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Abstract
The first and the third authors have proved the global existence of holomorphic

solutions to partial differential equations with several Fuchsian variables in the sense
of N.S. Madi, under some assumptions on some coefficients and on the Fuchsian
characteristic polynomial. This article shows a similar global existence of solutions
which are holomorphic with respect to Fuchsian variables and of projective Gevrey
class with respect to non-Fuchsian variables. The proof is based on the concept
of formal norms of Leray-Waelbroeck and the application of Gevrey’s operator of
C. Wagschal.

1. Introduction

Consider an ordinary differential equation

(1.1)
dmu

dtm
+ a1(t)

dm�1u

dtm�1
+ am�1(t)

du

dt
+ am(t) = 0

near the origin of the complex planeC. Let the equation have a singular pointt = 0
for the coefficientsal (t) (1 � l � m). The classical Fuchs’s theorem indicates that the
necessary and sufficient condition for the origint = 0 to be aregular singularpoint is
that “t = 0 is a pole ofal of multiplicity less than or equal tol ” (see, for example, [5]).
A very important generalization of this result to partial differential equations has been
given by Baouendi and Goulaouic in 1973 ([1]). They considered partial differential
operators of the form

tk Dm
t +

m�1X
j =0

X
j�j�m� j

a j ,� (t , x)D j
t D�

y ,

a j ,� (t , x) = tmaxfk�m+ j ,0gã j ,� (t , x), ã j ,� (0, x) = 0 if � 6= 0

called “Fuchsian partial differential operator with weight m�k”, with the initial hyper-
surfaceS = f(t , x) 2 Cn+1; t = 0g. Using the concept of Fuchsian characteristic poly-
nomial (or indicial polynomial), they gave a necessary and sufficient condition to
establish results of Cauchy-Kowalevski type and of Holmgren type.
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This definition of Fuchsian partial differential operatorsopened a way to a large
number of works ([18], [13], [4], [9], [8], [26] to name a few from the viewpoint of
this article).

In [12], N.S. Madi introduced the notion of linear partial differential operators with
several Fuchsian variables and gave a sufficient condition to solve the local Goursat
problem in the holomorphic class. In [2], we have studied a uniqueness problem in a
space of Schwartz distributions for operators with severalFuchsian variables. A global
Cauchy-Kowalevski result has been shown in [3], for this type of operators.

In the present work, we study the global Goursat problem for operators with sev-
eral Fuchsian variables in the class of holomorphic functions with respect to Fuchsian
variables and Gevrey class with respect to the other variables. The used classes are the
projective Gevrey classes, already used in the noncharacteristic Cauchy problem ([7]).
To show the existence and uniqueness of the solution, we impose some conditions on
the Fuchsian characteristic polynomial, which allow us to invert some operator in trans-
forming our problem into a problem of a fixed point. We use techniques based on the
concept of formal norms of Leray-Waelbroeck [10] and the application of ‘Gevrey’s op-
erator’ ([25]), which transforms the convergent formal series to Gevrey series, in order
to introduce a family of Banach spaces where we choose some parameters to control
the norms of the used operators.

We point out that H. Tahara studied intensively the characteristic Cauchy problems,
in particular those for Fuchsian operators in the class ofC1 functions ([18]–[24]).
In these studies, he put the hyperbolicity condition, classically imposed in the non-
characteristic case. Another work is in preparation for thestudy of this type of prob-
lem without the hyperbolicity.

We use the following basic notation.

N = f0, 1, 2,: : : g, N� = N n f0g, Z = fthe integersg,
R+ = fnonnegative real numbersg, R�+ = R+ n f0g.

2. Definitions and results

Let U be an open set inCn and� be an open neighborhood of the origin inRq.
Let C!,1(U ��) denote the algebra of functionsf (x, y) holomorphic inx on U and
of classC1 in y on �.

DEFINITION 2.1 ([7]). For d � 1, let G(!,d)(U � �) denote the sub-algebra of
functions u 2 C!,1(U � �) such that for anyh > 0, there exists a constantCh > 0
satisfying

(2.1) 8Æ 2 Nq, sup
U ��

��DÆ
yu(x, y)

�� � ChhjÆjjÆj! d.
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Let G(!,d)(U ��) denote the set of functionsu such thatu 2 G(!,d)(U 0 ��0) for
any relatively compactU 0

⋐ U and�0
⋐ �, where A ⋐ B means that the closureA

is compact andA� B. This space is called aprojective Gevrey classwith index d in
the second set of variables.

REMARK 2.1. Let d = 1. From the inequality (2.1), we have that for anyh > 0,
there exists a positive constantCh such that

8x 2 U , 8Æ 2 Nq, sup
y2�
��DÆ

yu(x, y)
�� � ChhjÆjjÆj!,

which implies thatu(x, � ) can be extended entirely toCq. Thus,G(!,1)(U ��) is the
set of all analytic functions onU � Cq.

Let d � 1 and let us consider an operatorP on Cn �� defined by

(2.2) P =
X

j�j+dj�j�m

a�,� (x, y)D�
x D�

y , where a�,� 2 G(!,d)(Cn ��).

DEFINITION 2.2. (1) For multiindices�, � 2 Zn, we write � � � and say that� is smaller than or equal to�, if �i � �i (8i ).
(2) We say that the weight of monomiala�,� (x, y)D�

x D�
y with respect tox is smaller

than or equal to� 2 Zn, if there exists a function̄a�,� (x, y) 2 C!,1(Cn ��) such that

a�,� (x, y) = x��� ā�,� (x, y) with � � � 2 Nn,

which is denoted by

a�,� (x, y) = O(x��� ).
DEFINITION 2.3 ([12]). A partial differential operatorP defined by (2.2) is

called of Fuchs type (or Fuchsian) with weight� 2 Nn with respect tox, if all weights
of monomialsa�,� (x, y)D�

x D�
y with respect tox are smaller than or equal to�, and if

for any � 6= 0, the following holds.
(i) The weight of the monomiala�,� (x, y)D�

x D�
y , with respect tox are strictly smaller

than�.
(ii) If �i 6= 0, the weight with respect toxi of monomial a�,� (x, y)D�

x D�
y , is strictly

smaller than�i .

From this definition, there existsea�,0 2 C!,1(Cn ��) such that

(2.3) a�,0(x, y) = x[���]+ea�,0(x, y),

where [s]+ = maxfs, 0g for s 2 R, and [�]+ = ([�1]+, : : : , [�n]+) for � 2 Rn.
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DEFINITION 2.4. Let P be a Fuchsian operator defined by (2.2). Its Fuchsian
characteristic polynomialeQ is defined by

eQ(k, y) =
X
j�j�m���

ea�,0(0, y)C���(k), k 2 Nn, y 2 �,

whereC0(h) = 1, Cp(h) =
Qp�1

l=0 (h� l ) for (p, h) 2 N� �C, andC�(k) =
Qn

i =1 C�i (ki ) for
(�, k) 2 Nn � Cn.

Since we consider the existence of global solutions, it would be natural to assume
that somecoefficients of the operator are polynomials iny. The order ofa(x, y) 2
C!(Cn)[y] with respect toy is denoted by ordy a. By definition, ordy a < 0 means
a � 0.

In this paper, we assume
H0) For all � � �, we have the following.

— If j�j < m, ea�,0(0, y) =ea� 2 C.
— If j�j = m, ea�,0(x, y) =ea� 2 C.

Especially,eQ(k, y) = eQ(k) do not depend ony.
H1) For all (�,�) such that “� � � with � 6= 0 or j�j � j�j” and m�1< j�j+dj�j �m,
the coefficientsa�,� (x, y) are polynomials iny with ordy a�,� < j�j, whose coefficients
are entire functions ofx.
H2) For all (�, �) such that� 6� � and j�j > j�j, we have the following.

— If m� j�j � 1 < j�j + dj�j � m� j�j, then a�,� (x, y) is a polynomial iny
such that ordy a�,� < j�j .
— If j�j + dj�j > m� j�j, then a�,� � 0.

DEFINITION 2.5 ([12]). We say thatP satisfies the condition (A), if there exists
a constantC > 0 such that:

8k 2 Nn,
��eQ(k)

�� � C(jkj + 1)m�j�j.(A)

The Goursat problem associated withP is to find a functionu satisfying the fol-
lowing equations.

(2.4)

�
Pu = f ,
u� w = O(x�).

Theorem 2.1. Let d� 1. Under the hypothesesH0)–H2), if P is a partial dif-
ferential operator of Fuchs type with weight� with respect to x, and if it satisfies the
condition (A), then for any f andw in G(!,d)(Cn � �), the problem(2.4) admits a
unique solution u2 G(!,d)(Cn ��).
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REMARK 2.2. According to Remark 2.1, ifd = 1 then the result of this theorem
is included in the main theorem given in [3].

3. Transformation of the problem

In order to give a proof of the theorem, we first transform the problem.
If u is a solution of (2.4), there exists a functionv 2 G(!,d)(Cn � �) such that

u(x, y)�w(x, y) = x�v(x, y). By changing the unknown function fromu to v, we get
the equivalence of our problem with the following differential equation.

(3.1) P1v(x, y) = g(x, y),

where 8<
:
P1v(x, y) = P

�
x�v)(x, y)

and
g(x, y) = f (x, y)� Pw(x, y).

Proposition 3.1 ([3]). If P is a Fuchsian operator defined by(2.2), then

P1[v(x, y)] = Q[v(x, y)] +
X

j�j+dj�j�m���
x���

 
nX

i =1

xi ã
(i )�,� (x, y)

!
D�

x D�
y [x�v(x, y)]

+
X

j�j+dj�j�m� 6��
x[���]+ ã�,� (x, y)D�

x D�
y [x�v(x, y)],

whereã(i )�,� , ã�,� 2 G(!,d)(Cn ��), and

Q(k) = eQ(k)C�(k +�),

Q = Q(x Dx) =
X
j�j�m���

ã�C���(x Dx)C�(x Dx +�).

For R> 0, we set

BR =

�
x 2 Cn; max

1�i�n
jxi j < R

�

and

G(!,d)
loc (BR ��) =

�
u 2 C!,1(BR ��); 8r 2 ]0, R[, u 2 G(!,d)(Br ��)

	
.



260 M. BELARBI , T. MANDAI AND M. M ECHAB

Proposition 3.2. If the operator P satisfies the condition(A), then the

operator Q is an automorphism of the Fréchet space G(!,d)
loc (BR � �), and for u =P

k2Nn Dk
xu(0, y)xk=k! 2 G(!,d)

loc (BR ��), we have

(3.2) Q�1u =
X
k2Nn

Dk
xu(0, y)

Q(k)

xk

k!
.

Proof. STEP 1. Let us prove thatQ is an endomorphism inG(!,d)
loc (BR ��).

Take an arbitraryr such that 0< r < R, and takes as r < s< R. There exists a
constantC1 : 1< C1 < s=r .

If u 2 G(!,d)
loc (BR��), then for everyh> 0, there exists a constantC0

h � 0 such that

8Æ 2 Nq, sup
Bs��

��DÆ
yu(x, y)

�� � C0
hhjÆjjÆj! d.

By Cauchy’s formula in the ballBs, we have

(3.3) 8k 2 Nn,
��Dk

x DÆ
yu(0, y)

�� � k!

sjkjC0
hhjÆjjÆj! d.

It is well-known that

limjkj!+1 (jkj + j�j)m

Cjkj
1

= 0,

which implies that there exists a positive constantA0 > 0 such that

(3.4) 8k 2 Nn, (jkj + j�j)m � A0Cjkj
1 .

By using the expression of Fuchsian characteristic polynomial, we obtain

8k 2 Nn, jQ(k)j � X
j�j�m���

jea�j nY
i =1

�i��i�1Y
l=0

(ki � l )
�i�1Y
l=0

(ki +�i � l )

� X
j�j�m���

jea�j(jkj + j�j)j�j.

From (3.4), we have

(3.5) 8k 2 Nn, jQ(k)j � X
j�j�m���

jea�jA0Cjkj
1 = C2Cjkj

1 ,

whereC2 =
Pj�j�m,��� jea�jA0.
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On the other hand, we have

DÆ
y(Qu(x, y)) = Q

�
DÆ

yu(x, y)
�

=
X
k2Nn

Q(k)Dk
x DÆ

yu(0, y)
xk

k!
, 8Æ 2 Nq.

By the estimate (3.3) and (3.5), we have

8Æ 2 Nq, 8(x, y) 2 Br ��,

��DÆ
yQu(x, y)

�� � X
k2Nn

jQ(k)j jxkj
sjkj C0

hhjÆjjÆj! d � X
k2Nn

jQ(k)j�r

s

�jkj
C0

hhjÆjjÆj! d

� X
k2Nn

C2Cjkj
1

�
r

s

�jkj
C0

hhjÆjjÆj! d

� C3C0
hhjÆjjÆj! d,

(3.6)

with another constantC3, becauseC1r =s < 1. By substituting this result in (3.6),
we get

8Æ 2 Nq, 8(x, y) 2 Br ��,
��DÆ

yQu(x, y)
�� � ChhjÆjjÆj! d

with Ch = C3C0
h.

Therefore,Q is an endomorphism inG(!,d)
loc (BR ��).

STEP 2. Let us show thatQ is bijective in G(!,d)
loc (BR ��).

If g 2 Gw,d
loc (BR ��), then we have

g(x, y) =
X
k2Nn

Dk
xg(0, y)

k!
xk,

and for everys 2 ]0, R[ and h > 0, there exists a positive constantC(0)
h > 0 such that

8Æ 2 Nq, sup
Bs��

��DÆ
yg(x, y)

�� � C(0)
h hjÆjjÆj! d.

According to the definition of the operatorQ and the condition (A), the follow-
ing series

u(x, y) =
X
k2Nn

Dk
xg(0, y)

Q(k)

xk

k!

is a unique solution of equationQu = g. Thus, it is enough to prove that
u 2 Gw,d

loc (BR ��).
From Cauchy’s formula, for alls 2 ]0, R[ and h > 0, we have

(3.7) 8(k, Æ) 2 Nn � Nq, 8y 2 �,
��Dk

x DÆ
yg(0, y)

�� � C(0)
h hjÆjjÆj! d k!

sjkj .
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For an arbitrary fixedr 2 ]0, R[, we takes as r < s < R. By using the result (3.7)
and the expression of the solutionu, we have8h > 0, 9C(0)

h > 0 such that

8Æ 2 Nn, 8y 2 �,
��DÆ

yu(x, y)
�� � X

k2Nn

��Dk
x DÆ

yg(0, y)
��

jQ(k)j jxkj
k!

� X
k2Nn

C(0)
h hjÆjjÆj! d

jQ(k)j k!

sjkj jx
kj

k!
.

(3.8)

Since there exists a positive constantC satisfying

8k 2 Nn, jQ(k)j > C,

we get from (3.8)

8Æ 2 Nn, 8y 2 �,
��DÆ

yu(x, y)
�� � 1

C
C(0)

h hjÆjjÆj! d
X
k2Nn

jxkj
sjkj

which implies that8h > 0, 9Ch > 0 such that

8Æ 2 Nq, sup
Br��

��DÆ
yu(x, y)

�� � ChhjÆjjÆj! d,

whereCh = (1=C)C(0)
h supx2Br

P
k2Nn jxkj=sjkj <1. Thus, we haveu 2 G(!,d)

loc (BR��).

By this proposition, we easily get the following corollary.

Corollary 3.1. Q is an automorphism ofG(!,d)(Cn ��).

This corollary allows us to transform the problem along the same steps used in the
holomorphic case ([3]), which gives the equivalence between the problem (2.4) and the
following equation inG(!,d)(Cn ��).

(3.9) u(x, y) = (A + B)u(x, y) + g(x, y),

where

Q = Q�1
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and

Bv(x, y) =
X

j�j+dj�j�m���
x(���)

 
nX

i =1

xi ã
(i )�,� (x, y)

!
D�

x D�
y x�Qv(x, y),

Av(x, y) =
X

j�j+dj�j�m� 6��
x[���]+ ã�,� (x, y)D�

x D�
y x�Qv(x, y).

Actually, we will first solve the equation (3.9) in another space G(!,d)(�T ) for an
arbitrary T , which gives a solution inG(!,d)(Cn ��).

4. Holomorphic-Gevrey formal series

We recall some definitions and properties given by C. Wagschal in [25]. Let
R+[[x]] denote the set of formal power series inx whose coefficients are all non-
negative.

Consider a formal series8 2 R+[[x, y]], where we can write

(4.1) 8(x, y) =
X
Æ2Nq

�Æ(x)
yÆÆ! , �Æ 2 R+[[x]].

We assume that there exists an open neighborhoodU of the origin inCn such that all
the series�Æ converge inU .

DEFINITION 4.1 (Wagschal [25]). (1) Foru =
P�2Nn u�x� 2 C[[x]] and � =P�2Nn ��x� 2 R+[[x]], we write u � � if ju�j � �� for every � 2 Nn. This is the

usual majorant series inx.
(2) If 9(x, y) =

PÆ2Nq  Æ(x)yÆ=(Æ!) is another formal series and has the same proper-
ties as8 in (4.1), then we write8� 9 if

8Æ 2 Nq, �Æ �  Æ (in the sense of majorant series inx).

(3) For a functionu 2 C!,1(U ��), we write

u ≪ 8,

if

(4.2) 8Æ 2 Nq, 8y 2 �, DÆ
yu(x, y) � �Æ(x) (in the sense of majorant series inx).

In other words,

(4.3) u ≪ 8() 8(k, Æ) 2 Nn � Nq, 8y 2 �,
��Dk

x DÆ
yu(0, y)

�� � Dk
x�Æ(0).
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We have the following proposition.

Proposition 4.1. If u, v 2 C!,1(U ��), then we have the following.
1. u ≪ 8 and8� 9 =⇒ u ≪ 9.
2. For �,� 2 C, we have

u ≪ 8 and v ≪ 9 =⇒ �u +�v ≪ j�j8 + j�j9 and uv ≪ 89.

3.

(4.4) u ≪ 8 =⇒ 8(k, Æ) 2 Nn � Nq, Dk
x DÆ

yu ≪ Dk
x DÆ

y8.

The following definition is a simple extension of that by C. Wagschal ([25]).

DEFINITION 4.2. For a reald � 1 and a formal series9 =
PÆ2Nq  ÆyÆ, where Æ 2 R+[[x]], we set

9d =
X
Æ2Nq

 ÆjÆj! d�1yÆ.
Lemma 4.1. If 8 and 9 are in R+[[x, y]], then we have:

a. 8� 9 =⇒ 8d � 9d.
b. 8d9d � (89)d.

Proof. a. It is enough to use Definitions 4.1 and 4.2.
b. Let us consider

8(y) =
X
Æ2Nq

�ÆyÆ and 9(y) =
X
Æ2Nq

 ÆyÆ
with �Æ, Æ 2 R+[[x]], we have

8d(y)9d(y) =
X
Æ2Nq

 X
0���Æ �Æ�� jÆ � �j!

d�1 � j�j! d�1

!
yÆ.

For all Æ 2 Nq and 0� � � Æ, we havejÆ� �j! d�1j�j! d�1 = (jÆ� �j)! j�j!)d�1 � jÆj! d�1,
and hence

X
0���Æ �Æ�� jÆ � �j!

d�1 � j�j! d�1 �
 X

0���Æ �Æ�� �
!
jÆj! d�1.

Thus, from Definitions 4.1 and 4.2, we obtain

8d9d � X
Æ2Nq

 X
0���Æ �Æ�� �

!
jÆj! d�1yÆ = (89)d.
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Let � and � be one-dimensional variables. We set

'a
R(� ) =

ea�
R� � 2 R+[[� ]].

Lemma 4.2. Let p,q 2 N and � = bdp
, which is the smallest integer larger than
or equal to dp. Then, we have:
1. D p'a

R(� ) � a�q D p+q'a
R(� ).

2. D p'a
R(� ) � R�q(p!=(p + q)!)D p+q'a

R(� ).
3. D p[(Dq'a

R)d(� )] � R��p(Dq+�'a
R)d(� ).

Proof. 1 and 2 are proved in holomorphic case ([3]).
3. We know that for every� such thatj� j < R, we have

'a
R(� ) =

ea�
R� � =

1

R

+1X
n=0

an

n!
�n

+1X
n=0

1

Rn
�n =

1

R

+1X
n=0

 
nX

j =0

a j

j !

1

Rn� j

!
�n.

Hence, by differentiating this functionq times, we get

Dq'a
R(� ) =

1

R

+1X
n=0

 
n+qX
j =0

a j

j !

1

Rn+q� j

!�n

n!
(n + q)!.

Then, from Definition 4.2, we have

(Dq'a
R)d(� ) =

1

R

+1X
n=0

 
n+qX
j =0

a j

j !

1

Rn+q� j

!�n

n!
(n + q)! (n!)d�1,

which gives

(4.5) D p[(Dq'a
R)d(� )] =

1

R

+1X
n=0

 
n+q+pX

j =0

a j

j !

1

Rn+q+p� j

!�n

n!
(n + q + p)! ((n + p)!)d�1.

Similarly, we have

(4.6) (Dq+�'a
R)d(� ) =

1

R

+1X
n=0

 
n+q+�X

j =0

a j

j !

1

Rn+q+�� j

!�n

n!
(n + q + �)! (n!)d�1.

Since �
(n + p)!

n!

�d�1 � (n + p)p(d�1)
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and

8� � p,
(n + q + p)!

(n + q + �)!
=

1

(n + q + p + 1) � � � (n + q + p + (� � p))
� 1

(n + p)��p
,

we obtain for all� � dp,

(4.7)
(n + q + p)!

(n + q + �)!

�
(n + p)!

n!

�d�1 � (n + p)p(d�1)

(n + p)��p
=

1

(n + p)��dp
� 1.

If � � p, then we have

n+q+pX
j =0

a j

j !

1

Rn+q+p� j
= R��p

n+q+pX
j =0

a j

j !

1

Rn+q+�� j

� R��p
n+q+�X

j =0

a j

j !

1

R(n+q+�� j )
,

(4.8)

and therefore, by using the estimates (4.7) and (4.8), from (4.5) and (4.6), we obtain
our lemma.

For R> 0, we set�R = UR ��, where

UR =

(
x 2 Cn;

nX
i =1

jxi j < R

)
.

5. Banach spacesG(!,d)
R,a,�(ΩR)

Take an integers> m + 1 and sets0 = s� 1. For a, R 2 R�+, we set

8a
R(� , � ) =

X
p2N

� pRs0 p Dsp'a
R(� )

(sp)!
2 R+[[� , � ]],

which converges in the setf(� , � ) 2 C� R; Rs0=sj� j1=s + j� j < Rg.
This function satisfies the following estimates.

Lemma 5.1 (P. Pongérard [16]). For every� > 1 and R> 0, we have:
1. (�R=(�R� (� + � )))8a

R(� , � ) � (�=(� � 1))8a
R(� , � ).

2. 1=(R� (� + � )) � 8a
R(� , � ).

From Lemma 4.1, we have the following corollary.

Corollary 5.1. a) For any � > 1, (�R=(�R � (� + � ))8a
R(� , � ))d � (�=(� �

1))(8a
R)d(� , � ).
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b) (1=(R� (� + � )))d � (8a
R)d(� , � ).

For all x = (x1, : : : , xn) 2 Cn and y = (y1, : : : , yq) 2 Rq, we set

� = x1 + � � � + xn, � = y1 + � � � + yq, � = �� ,

8a�,R(x, y) = 8a�R(�� , � ) =
X
p2N

� p(�R)s0 p Dsp'a�R(� )

(sp)!
,

where� is another positive parameter.
By Definition 4.2, we obtain

�8a�,R

�d
(x, y) =

X
p2N

� p(�R)s0 p �Dsp'a�R

�d
(� )

(sp)!
=
X
n2N

Dn�8a�,R(x, 0)n! d�1 �n

n!

=
X
Æ2Nq

DjÆj� 8a�,R(x, 0)jÆj! d�1 yÆÆ! ,

(5.1)

where the seriesDjÆj� 8a�,R(x, 0)jÆj! (d�1) converges inUR.
From Definition 4.1, we have the following proposition.

Proposition 5.1. Let u 2 C!,1(�R). We have u(x, y) ≪

�8a�,R

�d
(x, y) if and

only if

8Æ 2 Nq, 8y 2 �, DÆ
yu(x, y) � DjÆj� 8a�,R(x, 0)jÆj! (d�1)

(in the sense of majorant series in x).

We set

G(!,d)
R,a,�(�R) =

�
u 2 C!,1(�R); 9C � 0 : u(x, y) ≪ C

�8a�,R

�d
(x, y)

	
.

Proposition 5.2 (Wagschal [25]). The spaceG(!,d)
R,a,�.(�R) is a Banach space with

the norm defined by

kuk = min
�
C � 0; u(x, y) ≪ C

�8a�,R

�d
(x, y)

	
Lemma 5.2. If R1 > 0 and f 2 G(!,d)(BR1 ��), then for every R2 ]0, R1[ and� > 0, there exists a constant C> 0 such that

f (x, y) ≪ C

� �R�R� (� + � )

�d

.
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Proof. Let R1 > 0 and f 2 G(!,d)(BR1 � �). For everyh > 0, there exists a
constantCh such that

(5.2) 8Æ 2 Nq, 8y 2 �, sup
x2BR1

��DÆ
y f (x, y)

�� � ChhjÆjjÆj! d.

By applying Cauchy’s formula in the ballBR with R 2 ]0, R1[ for the holomorphic
function

x 7! DÆ
y f (x, y),

we obtain as a formal series inx

(5.3) 8Æ 2 Nq, 8y 2 �, DÆ
y f (x, y) � ChhjÆjjÆj! d R

R� � = ChhjÆjjÆj! d �R�R� � .

We know that

�R�R� � � 1,

and hence, by recursion we obtain

(�R)jÆj 1jÆj! DjÆj� �R�R� �
�

=

� �R�R� �
�jÆj+1 � �R�R� � .

By substituting this result in (5.3), we will have

(5.4) 8Æ 2 Nq, 8y 2 �, DÆ
y f (x, y) � ChhjÆjjÆj! d�1(�R)jÆjDjÆj� �R�R� �

�
.

Thus, for h smaller than 1=(�R), we obtain

(5.5) 8Æ 2 Nq, 8y 2 �, DÆ
y f (x, y) � Ch DjÆj� �R�R� �

�jÆj! d�1.

On the other hand, for all (� , � ) with j� j + j� j < �R, we have

�R�R� (� + � )
=
X
n2N

Dn

� �R�R� �
��n

n!
.

From Definition 4.2, we have� �R�R� (� + � )

�d

=
X
n2N

Dn

� �R�R� �
i
n! d�1 �n

n!

=
X
Æ2Nq

DjÆj� �R�R� �
�jÆj! d�1 yÆÆ! .

(5.6)
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By Definition 4.1 and the equality (5.6) and the estimate (5.5), we obtain

(5.7) 8R 2 ]0, R1[, f (x, y) ≪ C

� �R�R� (� + � )

�d

.

By using the second property of Corollary 5.1 and Lemma 5.2, we have the fol-
lowing.

Corollary 5.2. If f 2 G(!,d)(Cn � �), then for all R, �, a 2 R�+ and �0
⋐ �,

we have

f 2 G(!,d)
R,a,�(�0

R), where �0
R = UR ��0.

Proposition 5.3. Let p2 N and a function F be defined by

F(x, y) =
X
j
 j�p

f
 (x)y


where f
 are entire functions onCn. Then, for every R> 0 there exists a positive
constant C(R) independent of the parameter� such that for every� > 0 with �R �
maxfdiam(�), 1g, we have the following.

(5.8) F(x, y) ≪ C(R)(�R)p

� �R�R� (� + � )

�d

.

Proof. By using Cauchy’s formula in the polydiskBR for functions f
 , we obtain

8k 2 Nn,
��Dk

x f
 (0)
�� � M
 (R)

k!

Rjkj ,
which gives, for every (k, Æ) 2 Nn+q and y 2 �,

��DÆ
y Dk

x F(0, y)
�� =

�����
X

j
 j�p, 
�Æ Dk
x f
 (0)


 !

(
 � Æ)! y
�Æ
�����

� k!

Rjkj (�R)p�jÆjjÆj! X
j
 j�p, 
�Æ

M
 (R)j
 j!jÆj! (j
 j � jÆj)!
� C(R)(�R)p jÆj!

(�R)jÆj k!

Rjkj ,
whereM(R) = supj
 j�p M
 (R) andC(R) = M(R)

Pj
 j�p, 
�Æ j
 j!=(jÆj!(j
 j�jÆj)!). Thus,
by Definition 4.1, we get

(5.9) F(x, y) ≪ C(R)(�R)p R

R� � �R�R� � .
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Since we havej
 j! d�1 � 1 for all d � 1, we have

�R�R� � �R�R� � � �R�R� (� + � )
� � �R�R� (� + � )

�d

.

Therefore, from (5.9), we obtain our result.

6. Solution of the equation (3.9) inG
(!,d)
R,a,�(ΩR)

Since we assumed that the coefficients belong toG(!,d)(Cn��), for every�0
⋐ �,

they belong toG(!,d)(�0
R) with 8R> 0 and toG(!,d)

R,a,�(�0
R) with 8R,�,a 2 R�+. We may

assume that they belong toG(!,d)(�R) andG(!,d)
R,a,�(�R) by changing the notation without

loss of generality.
By using the same technique used for the decomposition of operatorsA andB in

the holomorphic case ([3]), we obtain the following expressions.

B[u(x, y)] =
X

j�j+dj�j�m���
nX

i =1

ã(i )�,� (x, y)B(i )
(�,�)u(x, y),(6.1)

A[u(x, y)] =
X

j�j+dj�j�m� 6�� andj�j<j�j
a�,� (x, y)A�,�u(x, y)

+
X

j�j+dj�j�m� 6�� andj�j=j�j
nX

i =1

xi a
(i )�,� (x, y)A�,�u(x, y)

+
X

j�j+dj�j�m� 6�� andj�j>j�j
nX

i =1

b̃i�,�(x, y)Bi
(�,�)u(x, y)

(6.2)

with

(6.3) A�,�u(x, y) =
X

k+����0
k2Nn

xk+���
eQ(k)C�(k +�)

1

k!

(k +�)!

(k +�� �)!
D�

y Dk
xu(0, y)

and

(6.4) B(i )
(�,�)u(x, y) =

X
k+����0

k2Nn

xk+ei

eQ(k)C�(k +�)

1

k!

(k +�)!

(k +�� �)!
D�

y Dk
xu(0, y),

whereei = (0, : : : , i

1̂, : : : , 0).
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REMARK 6.1. From the hypothesesH1) and H2), we obtain that for all (�, �)
with m � 1 < j�j + dj�j � m, the functionsã(i )�,� (x, y), a(i )�,� (x, y) and a�,� (x, y) are
polynomials iny of order smaller thanj�j whose coefficients are entire functions inx.
It is the same for functions̃bi�,�(x, y) with m� j�j � 1< j�j + dj�j � m� j�j.

Proposition 6.1. Under the hypothesesH0)–H2), if the operatorP satisfies the
condition (A), then for every R> 0, there exists�0 > 0 such that the following holds.8� � �0, 9a� > 0 such that for every a� a� , the problem(3.9) admits a unique

solution u inG(!,d)
R,a,�(�R).

Proof. Let u(x, y) =
P

k2Nn

�
Dk

xu(0, y)=k!
�
xk 2 G(!,d)

R,a,�(�R). We have

u(x, y) ≪ kuk�8a�,R

�d
(x, y),

and by the property (4.4) given in Proposition 4.1, we have

(6.5) D�
y Dk

xu(x, y) ≪ kukD�
y Dk

x

�8a�,R

�d
(x, y)

which implies

(6.6) D�
y Dk

xu(0, y) ≪ kukD�
y Dk

x

��8a�,R

�d
(x, y)

�jx=0
.

By using the construction of the formal series
�8a�,R

�d
, we obtain

D�
y Dk

x

��8a�,R

�d
(x, y)

�jx=0

= D�
y Dk

x

"
+1X
p=0

(�(x1 + � � � + xn))p(�R)s0 p (Dsp'�R)d(y1 + � � � + yq)

(sp)!

#
jx=0

=
+1X
p=jkj

p!

(p� jkj)! � p(x1 + � � � + xn)p�jkj(�R)s0 p Dj�j� [(Dsp'�R)d(� )]

(sp)!
jx=0

= jkj! � jkj(�R)s0jkj Dj�j� [(Dsjkj'�R)d(� )]

(sjkj)! .

By the third estimate of Lemma 4.2, we get

D�
y Dk

x

��8a�,R

�d
(x, y)

�jx=0
� jkj! � jkj(�R)s0jkj(�R)��j�j (Dsjkj+�'�R)d(� )

(sjkj)! ,

where� = bdj�j
. By substituting this into (6.6), we obtain

(6.7) D�
y Dk

xu(0, y) ≪ kuk� jkjjkj! (�R)s0jkj(�R)��j�j (Dsjkj+�'�R)d(� )

(sjkj)! .
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Thus, from (6.4), we obtain

B(i )
(�,�)u(x, y) ≪

X
k+����0

k2Nn

xk+ei��eQ(k)
��C�(k +�)

1

k!

(k +�)!

(k +�� �)!
kuk� jkjjkj!

� (�R)s0jkj(�R)��j�j (Dsjkj+�'�R)d(� )

(sjkj)! .

(6.8)

Lemma 6.1. Let � � � and � = bdj�j
.
1) If j�j+ � < m, then for all u2 G(!,d)

R,a,�(�R), there exists C�,� (R,�) > 0 independent
of a such that

B(i )
(�,�)u(x, y) ≪ C�,�(R, �)a�1kuk�8a�,R

�d
(x, y).

2) For all j�j + � = m, there exists a positive constant C0 independent of R, a and�
such that

8u 2 G(!,d)
R,a,�(�R), B(i )

(�,�)u(x, y) ≪ C0R1�j�j��j�jkuk�8a�,R

�d
(x, y).

Proof. 1) By applying the first and the second estimates of Lemma 4.2 and then
the majoration a) of Lemma 4.1, we obtain

(Dsjkj+�'�R)d(� ) � a�1(Dsjkj+�+1'�R)d(� )

� a�1(�R)s���1 (sjkj + � + 1)!fs(jkj + 1)g! (Ds(jkj+1)'�R)d(� ).

By substituting this into (6.8), we obtain

B(i )
(�,�)u(x, y) ≪

X
k+����0

k2Nn

xk+ei��eQ(k)
��C�(k +�)

1

k!

(k +�)!

(k +�� �)!
kuk� jkjjkj! (�R)s0jkj(�R)��j�j

� a�1(�R)s���1 (sjkj + � + 1)!

(sjkj)! (Ds(jkj+1)'�R)d(� )fs(jkj + 1)g! .

(6.9)

It is easy to show that for allk, k0 2 Nn and i , j 2 N such that j � i and k � K 0,
we have

(6.10) C�(k +�) =
(k +�)!

k!
> 1,

k!

k0! � jkj!jk0j! and
j !

( j � i )!
� j i .
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By using these properties, we obtain for� � � and j�j + � < m

B(i )
(�,�)u(x, y) ≪ kuk��1a�1

X
k+����0

k2Nn

1��eQ(k)
�� jkj!

(jkj � (j�j � j�j))! � jkj+1(�R)s0jkjxi
jkj! xk

k!

� (�R)�j�j(�R)s�1 (sjkj + � + 1)!

(sjkj)! (Ds(jkj+1)'�R)d(� )fs(jkj + 1)g!
≪ kuk��1a�1

X
k+����0

k2Nn

1��eQ(k)
�� jkjj�j�j�j� jkj+1(�R)s0(jkj+1)xi

jkj! xk

k!

� (�R)�j�j(sjkj + � + 1)�+1 (Ds(jkj+1)'�R)d(� )fs(jkj + 1)g!
≪ kuk��1a�1(�R)�j�j X

k+����0
k2Nn

� jkj+1Rs0jkjxi
jkj!xk

k!

� (sjkj + m)m�j�j��eQ(k)
�� (Ds(jkj+1)'�R)d(� )fs(jkj + 1)g! .

From the condition (A), there exists a positive constantC0 such that

(sjkj + m)m�j�j��eQ(k)
�� � C0.

From this estimate and the properties

(6.11) fk 2 Nn; k +�� � � 0g � fk 2 Nn; jkj + j�j � j�j � 0g
and

(6.12)
X

jkj=p, k2Nn

jkj!
k!

xk = (x1 + x2 + � � � + xn)p = � p, xi � � ,

we obtain

B(i )
(�,�)u(x, y)

≪ kukC0a�1��1(�R)�j�j X
k+����0

k2Nn

� jkj+1Rs0(jkj+1)xi
jkj!xk

k!

(Ds(jkj+1)'�R)d(� )fs(jkj + 1)g!
≪ kukC0a�1��1(�R)�j�j X

p+j�j�j�j�0

� p+1Rs0(p+1) (D
s(p+1)'�R)d(� )fs(p + 1)g! xi

X
jkj=p
k2Nn

jkj!xk

k!

≪ kukC0a�1��1(�R)�j�jX
p2N

� p+1� p+1Rs0(p+1) (D
s(p+1)'�R)d(� )fs(p + 1)g!
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≪ kukC0a
�1��1(�R)�j�j(8a�,R)d(x, y).

2) Let � � � and � 6= 0 such thatj�j + � = m.
By applying the second estimate of Lemma 4.2 and the first majoration of Lem-

ma 4.1, we obtain

B(i )
(�,�)u(x, y) ≪ kuk X

k+����0
k2Nn

1��eQ(k)
�� jkj!

(jkj + j�j � j�j)! jkj!k!
xi x

k� jkj

� (�R)s0jkj(�R)��j�j(�R)s�� (sjkj + �)!

(sjkj)! (Ds(jkj+1)'�R)d(� )fs(jkj + 1)g! .

By using the condition (A), (6.11) and (6.12), we obtain

B(i )
(�,�)u(x, y) ≪ C0��1(�R)1�j�jkuk

� X
p�j�j�j�j xi

0
B�X

jkj=p
k2Nn

jkj!
k!

xk

1
CA � p+1(�R)s0(p+1) (D

s(p+1)'�R)d(� )fs(p + 1)g!
≪ C0��1kuk(�R)1�j�j�8a�,R

�d
(x, y).

(6.13)

Thus, by using the same techniques presented in the proofs oflemmas given in
the holomorphic case ([3]), we obtain the following results.

Lemma 6.2. Let � 6� � such thatj�j < j�j and � 2 Nq.
1) If j�j + � < m, then there exists C(�,�)(R, �) > 0, independent of a, such that

8u 2 G(!,d)
R,a,�(�R), A(�,�)u(x, y) ≪ C(�,�)(R, �)a�1kuk�8a�,R

�d
(x, y).

2) If j�j + � = m, then there exists C(�,�)(R) which depends only on R such that

8u 2 G(!,d)
R,a,�(�R), A(�,�)u(x, y) ≪ C(�,�)(R)kukR1�j�j��j�j�8a�,R

�d
(x, y).

Lemma 6.3. Let � 6� � such thatj�j = j�j and � 2 Nq.
1) If j�j + � < m, then there exists C(�,�)(R, �) > 0, independent of a, such that

8u 2 G(!,d)
R,a,�(�R), xiA(�,�)u(x, y) ≪ C(�,�)(R, �)a�1kuk�8a�,R

�d
(x, y).

2) If j�j + � = m, then there exists C0 > 0, independent of a, � and R, such that

8u 2 G(!,d)
R,a,�(�R), xiA(�,�)u(x, y) ≪ C0R1�j�jkuk��j�j�8a�,R

�d
(x, y).

Lemma 6.4. Let � 6� � such thatj�j > j�j and � 2 Nq.
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1) If j�j + � < m� j�j, then there exists C(�,�)(R,�) > 0, independent of a, such that

8u 2 G(!,d)
R,a,�(�R), B(i )

(�,�)u(x, y) ≪ C�,� (R, �)a�1kuk�8a�,R

�d
(x, y).

2) If j�j+� = m�j�j, then there exists C0 > 0, independent of a, � and R, such that

8u 2 G(!,d)
R,a,�(�R), B(i )

(�,�)u(x, y) ≪ C0kuk��j�jR1�j�j�8a�,R

�d
(x, y).

7. End of the proof of Proposition 6.1

In this section, we take an arbitrary parameter� > 1 and fix it.
Since the coefficients of the operatorP belong to G(!,d)(Cn � �), we can use

Lemma 5.2. For everyR > 0 and � > 0 satisfying�R� > maxfdiam(�), 1g, there
exists some constantseM i�,� (�, R), M�,�(�, R), M i�,�(�, R), and Ci�,�(�, R) depending
only on � and R such that the following holds.

For j�j + dj�j � m� 1,

(7.1) if � � �, then ã(i )�,� (x, y) ≪ eM i�,�(�, R)

� ��R��R� (� + � )

�d

,

if � 6� � and j�j < j�j, then

(7.2) a�,� (x, y) ≪ M�,�(�, R)

� ��R��R� (� + � )

�d

,

if � 6� � and j�j = j�j, then

(7.3) a(i )�,� (x, y) ≪ M i�,�(�, R)

� ��R��R� (� + � )

�d

.

For j�j + dj�j � m� j�j � 1, if � 6� � and j�j > j�j, then

(7.4) b̃i�,� (x, y) ≪ Ci�,� (�, R)

� ��R��R� (� + � )

�d

.

By applying the first estimate of Lemmas 6.1–6.4, we obtain

X
j�j+dj�j�m�1���

nX
i =1

ã(i )�,� (x, y)B(i )�,�u(x, y)

≪ M1(�, R)a�1kuk � ��R��R� (� + � )

�d �8a�,R

�d
(x, y),

(7.5)
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X
j�j+dj�j�m�1� 6�� andj�j<j�j

a�,� (x, y)A�,�u(x, y)

≪ M2(�, R)a�1kuk � ��R��R� (� + � )

�d �8a�,R

�d
(x, y),

(7.6)

X
j�j+dj�j�m�1� 6�� andj�j=j�j

nX
i =1

a(i )�,� (x, y)xiA�,�u(x, y)

≪ M3(�, R)a�1kuk � ��R��R� (� + � )

�d �8a�,R

�d
(x, y),

(7.7)

X
j�j+dj�j�m�j�j�1� 6�� andj�j>j�j

b̃i��,�(x, y)Bi��,�u(x, y)

≪ M4(�, R)a�1kuk � ��R��R� (� + � )

�d �8a�,R

�d
(x, y),

(7.8)

with

M1(�, R) = Cm max

(
nX

i =1

eM i�,�(�, R)C(�,�)(R,�); j�j+ dj�j �m�1, � � �
)

,

M2(�, R) = Cm max
�
C(�,�)(R,�)M�,� (�, R); j�j+ dj�j �m�1, � 6� �, j�j< j�j	,

M3(�, R) = Cm max

(
nX

i =1

M i�,�(�, R)C(�,�)(R,�); j�j+ dj�j �m�1, � 6� �, j�j = j�j
)

,

M4(�, R) = Cm max
�
Ci�,�(�, R)C(�,�)(R,�); j�j+ dj�j �m� j�j �1, � 6� �, j�j> j�j	,

whereCm is the number of (�, �) satisfying j�j + dj�j � m.
From the second majoration of Lemma 4.1 and the first of Corollary 5.1, we obtain

X
j�j+dj�j�m�1���

nX
i =1

ã(i )�,� (x, y)B(i )�,�u(x, y) ≪ M 0
1(�, R)a�1kuk�8a�,R

�d
(x, y),(7.9)

X
j�j+dj�j�m�1� 6�� and j�j<j�j

a�,� (x, y)A�,�u(x, y) ≪ M 0
2(�, R)a�1kuk�8a�,R

�d
(x, y),(7.10)

X
j�j+dj�j�m�1� 6�� and j�j=j�j

nX
i =1

a(i )�,� (x, y)xiA�,�u(x, y) ≪ M 0
3(�, R)a�1kuk�8a�,R

�d
(x, y),(7.11)

X
j�j+dj�j�m�j�j�1� 6�� and j�j>j�j

b̃i�,� (x, y)Bi�,�u(x, y) ≪ M 0
4(R)a�1kuk(8a�,R)d(x, y),(7.12)
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where M 0
l (�, R) = (�=(� � 1))Ml (�, R), l 2 f1, 2, 3, 4g.

According to Remark 6.1 and the estimate (5.8) of Proposition 5.3, there exists
constantsA(i )�,�(R), b�,� (R), C(i )�,�(R), d(i�)�,� (R) independent of� and a, such that the
following holds. Form� 1< j�j + dj�j � m, we have

8� � � : ã(i )�,� (x, y) ≪ (��R)j�j�1A(i )�,�(R)

� ��R��R� (� + � )

�d

,(7.13)

8� 6� �; j�j < j�j : a�,� (x, y) ≪ (��R)j�j�1b�,� (R)

� ��R��R� (� + � )

�d

,(7.14)

8� 6� �; j�j = j�j : a(i )�,� (x, y) ≪ (��R)j�j�1C(i )�,�(R)

� ��R��R� (� + � )

�d

,(7.15)

and for m� j�j � 1< j�j + dj�j � m� j�j, we have

8� 6� �; j�j > j�j : b̃i�,� (x, y) ≪ (��R)j�j�1di�,� (R)

� ��R��R� (� + � )

�d

.(7.16)

By these estimates and the second estimates of Lemmas 6.1–6.4, we have

X
m�1<j�j+dj�j�m���

nX
i =1

ã(i )�,� (x, y)B(i )�,�u(x, y)

≪ C1(R)��1kuk� ��R��R� (� + � )

�d�8a�,R

�d
(x, y),

(7.17)

X
m�1<j�j+dj�j�m� 6�� andj�j<j�j

a�,� (x, y)A�,�u(x, y)

≪ C2(R)��1kuk� ��R��R� (� + � )

�d�8a�,R

�d
(x, y),

(7.18)

X
m�1<j�j+dj�j�m� 6�� andj�j=j�j

nX
i =1

a(i )�,� (x, y)xiA�,�u(x, y)

≪ C3(R)��1kuk� ��R��R� (� + � )

�d�8a�,R

�d
(x, y),

(7.19)

X
m�j�j�1<j�j+dj�j�m�j�j� 6�� andj�j>j�j

b̃i�,� (x, y)Bi�,�u(x, y)

≪ C4(R)��1kuk� ��R��R� (� + � )

�d�8a�,R

�d
(x, y),

(7.20)
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where

C1(R) = CmC0 max

(
�j�j�1

nX
i =1

A(i )�,�(R); m� 1< j�j + dj�j � m, � � �
)

,

C2(R) = Cm max
��j�j�1b�,� (R)C�,�(R); m� 1< j�j + dj�j � m, � 6� �, j�j < j�j	,

C3(R) = CmC0 max

(
�j�j�1

nX
i =1

C(i )�,�(R); m� 1< j�j + dj�j � m, � 6� �, j�j = j�j
)

,

C4(R) = CmC0 max
��j�j�1di�,� (R);

m� j�j � 1< j�j + dj�j � m� j�j, � 6� �, j�j > j�j	.
Hence, again by the second majoration of Lemma 4.1 and the first of Corollary 5.1,

we obtain

X
m�1<j�j+dj�j�m���

nX
i =1

ã(i )�,� (x, y)B(i )�,�u(x, y) ≪ C1(R)��1kuk �� � 1

�8a�,R

�d
(x, y),(7.21)

X
m�1<j�j+dj�j�m� 6�� andj�j<j�j

a�,� (x, y)A�,�u(x, y) ≪ C2(R)��1kuk �� � 1

�8a�,R

�d
(x, y),(7.22)

X
m�1<j�j+dj�j�m� 6�� andj�j=j�j

nX
i =1

a(i )�,� (x, y)xiA�,�u(x, y) ≪ C3(R)��1kuk �� � 1

�8a�,R

�d
(x, y),(7.23)

X
m�j�j�1<j�j+dj�j�m�j�j� 6�� andj�j>j�j

b̃(i�)�,� (x, y)B(i�)�,�u(x, y) ≪ C4(R)��1kuk �� � 1

�8a�,R

�d
(x, y).

(7.24)

Thus, by using the estimates (7.9)–(7.12), (7.21)–(7.24),and the expressions of
the operatorsA andB given in (6.2) and (6.1), respectively, we obtain that ifR�� >
maxfdiam(�), 1g and a > 1, then

(B + A)[u(x, y)] ≪ kuk�C(R)� +
M(R, �)

a

��8a�,R

�d
(x, y)

where

C(R) =
�� � 1

(C1(R) + C2(R) + C3(R) + C4(R))

and

M(R, �) = M 0
1(R, �) + M 0

2(R, �) + M 0
3(R, �) + M 0

4(R, �).
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Hence, from the definition of the normk � k, we obtain

kB + Ak � C(R)� +
M(R, �)

a
.

If we take parameters� and a such that

� > 2C(R) and a > 2M(R, �),

then we getkB + Ak < 1 and therefore the operator (I � (B + A)) is invertible in the
Banach spaceG(!,d)

R,a, �(�R), which shows the existence and uniqueness of the solution
of the problem (3.9) in this space.

8. Construction of global solutions

From now on, the normk � ki denotes the norm ofG(!,d)
R,ai ,�i

(�R).

Lemma 8.1. If R > 0, a1 > 0, a2 > 0, �1 � �2 > 0, then we have a continuous

embedding fromG(!,d)
R,a1,�1

(�R) into G(!,d)
R,a2,�2

(�R).

Proof. If u 2 G(!,d)
R,a1,�1

(�R), then

(8.1) 8Æ 2 Nq, 8y 2 �, DÆ
yu(x, y) � kuk1DjÆj� 8a1�1,R(x, 0)jÆj! d�1.

By using the construction of formal series8a�,R, we obtain

DjÆj� 8a1�1,R(x, 0) =
X
p2N

� p(�1R)s0 p (jÆj + sp)!

(sp)!

jÆj+spX
l=0

al
1

l !

1

(�1R)sp+jÆj+1�l

=
X
p2N

��
R

�p (jÆj + sp)!

(sp)!

1

(�1R)jÆj+1

jÆj+spX
l=0

(R�1a1)l

l !
.

(8.2)

Since we have

8a > 0, 8� > 0, 1� jÆj+spX
l=0

(R�a)l

l !
� eR�a,

and

1

(�1R)jÆj+1
� 1

(�2R)jÆj+1
for �1 � �2 > 0,

we obtain the following estimates from (8.2).

DjÆj� 8a1�1,R(x, 0)�X
p2N

��
R

�p (jÆj + sp)!

(sp)!

1

(�2R)jÆj+1

 jÆj+spX
l=0

(R�1a1)l

l !

! jÆj+spX
l=0

(R�2a)l

l !
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� e�1Ra1 DjÆj� 8a2�2,R(x, 0).

By substituting this estimate into (8.1), we obtain

8Æ 2 Nq, 8y 2 �, DÆ
yu(x, y) � kuk1e�1Ra1 DjÆj� 8a2�2,R(x, 0)jÆj! d�1.

Thus, we obtain our embedding and

kuk2 � kuk1e�1Ra1.

This lemma allows us to use the same techniques by Gourdin andMechab in [7],
for unique global construction of the solution.

By using Proposition 6.1, we obtain the following result foreach fixedR> 0.

Proposition 8.1. There exists n0 2 N� and an increasing sequence of positive
numbers(an)n�n0 such that the problem(3.9) admits a unique solution un0 satisfying

un0 2 \
n�n0

G(!,d)
R,an,n(�R).

Proof. By Proposition 6.1, there existsn0 2 N� such that

8n � n0, 9an > 0: the problem (3.9) admits a unique solutionun 2 G(!,d)
R,an,n(�R).

We also have a unique solutionun+1 2 G(!,d)
R,an+1,n+1(�R).

By Lemma 8.1, we have

G(!,d)
R,an+1,n+1(�R) � G(!,d)

R,an,n(�R),

which implies that the solutionsun and un+1 belong to the same spaceG(!,d)
R,an,n(�R),

where there is the uniqueness of solution. Hence,

un = un0, on �R for n � n0.

9. Existence of solutions inG(!,d)(ΩR=2s )

Proposition 9.1.

un0 2 G(!,d)(�R=2s).

Proof. By Proposition 8.1, we have

(9.1) 8n � n0, 8Æ 2 Nq, 8y 2 �, DÆ
yun0(x, y) � kun0knDjÆj� 8an

n,R(x, 0)jÆj! d�1.
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Since the function8an
n,R is analytic in the open set

�
(� , � ) 2 C2; (nR)s0=sj� j1=s + j� j < nR

	
,

which contains the polydisk

2R =

�
(� , � ) 2 C� R; j� j � nR

2s
and j� j � nR

2

�
.

By using Cauchy’s formula for this polydisk, we obtain the existence of constantCn =
Cn(an, n, R) > 0 satisfying

8an
n,R(x, y) � Mn

nR=2s

(nR=2s)� � nR=2
(nR=2)� � ,

which implies

(9.2) DjÆj� 8an
n,R(x, 0)� Mn

nR=2s

(nR=2s)� � jÆj!
(nR=2)jÆj for j� j = jn� j < nR

2s
.

By substituting this result in (9.1), we get
(9.3)

8n � n0, 8Æ 2 Nq, 8y 2 �, DÆ
yun0(x, y) � kun0knMn

R=2s

(R=2s)� � jÆj!
(nR=2)jÆj jÆj! d�1,

which gives

(9.4) 8n � n0, 8Æ 2 Nq, 8y 2 �,
��DÆ

yun0(x, y)
�� � Cn

1

(nR=2)jÆj jÆj! d,

where

Cn = Mn sup
x2UR=2s

���� R=2s

(R=2s)� �
����kun0kn.

Hence, we obtain that for allh > 0, there exists an integern > maxfn0, 2=(hR)g
such that

(9.5) 8Æ 2 Nq, 8(x, y) 2 UR=2s ��,
��DÆ

yun0(x, y)
�� � ChhjÆjjÆj! d.

Thus, we haveun0 2 G(!,d)(�R=2s).

10. Uniqueness of solution inG(!,d)(ΩT )

Let T > 0 and u1, u2 2 G(!,d)(�T ) be two solutions of the problem (3.9). From
Corollary 5.2, there existsR> 0 such that

u1, u2 2 G(!,d)
R,a,�(�R),
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where there is the uniqueness. Thus, we have

8y 2 �, u1( � , y) = u2( � , y), on UR.

SinceUR is an connected open set inUT , and sinceu1, u2 are analytic onUT , by the
analytic continuation, we get

u1( � , y) = u2( � , y), on UT .

11. End of the proof of the main theorem

In this final section, we finish the proof of Theorem 2.1.
Let g 2 G(!,d)(Cn��) be a function introduced from functionf in Section 3. For

an arbitraryR> 0 and an arbitrary open set�0
⋐ �, we haveg 2 G(!,d)(BR ��0).

Applying the results up to Section 10 for�0 instead of�, we have proved that
for all R> 0, the problem (3.9) admits a unique solutionuR in G(!,d)(�0

R). Hence, by
the uniqueness, we have a unique solutionu 2 G(!,d)(Cn ��) of the problem (3.9).
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