz) (∆x+, ∆y+
min, ∆z+) Reθ

Slow (1000, 80, 240)δ∗in (2048, 384, 1024) (9.7, 0.18, 4.6) 180�1190

Shigh (5000, 240, 240)δ∗in (8064, 640, 768) (10, 0.29, 5.2) 990�4600

(a)

(b)

u+
rms

w+
rms

v+rms

Fig. 3: Wall-normal distributions of (a) the mean streamwise
velocity and (b) the root-mean-square values of the �uctuat-
ing velocity components. Lines show the present results at
the locations with Reθ = 1000 (red), 2000 (blue) and 4060
(green), respectively. The open circles, squares and triangles
indicate the results by Schlatter and Örlü (2010) for the same
Reynolds numbers Reθ = 1000, 2000 and 4060. In (a), the
grey dashed lines indicate the law of the wall: U+ = y+ and
U+ = (1/κ) ln(y+) +B with κ = 0.384 and B = 4.1.

main program for the present DNS is identical to the
one in our previous study (Motoori and Goto, 2019a),
we change the boundary conditions at the inlet. For the
previous inlet condition, we used the time-series data
of fully developed turbulent velocity �elds provided by
Lee et al. (2013, 2017). Here, as shown in Fig. 2,
we separately simulate the low- and high-Reynolds-
number turbulence for reducing the required compu-
tational resources. The inlet condition for the former
low-Reynolds-number simulation (Slow) is the Blasius
solution and the body force is imposed at the stream-
wise location x = 25δ∗in, where δ∗in is the displacement

 300

 100

 1000

 300  3000 1000

Reθ

Reτ

Fig. 4: Relation between the Reynolds numbers Reθ and
Reτ . The red line is the results of the low-Reynolds-number
simulation (Slow) and blue one is those of the high-Reynolds-
number simulation (Shigh). The open circles are the results
by Schlatter and Örlü (2010). The gray dashed line indicates
Reτ = 1.13 × Re0.843θ , which is the best �t to the databases
of Schlatter and Örlü (2010).

thickness at the inlet plane. As the forcing, we employ
the method used by Eitel-Amor et al. (2015), but we
use a smaller value 0.096U2

∞/δ∗in for the parameter C2

of the amplitude of the force in the wall-normal direc-
tion than the value used by Eitel-Amor et al. (2015).
However, we observe in Fig. 1 hairpin vortices which
are identi�ed by the isosurfaces of the second invariant
Q of the velocity gradient tensor. On the other hand, as
the inlet condition for the high-Reynolds-number simu-
lation (Shigh), we use the time series-data of the veloc-
ity �elds obtained by Slow at the streamwise location
x = 3Lx/4 corresponding to Reθ = 994. Here, Lx is the
streamwise length of the computational domain of Slow.
The other boundary conditions and numerical schemes
of these two simulations are the same as in our previ-
ous study (Motoori and Goto, 2019a). The resolution
is also set to be similar (Table 1) by using a su�ciently
large number of grid points. Here, x, y and z denote
the streamwise, wall-normal and spanwise directions,
respectively, and ·+ denotes the wall units de�ned in
terms of the skin-friction velocity uτ and the kinematic
viscosity ν.

We show in Fig. 3 the wall-normal distributions
of (a) the mean streamwise velocity U and (b) stan-
dard deviation (urms, vrms and wrms) of the streamwise,
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(a)
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z

(b)

x

y

z

(c)

x

y

z

Fig. 5: Small-scale vortices identi�ed by the isosurfaces of the
second invariant Q of the velocity gradient tensor in the region
3680 ≤ Reθ ≤ 3780. The thresholds are (a) Q+ = 1.0×10−2,
(b) 1.0 × 10−3 and (c) 1.0 × 10−4. The grid width indicates
the boundary thickness at the exit plane of the visualization.

wall-normal and spanwise velocity for Reθ = 1000 (red
lines), 2000 (blue lines) and 4060 (green lines). Our
results are in good agreement with those (open sym-
bols) of the DNS by Schlatter and Örlü (2010). We
also show in Fig. 4 the relation between Reθ and the
friction Reynolds number Reτ (red line, Slow; blue line,
Shigh), which is also in agreement with the results by
Schlatter and Örlü (2010).

2.2. Coarse-graining
To extract the largest-scale vortices in the turbu-

lent boundary layers, we coarse-grain the simulated
turbulent �elds. More concretely, we apply a three-
dimensional Gaussian �lter

u
(σ)
i (x) = C

∫
V

ǔi (x
′)

exp

(
− 2

σ2
(x− x′)

2
)

dx′ (1)

to ǔi (x
′) (= ui(x

′)−⟨ui(x
′)⟩z) , that is the �uctuating

velocity ui(x
′) minus the spanwisely-averaged velocity

⟨ui(x
′)⟩z. Here, C is a constant to ensure that the in-

tegration of the �lter gives unity, σ is the �lter width

(a)

x

y

z

(b)

x

y

z

Fig. 6: (a) Largest-scale vortices identi�ed by the isosurfaces
of the second invariant Q(σ) of the velocity gradient tensor
coarse-grained at σ∗ = 0.2. The threshold is Q(σ)∗ = 16. The
instance and location are the same as in Fig. 5. (b) A hairpin
vortex (red) and a quasi-streamwise vortex inclined to the wall
(blue) are extracted from the �eld shown in (a).

and ⟨·⟩z is the spanwisely-averaged quantity. For the
wall-normal direction, we employ the method proposed
by Lozano-Durán et al. (2016) that the �ltering opera-
tion is extended by re�ecting the �lter at the wall and
the sign of the wall-normal velocity ǔ2(= v̌) is inverted
in order to ensure the incompressibility and the no-slip
boundary condition of v(σ). This �lter may correspond
to the low-pass �lter of the Fourier modes of the veloc-
ity, and the velocity �eld u

(σ)
i coarse-grained at σ has

only the information larger than σ.
To focus on the boundary-layer-thickness-scale vor-

tices, we �x the �lter width σ∗ = σ/δ99 = 0.2, where δ99
denotes the boundary layer thickness and ·∗ is the outer
scale de�ned in terms of uτ and δ99. Note that the �lter
width is a function of the streamwise location x. Note
also that, near the wall in high-Reynolds-number re-
gions, hairpin vortices with scales (y ≪ σ ≈ δ99) much
smaller than the boundary layer thickness, which were
observed by Jodai and Elsinga (2016), are �ltered out.
In our previous studies (Motoori and Goto, 2019a,b),
we referred to structures with σ ∼ y as the largest-
scale structures, whereas in the present study we refer
to structures with σ ∼ δ99 as the largest-scale ones.

3. Results

3.1. Identi�cation of the largest-scale

vortices
When we visualize the isosurface of a quantity re-

lated to the velocity gradient without coarse-graining,
we always observe only structures at the smallest scale.
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Table 2

Range of the Reynolds numbers in the six streamwise regions (R1�R6).

R1 (Slow) R2 (Slow) R3 (Shigh) R4 (Shigh) R5 (Shigh) R6 (Shigh)

Reθ 480�750 750�990 990�1950 1950�2900 2900�3780 3780�4600

x/Lx
1

4
�
1

2

1

2
�
3

4
0�

1

4

1

4
�
1

2

1

2
�
3

4

3

4
�1

1

10
−2

10
−1

1 10 10
2

Q
(σ)∗
th

Fig. 7: Percolation analyses for the largest-scale vortices
(Q(σ) ≥ Q

(σ)
th at σ∗ = 0.2). The dashed lines show the ratio

N/Nmax of the number of identi�ed objects to their maximum
number. The solid lines show the ratio Vlar/Vtot of the volume
of the largest object to the total volume of all identi�ed objects.
The thickness and darkness indicate the streamwise location
(The thinnest/darkest line is for R1; the thickest/lightest is for
R6; see Table 2). The blue vertical line indicates Q(σ)∗

th = 16.

This is because the magnitude of the velocity gradient
is mainly determined by the smallest-scale structures.
For example, Fig. 5 shows the isosurfaces of the second
invariant Q of the velocity gradient tensor in the region
3680 ≤ Reθ ≤ 3780. As we decrease the threshold [(a)
Q+ = 1.0×10−2, (b) 1.0×10−3 and (c) 1.0×10−4], we
observe more vortices away from the wall, which tend to
connect to each other. We emphasize that the radius of
the identi�ed tubular vortices is much smaller than the
grid width in the �gure (i.e. the boundary layer thick-
ness at the visualized exit plane). In addition, vortices
near the boundary layer thickness tend to align to the
spanwise direction (Fig. 5c), that is, they form arch-like
vortices. This tendency is consistent with the visualiza-
tions of vortices by Jiménez et al. (2010) and Schlatter
et al. (2014), for which they used the ∆-method (which
was proposed by Chong et al., 1990) and the λ2-method
(which was proposed by Jeong and Hussain, 1995), re-
spectively.

In order to extract the largest-scale vortices, we use
the second invariant Q(σ) of the velocity gradient tensor
evaluated from the velocity �eld u

(σ)
i coarse-grained at

σ∗ = 0.2. Figure 6(a) shows the isosurfaces of Q(σ) and
we see that the sizes of the identi�ed vortices are com-
parable to the boundary layer thickness indicated by

(a)

(b)

(c)

Fig. 8: Joint probability density functions of the minimum
y∗
min and maximum y∗

max distance from the wall of (a) all
objects, (b) the larger ones satisfying V ∗ ≥ 0.01 and (c)
V ∗ ≥ 0.02 identi�ed with Q(σ)∗ = 16 for all regions (R3�R6)
of Shigh.

the grid width in the �gure. More precisely, the radius
of the tubular vortices is approximately the �lter scale
σ∗ = 0.2 and the longitudinal length is comparable
to the boundary layer thickness. Moreover, looking at
the shapes of the largest-scale vortices, we notice that
they are similar to the dominant coherent structures
in low-Reynolds-number turbulence, namely, a hairpin
vortex or a quasi-streamwise vortex (see in Fig. 6b two
vortices extracted from Fig. 6a). Note that these vor-
tices are attached to the wall, but their legs are di�er-
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ent from bu�er-layer coherent vortices, which are ab-
sent in the �ltered �eld. Thus, the visualization leads
us to infer that hairpin vortices (and quasi-streamwise
vortices) do not exist as small-scales structures in the
log and outer layers of high-Reynolds-number turbu-
lence [Fig. 5, Jiménez et al. (2010) and Schlatter et al.
(2014)], but they do exist as the largest-scale struc-
tures. We can also see that the largest-scale vortices
do not correspond to the clusters of the small-scale vor-
tices (Fig. 5). This is because small-scale vortices are
created in the larger-scale straining �elds around the
large-scale vortices in the log layer (Motoori and Goto,
2019a).

As observed in Fig. 5, vortical regions identi�ed by
isosurfaces depend on the threshold. Here, to objec-
tively determine the threshold Q

(σ)
th for the identi�ca-

tion of the largest-scale vortices, we investigate the per-
colation of the region satisfying the condition Q(σ) ≥
Q

(σ)
th by using the computational algorithm proposed

by Hoshen and Kopelman (1976). More concretely, we
tag the same label to the neighboring connected grid
cells satisfying Q(σ) ≥ Q

(σ)
th to count the number of

individual vortices for di�erent values of Q
(σ)
th . The

dashed curves in Fig. 7 show the number normalized
by its maximum. The thickness and darkness of the
lines indicate the streamwise location, and we see that
their trends are independent of the location (i.e. the
Reynolds number). For example, when the threshold is
small (Q(σ)∗

th ≲ 4), the number is much smaller than its
maximum because many of the objects are connected.
As increasing the threshold (10 ≲ Q

(σ)∗
th ≲ 30), since

the identi�ed objects are separated, the number of indi-
vidual vortices becomes the largest at about Q(σ)∗

th = 16

(blue vertical line). For Q(σ)∗
th ≳ 100, since the objects

shrink, the number of them again decreases. This trend
of the number of the objects is consistent with the ratio
Vlar/Vtot (solid lines) of the volume of the largest object
Vlar to the total volume Vtot of all objects. Namely, the
volume ratio is the smallest around Q

(σ)∗
th = 16 because

the number of the objects is the largest. This is the
reason why, in the present study, we use the isosurfaces
with the threshold Q

(σ)∗
th = 16.

Before quantitatively showing the dominance of
hairpin vortices, we investigate the size of the objects
identi�ed by the objective threshold (Q(σ)∗

th = 16).
Figure 8(a) shows the joint probability density func-
tion (PDF) of the minimum height ymin and the maxi-
mum height ymax within each object evaluated in Shigh
(i.e. R3�R6; see Table 2). We can see two regions with
higher values of the PDF. One is the vertical band in
0 ≲ y∗min ≲ 0.2 which stems from vortices attached
to the wall, and the other is the diagonal band with
y∗max ≈ y∗min ≳ 0.2 which corresponds to small-scale
objects detached to the wall. Since we examine the
coarse-grained turbulent �elds, the detached objects
are not small-scale vortices but larger than σ(= 0.2δ99).

It is interesting that the similar behavior of the joint
PDF was observed for other quantities without coarse-
graining (del Álamo et al., 2006; Lozano-Durán et al.,
2012; Osawa and Jiménez, 2018).

We show in Fig. 8(b) the joint PDF for the larger
objects satisfying the condition for the volume V ∗ ≥
0.01. We see that this condition gets rid of the group
formed by detached objects (y∗min ≈ y∗max) and high-
lights only the group formed by the attached vortices
(0 ≲ y∗min ≲ 0.2 and 0.2 ≲ y∗max ≲ 1). As increasing the
value of the condition to V ∗ ≥ 0.02, attached vortices
are more highlighted (Fig. 8c).

In the next section, by using the objective thresh-
old (Q(σ)∗ = 16) based on the percolation analyses and
these conditions (V ∗ ≥ 0.01 or 0.02), we will quan-
titatively show the dominance of hairpin vortices and
quasi-streamwise vortices.

3.2. Largest-scale hairpin and

quasi-streamwise vortices
We show in Fig. 9 the isosurfaces with the thresh-

old Q(σ)∗ = 16 in the streamwisely-elongated regions
(a) R3 (990 ≤ Reθ ≤ 1950) and (b) R5 (2900 ≤ Reθ ≤
3780). Irrespective of the streamwise location, we can
�nd hairpin vortices, one-legged vortices and quasi-
streamwise vortices inclined to the wall. These incli-
nation angles to the wall of the legs of hairpin vortices
and quasi-streamwise vortices are approximately 45 de-
grees, which is consistent with the results by Deshpande
et al. (2019) and reference therein. This is because they
are stretched mainly by the mean shear (Motoori and
Goto, 2019a), whose stretching direction in the log layer
is identical to the orientation of the legs.

By quantitatively identifying hairpin vortices and
quasi-streamwise vortices in the direction of the mean-
�ow stretching, we here investigate their dominance ir-
respective of the Reynolds number. For this purpose,
we identify them in terms of the coarse-grained vortic-
ity. Hairpin vortices are composed of two legs with op-
posite signs of the streamwise vorticity and of a head
with the spanwise vorticity near the boundary layer
thickness. To de�ne a hairpin vortex, we look for, in
each connected region satisfying Q(σ)∗ ≥ 16, the maxi-
mum ω

(max)
x and minimum values ω(min)

x of the stream-
wise vorticity and the minimum value ω

(min|y∗>0.5)
z of

spanwise vorticity for y∗ > 0.5. Here, we omit the su-
perscript ·(σ) for the vorticity, though it is evaluated
from the coarse-grained velocity u

(σ)
i . We then call the

connected region a hairpin vortex when it satis�es the
following conditions:

ω(max)
x > 0, ω(min)

x < 0, ω(min|y∗>0.5)
z < 0, (2a)

z(ω(max)
x )− z(ω(min)

x ) > 2σ(= 0.4δ99), (2b)

z(ω(max)
x ) > z(ω(min|y∗>0.5)

z ) > z(ω(min)
x ), (2c)

where z(·) denotes the spanwise location of a quan-
tity (·). The �rst condition (2a) implies a necessary
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Fig. 9: Visualizations in long regions [(a) R3 and (b) R5 in Table 2] of the largest-scale vortices identi�ed by the isosurfaces of
the second invariant Q(σ) of the velocity gradient tensor coarse-grained with σ∗ = 0.2. The threshold is Q(σ)∗ = 16. The grid
width indicates the boundary layer thickness at the exit plane of each visualization.

ω
(max)
x

z(ω
(max)
x )− z(ω

(min)
x )

ω
(min)
x

ω
(min|y∗>0.5)
z

Hj6�1
x

y

z

Fig. 10: An example of hairpin vortices identi�ed by the
conditions (2). The transparent isosurface with the threshold
Q(σ)∗ = 16 is identical to the red one in Fig. 6(b).

condition that the vortex has two streamwise legs and
a head above y∗ = 0.5. The second condition (2b)
implies that the spanwise distance between the legs is
larger than 2σ(= 0.4δ99), which is indicated in Fig. 10
(an example of a hairpin vortex identi�ed by these con-
ditions) by the gray line between ω

(max)
x (red point) and

ω
(min)
x (blue point). The third condition (2c) implies

that the head ω
(min|y∗>0.5)
z (black point) is located be-

tween the legs (red and blue points) in the spanwise
direction. Figure 11 shows hairpin vortices (red) which
satisfy these conditions (2) and V ∗ ≥ 0.01 among vor-
tices identi�ed in Fig. 9. It is important that we can ob-
serve hairpin vortices irrespective of the Reynolds num-

ber [(a) 990 ≤ Reθ ≤ 1950 and (b) 2900 ≤ Reθ ≤ 3780].
The conditions (2) also identify vortices with short and
long legs, that is, the so-called one-legged hairpin vor-
tices.

In addition to the hairpin vortices, we also identify
in Fig. 11 quasi-streamwise vortices (blue) which satisfy
the following conditions:

ω(max)
x ω(min)

x > 0, (3a)

ℓx > δ99, (3b)

where ℓx is the streamwise length of the objects. The
former condition (3a) implies that the sign of the
streamwise vorticity in an individual vortex (Q(σ)∗ ≥
16) does not change. Namely, no vortices can simul-
taneously satisfy the conditions for hairpin (2a) and
for quasi-streamwise vortices (3a). The latter condi-
tion (3b) is that vortices are longer in the streamwise
direction than the boundary layer thickness. Although
we do not impose a condition for the inclination or the
length in the wall-normal direction, most of the iden-
ti�ed quasi-streamwise vortices are aligned in the di-
rection of the mean-�ow stretching (approximately 45
degrees in the log layer). This is consistent with the
fact that vortices with the size (σ ≈ y) comparable to
the height in the log layer are stretched by the mean
shear (Motoori and Goto, 2019a).

By using these conditions (2) and (3), we can dis-
tinguish three types of vortices: hairpin vortices, quasi-
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Fig. 11: Visualizations in the same regions (a) R3 and (b) R5 as in Fig. 9. We extract the largest-scale hairpin vortices (red)
and quasi-streamwise vortices inclined to the wall (blue) under the conditions (2) and (3), respectively. The grid width indicates
the boundary layer thickness at the exit plane of each visualization.

Fig. 12: The number ratios of hairpin (red) and quasi-
streamwise vortices (blue) to all the largest-scale vortices under
the condition V ∗ ≥ 0.01 (circles) or V ∗ ≥ 0.02 (squares) in
the developed turbulence (R1�R6; see Table 2) and the tran-
sition region (Reθ = 180�260) for the �ve snapshots.

streamwise vortices and the others. We show in Fig. 12
the number ratios of hairpin (red) and quasi-streamwise
vortices (blue) to all the largest-scale vortices satisfy-
ing V ∗ ≥ 0.01 (circles) and V ∗ ≥ 0.02 (squares) in the
six developed-turbulent-region R1�R6 (Table 2). We
see that these ratios are almost constant irrespective of
Reθ and that the values under the condition V ∗ ≥ 0.02
are larger than those under V ∗ ≥ 0.01. This is a quanti-
tative evidence that hairpin and quasi-streamwise vor-

tices do not disappear in the downstream regions and
they are in the largest scale of developed turbulence.

Note that, even in the transition region (Reθ = 180�
260) where arti�cial hairpin vortices are induced by the
body force, the ratio of hairpin vortices is less than
20%, whereas that of streamwise vortices has larger
values (30%�40%). This is consistent with the visual-
izations [Fig. 1 and Fig. 7a in Eitel-Amor et al. (2015)]
of the transition region, in which streamwise vortices
are frequently observed but they are developing into
hairpin vortices. Although the values (approximately
15%�20%) in the transition region are larger than those
in the developed turbulence (5%�10%), it is most im-
portant that they never decrease in R1�R6. In other
words, hairpin vortices (and quasi-streamwise vortices)
exist as developed three-dimensional structures in the
largest scale of fully developed turbulent boundary lay-
ers.

4. Discussion: hairpin vortex

In the previous section, we have identi�ed the
largest-scale vortices by coarse-graining turbulent �elds
with the �lter width comparable to the boundary layer
thickness (Fig. 9). Then, we have quantitatively shown
that hairpin vortices and quasi-streamwise vortices in-
clined to the wall exist in the largest-scale structures
irrespective of the Reynolds number (Fig. 12). In this
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section, we show that these results are not con�ict-
ing with the visualizations of three-dimensional vortical
structures in the previous DNS studies or with the ob-
servations of the HVS in the previous experiments.

In low-Reynolds-number regions where the transi-
tion e�ect remains, Wu and Moin (2009a,b) reported
that hairpin vortices are dominant. There only exist
single-scale vortices, that is, they are the largest but,
at the same time, the smallest vortices. This is the
reason why the largest-scale hairpin vortices are identi-
�ed without coarse-graining. However, as the Reynolds
number increases, the hierarchy of vortices appears.
Recall that vortices identi�ed by the velocity gradient
without coarse-graining are at the smallest scale (see
Figs. 3 and 4 in Motoori and Goto, 2019a). Therefore,
the vortices in the log and outer layers identi�ed by
Jiménez et al. (2010) and Schlatter et al. (2014) are at
the smallest scale and their shapes are not hairpin. This
is not inconsistent with the result for the low Reynolds
number (Wu and Moin, 2009a,b) or the present obser-
vation that hairpin vortices exist in the largest-scale
�eld irrespective of the Reynolds number. Here, we
reemphasize that we cannot discuss bu�er-layer struc-
tures in developed turbulence because we �lter them
out.

In many DNS studies (Jiménez et al., 2010; Schlat-
ter et al., 2014; Eitel-Amor et al., 2015; Rahgozar and
Maciel, 2016), not hairpin vortices but arch-like vortices
were observed in the outer layer of the turbulent �elds
without coarse-graining. This does not con�ict with the
present observation. Since, in the outer layer, there is
no scale separation, the arch-like vortices can be iden-
ti�ed in the turbulent �elds without coarse-graining.
However, in the log layer, where a hierarchy of multi-
scale vortices exists, the largest-scale vortices tend to be
streamwisely elongated and their downstream parts are
lifted up (Fig. 9). The largest-scale streamwise vortices
cannot be identi�ed without coarse-graining, and only
the arch-like heads of the hairpin vortices are observed.

In contrast to the identi�cation in terms of the ve-
locity gradients, the HVS identi�es hairpin vortices in
terms of the velocity (ejections, sweeps and low-speed
regions). Since the largest-scale structures (i.e. the
hairpin vortices) are relevant to these motions, it is
natural to observe the largest-scale hairpin vortices by
the criteria (Adrian et al., 2000; Ganapathisubramani
et al., 2003; Adrian, 2007). The multiscale nature thus
explains that the present result is consistent with the
previous numerical and experimental results.

Before closing this section, we show in Fig. 13 the
largest-scale vortices and low-speed regions identi�ed
by the blue isosurfaces of the �uctuating streamwise
velocity u(σ)∗ = −1 coarse-grained at σ∗ = 0.2. We
see that the largest-scale low-speed regions (i.e. LSM)
are streamwisely elongated, and they are located be-
tween the legs of the hairpin vortices or beside quasi-
streamwise vortices. This observation is consistent with

�*��about 200 wall units

Fig. 13: Largest-scale vortices (yellow) and low-speed regions
(blue) identi�ed by the isosurfaces of Q(σ)∗ = 16 and u(σ)∗ =
−1, respectively. A subdomain (Reθ ≈ 3000) in Fig. 9(b) is
shown.

the result by Kevin et al. (2019a) that the conditional
averaged velocity �elds are one-sided-rotating (quasi-
streamwise vortices) or counter-rotating �ow (hairpin
vortices). We also see that these vortices form packets
along the LSM, which is also consistent with the ob-
servations of LSM by PIV (e.g. Adrian et al., 2000;
Ganapathisubramani et al., 2003; Adrian, 2007; Den-
nis and Nickels, 2011a,b) and DNS (e.g. Lee and Sung,
2011; Lee et al., 2014). It is also interesting that this
snapshot is reminiscent of the schematic of coherent
vortices drawn by Adrian et al. (2000). The picture
is therefore evidence supporting their idea, though we
have not discussed the hairpin vortices in the bu�er and
log layers of the developed turbulence. This issue of the
dominance of the hierarchy of attached hairpin vortices
is a target of our future studies, which is related to the
experimental study by Jodai and Elsinga (2016).

5. Conclusions

We have conducted the DNS of a turbulent bound-
ary layer for Reθ = 180�4600 and investigated vortices
at the largest scale with the size comparable to the
boundary layer thickness. The key to the present anal-
yses is to identify the largest-scale vortices in an ob-
jective manner in the turbulent �elds coarse-grained at
the boundary-layer-thickness scale. The most impor-
tant conclusion is that hairpin vortices never disappear
in the downstream regions and they exist in the largest-
scale structures.

In the present study, we identify coherent vortices
by the isosurfaces of the second invariant of the coarse-
grained velocity gradient tensor but we objectively de-
termine the threshold (Q(σ)∗ = 16) on the basis of re-
sults of the percolation analyses (Fig. 7). The visu-
alizations (Fig. 9) demonstrate that the largest-scale
vortices are similar to coherent vortices in the low-
Reynolds-number regions, that is, hairpin and quasi-
streamwise vortices. The quasi-streamwise legs of the
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hairpin and the quasi-streamwise vortices tend to align
to the direction of the mean-�ow stretching. We then
identify hairpin and quasi-streamwise vortices by the
criteria (2) and (3) in terms of the coarse-grained vor-
ticity. Qualitative evidence (Fig. 12) supports the vi-
sualization (Fig. 9) that hairpin vortices and quasi-
streamwise vortices exist in the largest-scale structures
irrespective of the Reynolds number. These results are
not con�icting with the previous results of the DNS and
experiments (see Section 4). In addition, it is striking
to observe that the visualization (Fig. 13) of the largest-
scale vortices and low-speed regions resembles the well-
known schematic drawn by Adrian et al. (2000).
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