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Abstract

The first and the third authors have proved the global existesf holomorphic
solutions to partial differential equations with severakcksian variables in the sense
of N.S. Madi, under some assumptions on some coefficients anthe Fuchsian
characteristic polynomial. This article shows a similaolgll existence of solutions
which are holomorphic with respect to Fuchsian variabled ahprojective Gevrey
class with respect to non-Fuchsian variables. The proofaseth on the concept
of formal norms of Leray-Waelbroeck and the application adv(gy’'s operator of
C. Wagschal.

1. Introduction

Consider an ordinary differential equation

m m—1
@ ) T +am 10 +an() =0
near the origin of the complex plaré. Let the equation have a singular point 0O
for the coefficientsa (t) (1 <| <m). The classical Fuchs’s theorem indicates that the
necessary and sufficient condition for the origin O to be aregular singular point is
that “t =0 is a pole ofg of multiplicity less than or equal t&’ (see, for example, [5]).
A very important generalization of this result to partiaffeiiential equations has been
given by Baouendi and Goulaouic in 1973 ([1]). They consdepartial differential
operators of the form

m—-1
D"+ Y a4t x)D{ D,

i=0 |pl=m—j
aj p(t, x) = tmEML0F, (1, x), &j4(0,x)=0 if B#O

called “Fuchsian partial differential operator with weigh—k”, with the initial hyper-
surfaceS = {(t, x) € C"™*%;t = 0}. Using the concept of Fuchsian characteristic poly-
nomial (or indicial polynomial), they gave a necessary andfigent condition to
establish results of Cauchy-Kowalevski type and of Holmgtgpe.
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This definition of Fuchsian partial differential operatapened a way to a large
number of works ([18], [13], [4], [9], [8], [26] to name a fewdm the viewpoint of
this article).

In [12], N.S. Madi introduced the notion of linear partialfdifential operators with
several Fuchsian variables and gave a sufficient condittosotve the local Goursat
problem in the holomorphic class. In [2], we have studied mueness problem in a
space of Schwartz distributions for operators with sevEtaihsian variables. A global
Cauchy-Kowalevski result has been shown in [3], for thisetyy operators.

In the present work, we study the global Goursat problem fwmrators with sev-
eral Fuchsian variables in the class of holomorphic fumstiavith respect to Fuchsian
variables and Gevrey class with respect to the other vasablhe used classes are the
projective Gevrey classes, already used in the nonchaistiteCauchy problem ([7]).
To show the existence and uniqueness of the solution, wesegome conditions on
the Fuchsian characteristic polynomial, which allow usreert some operator in trans-
forming our problem into a problem of a fixed point. We use téghes based on the
concept of formal norms of Leray-Waelbroeck [10] and theliapfion of ‘Gevrey’s op-
erator’ ([25]), which transforms the convergent formalisgrto Gevrey series, in order
to introduce a family of Banach spaces where we choose somanpgers to control
the norms of the used operators.

We point out that H. Tahara studied intensively the charatie Cauchy problems,
in particular those for Fuchsian operators in the classC&f functions ([18]-[24]).
In these studies, he put the hyperbolicity condition, étadly imposed in the non-
characteristic case. Another work is in preparation for shely of this type of prob-
lem without the hyperbolicity.

We use the following basic notation.
N={0,1,2,...}, N*=N\{0}, Z = {the integerg
R = {nonnegative real numbédrs R =R, \ {0}.
2. Definitions and results

Let %7 be an open set i€" and 2 be an open neighborhood of the origin .
Let C»®°(% x 2) denote the algebra of functiong(x, y) holomorphic inx on % and
of classC™ in y on Q.

DEFINITION 2.1 ([7]). Ford > 1, let G@9(% x Q) denote the sub-algebra of
functionsu € C**(Z x Q) such that for anyh > 0, there exists a constaf, > 0
satisfying

(2.1) Vs e N9, ;up|D‘f,u(x, y)| < Cah?j5)19.
U xQ2
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Let G@9(% x Q) denote the set of functions such thatu € G (%’ x Q') for
any relatively compac#’ € % and Q' € Q, where A € B means that the closurA
is compact andA c B. This space is called projective Gevrey claswith index d in
the second set of variables.

REMARK 2.1. Letd =1. From the inequality (2.1), we have that for amy- 0,
there exists a positive consta@f, such that

vx e, VseN, sugDju(x,y)| < Chhls],
yeQ

which implies thatu(x, -) can be extended entirely t89. Thus,G@D(% x Q) is the
set of all analytic functions orz x C9.

Letd > 1 and let us consider an operatBron C" x  defined by

(2.2) P= ) auxy)DiDf, where a,; e G I(C" x Q).

e +d]Bl<m

DEFINITION 2.2. (1) For multiindicesx, B € Z", we write « < 8 and say that
« is smaller than or equal tg, if o < B (Vi).
(2) We say that the weight of monomial g(X, y) Dy Df,’ with respect tox is smaller
than or equal tor € Z", if there exists a functiom, (X, y) € C**(C" x Q) such that

Ay p(X, Y) =X Tagp(x,y) with a—7eN",
which is denoted by
(X, y) = O(x*77).

DEerFINITION 2.3 ([12]). A partial differential operatof® defined by (2.2) is
called of Fuchs type (or Fuchsian) with weighte N" with respect tox, if all weights
of monomialsa, (X, y) Dy D§’ with respect tox are smaller than or equal t@, and if
for any g # 0, the following holds.

(i) The weight of the monomiad, g(x,y)D¥ Dg, with respect tox are strictly smaller
than .

(i) If ui # 0, the weight with respect te of monomial a, g(X, y) Dy DS, is strictly
smaller thanu;.

From this definition, there exist, o € C**(C" x ) such that
(2.3) auo(x, y) = X, o(x, y),

where ]+ = maxs, 0} for s € R, and ]+ = ([a1]+, - - ., [an]+) for @ € R™.
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DEFINITION 2.4. LetP be a Fuchsian operator defined by (2.2). Its Fuchsian
characteristic polynomia is defined by

QK. V)= Y o0, y)Co u(K), keN, yeg,

la|<m
azp

whereCo(h) = 1, Cp(h) = ]_[lngl(h —1) for (p,h) e N* x C, andC,(k) = ]_[i”:l Cq (ki) for
(¢, k) € N" x C".

Since we consider the existence of global solutions, it Wdag natural to assume
that somecoefficients of the operator are polynomials yn The order ofa(x,y) €
C®(CM[y] with respect toy is denoted by orga. By definition, ord a < 0 means
a=0.

In this paper, we assume
Ho) For all « > u, we have the following.

— If Ja] <m, 38,00,y)=38, € C.

— If Jal =m, Eo(x,y) =& € C.

Especially, Q(k, y) = Q(k) do not depend ory.

'H,) For all (,8) such that & > u with 8 Z0 or |o| < |u|” and m—1 < |a|+d|B] < m,
the coefficientsa, g(x, y) are polynomials iny with ordy a, s < |8], whose coefficients
are entire functions ok.

'H,) For all (@, B) such thate # u and |«| > ||, we have the following.

— Ifm—|u|l—1<]a|+d|f] <m—|u|, thena,g(x,y) is a polynomial iny

such that orgda, g < |B] .

— If |a|+d|B] > m—|u|, thena, g = 0.

DEFINITION 2.5 ([12]). We say thaP satisfies the condition (A), if there exists
a constantC > 0 such that:

(A) vk e N, |(~Q(k)‘ > C(|k| + 1™ Iul,

The Goursat problem associated withis to find a functionu satisfying the fol-

lowing equations.
Pu=f,

(2.4) {u —w = O(xXH).

Theorem 2.1. Let d> 1. Under the hypothesel)-H>), if P is a partial dif-
ferential operator of Fuchs type with weighpt with respect to xand if it satisfies the
condition (A), then for any f andw in G@9(C" x ), the problem(2.4) admits a
unique solution e G@I(C" x Q).
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REMARK 2.2. According to Remark 2.1, il =1 then the result of this theorem
is included in the main theorem given in [3].

3. Transformation of the problem

In order to give a proof of the theorem, we first transform thebfem.

If uis a solution of (2.4), there exists a functiane G@9(C" x Q) such that
u(x, y) — w(x,y) = x*v(x, y). By changing the unknown function from to v, we get
the equivalence of our problem with the following differi@htequation.

(3.1) Pru(x, y) = 9(x,y),
where

and

’Plv(xa y) = ,P(XMU)(X! y)
a(x,y) = f(x,y) — Pw(x, y).

Proposition 3.1 ([3]). If P is a Fuchsian operator defined K®.2), then
n .
Pilv(x, )] = QLux, )]+ Y xe* (Z x a0, (x, y)) D D [x"v(x, )]
| +d|B|<m i=1
a=p

N Z xlo=rlig, o(x, y)Dng[x“u(x, y)l,
la|+d|B]<m
aZp

where ég,)ﬂ, 8o p € G@I(C" x Q), and

Q(K) = QK)C,u(k + ),
Q=Q(XD,) = Y &Cayu(XD)C,(XDy + ).

lee]<m
azp

For R > 0, we set
Br = {x e C"; max |x| < R}
1<i<n
and

G (Br x Q) = {u € C*®(Br x Q); Vr €10, R, u e GI(B, x )}.

loc
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Proposition 3.2, If the operator P satisfies the condition(A), then the
operator Q is an automorphism of the Fréchet spacfg’c'déi’BR x ), and for u=
> ke DEU(O, y)XK/k! € G2P(Bg x ©), we have

loc

_ DKu(0, y) x*
1, = X ~
(3.2) Qlu= kEGNn; ~ol K"

Proof. Srep 1. Let us prove tha) is an endomorphism irG,(g’c'd)(BR x Q).

Take an arbitrary such that O<r < R, and takes asr < s < R. There exists a
constantC;: 1 < C; < s/r.

If ue G (Brx ), then for everyh > 0, there exists a consta6f > 0 such that

Vs e N9, sup|Diu(x,y)| < CphPljs1e.
BsxQ
By Cauchy’s formula in the balBs, we have
k k! d
(3.3) vk e N, |DDyu(0,y)| < Wcﬁh‘éuau :

It is well-known that

(kI +1eD™ _
=0,
|K|—+00 leL

which implies that there exists a positive constégt> 0 such that
(3.4) vk e N, (kI +1u)™ < ACl.

By using the expression of Fuchsian characteristic polyabnwve obtain

nooi—pi—1 pmi—1
vkeN", QW= Y I&I]] (=1 [T +mi—=1)
la|<m i=1  1=0 1=0
azp
< D TE(K] + [e]),
loe|<m
azp
From (3.4), we have
(3.5) VkeN, QK= Y |&lACk =CClf,
le[<m
a=p

whereC, = Z‘a‘gm’azﬂ |3, | Ao.
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On the other hand, we have

k
DJ(Qu(x, ) = Q(DJu(x, ¥)) = Y~ QUIDEDJU(O,y) 1, 5 € Y.

keNn
By the estimate (3.3) and (3.5), we have

Vs e N9, V(x,y) € B x Q,

k Kl
1D Qu(x, y)| < Y |Q(k)|%cr?h“”|a|!d <> |Q(k)|(5> Cph®!js)1
(3 6) keNn S keNn S

|k
Al
52 CZC:lLl(g) Cﬁh\ﬁ\w“d

keNn
< C3CPhPlisnd,

with another constan€C;, becauseCir/s < 1. By substituting this result in (3.6),
we get

Vs eN%, V(x,y)e B xQ, [D)Qu(x,y)| < Cph?|s]1°

with Cp, = C5CP.

Therefore,Q is an endomorphism i

loc (BR X Q)
STEP 2. Let us show thaQ is bijective in G,(g’c'd)(BR x Q).
If g e Gj2d(Br x ), then we have

k
o, y) = Y 290

keNn
and for everys € 10, R[ and h > 0, there exists a positive consta(ﬁ,ﬁo) > 0 such that

Vs e N9, Bsug|Df,g(x, y)| < cOnllspd,

According to the definition of the operatd@ and the condition (A), the follow-
ing series

DXg(0, y) X
u(x,y) = —

is a unique solution of equatioQu = g. Thus, it is enough to prove that
ue GL4(Br x Q).

From Cauchy’s formula, for al§ € ]0, R[ and h > 0, we have

k!
(3.7) V(k,8) e N"x N9, VyeQ, |DED)g(0,y)| < Cr§°)h'5'|3|!d@.
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For an arbitrary fixed € ]0, R[, we takes asr < s < R. By using the result (3.7)
and the expression of the solutionn we havevh > 0, HCS)) > 0 such that

DXD?g(0, k
V6 eN", VyeQ, |Df,u(x,y)|§z| xDya( y)‘ﬂ

Z QW

(3.8) O8] 511 d k
_ CrhPlig)td Kkt |xk|
- Q)| sk kI~

keNn

Since there exists a positive const&htsatisfying
vk e N", |Q(K)| > C,

we get from (3.8)

1 |XK|
s (0)p 181 51y d
Vs eN", VyeQ, |Diu(x,y)| = cCah st > T
keNn
which implies thatvh > 0, 3C;, > 0 such that
vs € N, sup|Dju(x, y)| < Cyh®!s)19,
B xQ
whereCh = (1/C)CYY sup.cg, Y ke 1X¥1/8% < co. Thus, we haves € G (B x Q).

[

By this proposition, we easily get the following corollary.

Corollary 3.1. Q is an automorphism of @9 (C" x Q).

This corollary allows us to transform the problem along thee steps used in the
holomorphic case ([3]), which gives the equivalence betwtae problem (2.4) and the
following equation inG@Y(C" x Q).

(3.9) u(x, y) = (A+B)u(x, y) +g(x, y),
where

Q=Q™
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and

Bu(x,y)= Y x@m <Z X; ésv)ﬂ(x, y)) Dy DX Qu(X, Y),

la|+d|B]<m i=1
azpu

Av(,y) =y Xl a, 4(x, y)DEDYX Qu(x, y).
la|+d|Bl<m

atp

Actually, we will first solve the equation (3.9) in anotherasp G@9(Q7) for an
arbitrary T, which gives a solution iG@d(C" x Q).

4. Holomorphic-Gevrey formal series

We recall some definitions and properties given by C. Wadsohd25]. Let
R.[[x]] denote the set of formal power series inwhose coefficients are all non-
negative.

Consider a formal serie® € R.[[X, Y]], where we can write

)
4.1) DX, Y) = Y 65003, ¢ € RIX]

seNd

We assume that there exists an open neighborlgodf the origin inC" such that all
the seriesp; converge inZ .

DErINITION 4.1 (Wagschal [25]). (1) Fou = ), UeX* € C[[X]] and ¢ =
D wern P X € Ry[[X]], we write u < ¢ if |uy| < ¢, for everya € N". This is the
usual majorant series IR.
(2) If W(X,y) = scna ¥s(X)Y*/(3!) is another formal series and has the same proper-
ties as® in (4.1), then we writed « W if

Vs e N9,  ¢s < s (in the sense of majorant series .
(3) For a functionu € C*>*(Z x 2), we write
U<k o,
if
(4.2) Vs eNY, VyeQ, Df,u(x, y) < ¢s(x) (in the sense of majorant series ).
In other words,

(4.3) U< ® <= V(k ) eN xNI, Vyeq, [DXDiu(0,y)| < Digs(0).
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We have the following proposition.

Proposition 4.1. If u,v € C**®(% x ), then we have the following
. uKPandd KV — U Vv,
2. For A, u € C, we have

UK @ and v <KV = AU+ puv K [A|Q+|p|¥ and w < OW.
3.
(4.4) U< ® = V(k 8) e N" x N9 DDju <« DD)®.
The following definition is a simple extension of that by C. §¥ahal ([25]).

DEFINITION 4.2. For a read > 1 and a formal serie¥ = > ;_. ¥sY°, where
¥s € Re[[X]], we set

W=y sy

seNd

Lemma 4.1. If ® and ¥ are in R.[[X, y]], then we have
a. PV = ¢l
b. ®4wd « (dW)d,

Proof. a. Itis enough to use Definitions 4.1 and 4.2.
b. Let us consider

o(y)= > ¢y and W(y)= > iy’

seNd seNd

with ¢s, ¥ € Re[[x]], we have
PUy)Wi(y) = Z( 3 g5ls —vudlwuwudl)y's.
3eNd \ 0<v<é

For all § € N9 and 0< v < §, we have|s — v|19=Ljp19-1 = (1§ — p|)! [p|1)9-1 < |§|19-1,
and hence

D7 b uls — vty ot <<( > ¢va>|8|!“—1.
0<v<$ 0<v<$§
Thus, from Definitions 4.1 and 4.2, we obtain

oyl « Z( > ¢a_vwv>|8|!“y5 = (@w)°. m

§eNd \ O<v<é
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Let r and& be one-dimensional variables. We set

or(E) = ea:_ € R4[[€]].

Lemma 4.2. Let p,g € N andv = [dp], which is the smallest integer larger than
or equal to dp Then we have
1. DPpi(§) < a @ DP*pR(§).
2. DPpi(§) < RTA(p!/(p +q)l) DPgR(E).
3. DPI(DIgR) ()] < R P(DIpR)(5).

Proof. 1 and 2 are proved in holomorphic case ([3]).
3. We know that for ever§ such that/é| < R, we have

1 & =1 1 & (a1
:ﬁzo ;En:_z<1:OﬁRn_]‘>%‘n.

e

.:|m

‘PR@) =

Hence, by differentiating this functioq times, we get

18 (a1 \gn
DioR(§) = 5 Z( i Rn+q_j>ﬁ(n +a)l.
j=0

Then, from Definition 4.2, we have

18 (a1 g
(DR)E) = 5 Z( % ] )i—,(n +q)t ()4,
! !

which gives
ayd 18 Pal 1 g a1
(4.5)  DPI(DR) (5)]:§§ JZO TR T ) ar Pl e
Similarly, we have
woa 18 (a1 g" -
46) D)) = ;(12; ﬂm>ﬁ(n+q+v)! (-1,

Since

n!

((n+ IO)!>dl < (n+ p)Pd-D
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and
(n+g+p)! _ 1 1

Vl)>p, - S 1
(n+q+v)l  (n+q+p+1)---(n+q+p+(—p) ~ (n+p)P

we obtain for allv > dp,

(n+q+p)! ((n+ p)!)d‘1 _(eppen

@0 ey U P (e

If v > p, then we have

AP | 1 . P 1
ZO: F RN*a+p—j Z(; F RN0+0— ]
(4.8) : e
al 1

v—p O
=R ZO j! R(n+g+v—j)’
J:

and therefore, by using the estimates (4.7) and (4.8), fré) (and (4.6), we obtain
our lemma. O

For R > 0, we setQr = Zr x 2, where

n
%R:{xeC“;Z|xi|< R}.

i=1

5. Banach spaceg$:)(r)

Take an integes > m+1 and sets’ =s— 1. Fora, R € R¥, we set

DPoR(§)

9= PRI

peN

€ R[,&]],

which converges in the séfz, £) € C x R; R¥/S|t|Y/S+ |&| < R}.
This function satisfies the following estimates.

Lemma 5.1 (P. Pongérard [16]). For everyn > 1 and R> 0, we have

1. R/(WR—(z +§)))Px(r, &) K (n/(n — 1))DX(z, &).
2. (R—(t+§)) < ®X(r,8).

From Lemma 4.1, we have the following corollary.

Corollary 5.1. a) For any n > 1, R/(nR — (v + &))®%(r, &) <« (n/(n —
D)(@R)(z, £).
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b) (/(R—(z+£))! < (PR)(z, &).
For all x = (X1,...,%) € C"andy = (y1,..., Yq) € RY, we set

o=X1+---+Xp, %‘:yl+...+yq’ T = po,
Sp(ppR(s)

D2 p(X, y) = ®2p(p0, £) = D TP(pR)TP— L5 -

peN

where p is another positive parameter.
By Definition 4.2, we obtain

DsP ;
e e
(5.1) = P hen

Y
_ Z D|5|¢)a R(X! O)|8||d 15,
seNd

where the serie®!'®2 o(x, 0)8]!@-Y converges inZg.
From Definition 4.1, we have the following proposition.

Proposition 5.1. Let u e C**(Qr). We have (x,Yy) < (<I>2]R)d(x,y) if and
only if

Vs e NI, VyeQ, Diu(x,y)< D@2 (x, 0810
(in the sense of majorant series ir).x
We set
G (Qr) = {u € C”®(QR); 3C = 0: U(x, y) << C(¥2 &) (x, )}

Proposition 5.2 (Wagschal [25]). The spac@g‘ﬁ;_(QR) is a Banach space with

the norm defined by
lull = min{C = 0;u(x, y) << C(®2 )" (x, )}

Lemma 5.2. If Ry > 0and fe G@9)(Bg, x Q), then for every Re 10, Ry[ and
p > 0, there exists a constant € 0 such that

PR ¢
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Proof. LetR; > 0 and f € G@9(Bg, x Q). For everyh > 0, there exists a
constantC;, such that

(5.2) vs eN%, VyeQ, sup|Djf(x,y)| < Cnh?|s]te.

Xe BRl

By applying Cauchy’s formula in the baBgr with R € ]0, Ry[ for the holomorphic
function

x > D) f(x,Y),
we obtain as a formal series i

R R
(5.3) VseNI, Vye@ DIf(x,y)< ChhPlsd——— =Cyhblgd 2=
y R—o pR

We know that

and hence, by recursion we obtain

1 oR pR Pt oR
R)SI_L_pll _ _
A T =y pR— 1 > R—<t

By substituting this result in (5.3), we will have

R
(5.4) Vs e N9, VyeQ, D!f(x,y) < Cqhh?[s]1% (pR)*I D! [pé’—_r]

Thus, forh smaller than 1(pR), we obtain

R
(5.5) Vs eNI, VyeQ, D)f(x,y)<Cp D'S'[K)F’;i_r}wud—l.

On the other hand, for allz(&) with |7] +|&| < pR, we have

PR _ o PR E&"
PR — (r +&) =20 [pR—r]H'

neN

From Definition 4.2, we have

pR ¢ o[ PR 7 g E"
(pR—(r+s)) ‘ZND [pR—r]”! nt
(5.6) ne

5
= Z Dl PR |5|!d*ly__
pPR—1 3!

seNd
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By Definition 4.1 and the equality (5.6) and the estimate )(5a& obtain
PR d
T VR R f —_— ) . ]
57) A ).

By using the second property of Corollary 5.1 and Lemma 5.2,have the fol-
lowing.

Corollary 5.2. If f € G@I(C" x Q), then for all Rp,a € R* and Q' € ,
we have

feg&d(@p), where Qf=% x <.
Proposition 5.3. Let pe N and a function F be defined by

FOLY) = ) f00y

lyl=p

where f are entire functions orC". Then for every R> 0 there exists a positive
constant GR) independent of the parameter such that for every > 0 with pR >
max{diam(), 1}, we have the following

PR i
(5.8) F(x,y) << C(R)(p R)p<m> '

Proof. By using Cauchy’s formula in the polydids for functions f,,, we obtain
vk e N", |DKf,(0) <M (R) Ruq

which gives, for everyk, §) e N™9 andy € £,

|DSDXF(0, )]

Z Dkf (O)( 5)Iyy—5

Iy\<p y=4
M, (R)y !
R)P13I1511 —
= \k\(p )"l |y\§pz,1/25 181Y (ly | — 18!
15! ki
E C(R)( )p( R)‘(Sl R\k|

where M(R) = sup,, -, M, (R) andC(R) = M(R)lesp,yzs|V|!/(|5|!(|V|_|8|)!)' Thus,
by Definition 4.1, we get

PR

(5.9) FOuY) << CRPR g — o
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Since we havdy|!91 > 1 for all d > 1, we have

R R R (R Y
pR—tpR—§ ~ pR—(tr +§) pR—(t +§)
Therefore, from (5.9), we obtain our result. L]

6. Solution of the equation (3.9) ing,({’é"j;(QR)

Since we assumed that the coefficients belong)(C" x ), for every Q' e Q,

they belong toG©@ () with ¥R > 0 and toG? (Q}) with VR, p,a € R%. We may

Ra,p
(w,d)

assume that they belong ®“9(Qg) and Gy,

loss of generality.
By using the same technique used for the decomposition afatgre A and B in
the holomorphic case ([3]), we obtain the following expiess.

(R2R) by changing the notation without

(6.1) Blup,y)l= > > &0 y)BHux,y),

la|+d|Bl<m i=1
azp

A= Y Bup(X Y)Agpu(x, y)

|o[+d|B]<m
aZpandle|<|u

* Z inag,)ﬁ(x,y)Aa,ﬁu(x,y)

(6'2) la[+d|Bl<m =1
o andlo|=|pul
n
Y Y B B U, )
la[+d|l<m =1
aZpandle|>|u|
with

xkr—e 1 (K + p)!

(6.3) A g, y)= Y QK)C,(k+ ) K (K+ 1 — )

k+pu—a>0
keN"

Bk

and

xk+e 1 (k+p)

(i) = sy
(64)  Buyuxy)= Y QK)C, (K + jz) K! (K + 11 — )!

k+pu—a>0
keN"

DJ DXu(0, y),

whereg = (0,...,1,...,0).
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REMARK 6.1. From the hypotheseX;) and H,), we obtain that for all ¢, B)
with m — 1 < |a| + d|8] < m, the functionség},(x,y), ag};(x, y) and a, g(X,y) are
polynomials iny of order smaller thang| whose coefficients are entire functionsxn
It is the same for functionﬁjw(x, y) with m— ju| — 1 < |a| +d|B] <= m — |u].

Proposition 6.1. Under the hypothesel(o)-H>), if the operatorP satisfies the
condition (A), then for every R> 0, there existsog > O such that the following holds
Vp > po, Ja, > 0 such that for every & a,, the problem(3.9) admits a unique

solution u inG$:Y ().

Proof. Letu(X, y) = > ycnn (DXU(O, y)/k!)xk € gg‘;‘g(QR). We have
u(x, y) << lull(@2 ) (x, ),
and by the property (4.4) given in Proposition 4.1, we have
(6.5) D{ Dku(x, y) << [lul|D{DE(@2 ) (x, ¥)
which implies

(6.6) Df DXu(0, y) << I|ull D DX[(@2 2)(x, )]

‘x:Ol
By using the construction of the formal seri(a@ilR)d, we obtain

DYDY (@5 r) (x. V)], ,

= Dg Dt |:2.0()0(X1 ...+ Xn))p(p R)S’p(Dsp(ppR)d(yl +... 4+ yq):|
Ix=0

o (sp)! 7

= . o, DYI(D%Pg,R)!(8)]

=2 GO R T e
2 DET(DM g, R)4 ()]

— k| skl _§ 4

k! pX(pR) G

By the third estimate of Lemma 4.2, we get

slk|+v d
DJDI[(0)°(x, V)., < K PM(oR)H(pRy 1 = o),

wherev = [d|B]|]. By substituting this into (6.6), we obtain

6.7) DJ DXu(0, y) << llufl o[kt (pR)*"I(oR)" '—(D5|k(:|tT)R.—)d@)-
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Thus, from (6.4), we obtain

xk+e 1 (k+p)

(i) = IK|
B, pu(x, y) << kz:;o BEIC. 9K (s i = ) o™ |ki!
(6.8) kenm
« (o R (o Ry 11 PT " 2sR)(E)

(slkp)!

Lemma 6.1. Leta > p andv = [d|B]].
1) If la|+v <m, then for all ue gg‘;""’;(QR), there exists €g(R, p) > 0 independent
of a such that

i _ d
BY L u(x, y) <€ Cop(R, p)a Y ull(92 ) (X, ).

2) For all |a|+v =m, there exists a positive constant Ghdependent of Ra and p
such that

[0} i _ _ d
Vu e G (Qr),  BE) pu(x, y) << CoR* o~ Plju(@3 5) (x, y).

Proof. 1) By applying the first and the second estimates ofrham.2 and then
the majoration a) of Lemma 4.1, we obtain

(DS\kHv(ppR)d(%-) < afl(Ds\k\+v+l(ppR)d(%-)

1, R)s—v—l(s|k| +tv+ 1)

sk e ).

Ka

By substituting this into (6.8), we obtain

X“e 1 (k+p)!
[Q[Culk+ ) Kt (k+ 1 — )t

B pux,y) << lull o™ kit (o R ¥ (p RV

k+pu—a>0

(69) keNn

_ o1 (slkl + v + 1)1 (DSUK*Dg )4 (&)
x 1 R s—v—1 P
a (R (sTkI)! (s(IK[ + 1)}!

It is easy to show that for ak,k’ € N" andi, j € N such thatj >i andk > K’,

we have
| | |
(k+ ) Ko_ Ik

1, d 1
ko7 ko MGy T

(6.10)  Cuk+p)=
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By using these properties, we obtain fer> 1 and |o| +v < m

L 1 IK!
BY u(x, y) <« [lullpta ~
Bapux,y) < llullp k+E;ZO|Q(|<)\(|k|—(|oz|—|u|))'

keN"

MR = = |k| <

R 1(sIK| + v + 1)1 (DK Dg )d(€)

x (R ™1(p (SIK])! {s(lk| + 1)}!

—ta~ 1 + + |k| X
< Jlullp~ta™t [k lel=lial o lk#L Ry Ui+ T2 2
k};w |Q(K)| k!
keN"
- (D™, R)7(8)
x (pR) Pl(s|k| + v + 1A PRI/
PR ) {s(lk| + 1}t

1 _ k| xk
< fullp~ra M (pR)T Y pMRIN =

k!
k+pu—a>0
keN"

(slk| + m)m-ld (DIKDg L)d(e)
Q)| {s(/k| + 1)}!

From the condition (A), there exists a positive const@ptsuch that

(s|Kk| + m)m=lul

~ < Co.
|Q(K)|
From this estimate and the properties
(6.11) (keN“ k+u—a>0}c{keN"; Kkl +|u —|a| >0}
and
||<|
(6.12) > St Xt +X)P =0P, X <o,
Ikj=p, keNn
we obtain
Bl gyu(x. y)
k!x (DK g, R)4(8)
C -1 -1 R —|B1 |k|+le’(|k|+l) |
< JuliCoa o R) k+;§>0 TR sk + )
keNT
1 — _ + + (D (p+1)(ppR)d(é) |k||xk
<< ullCoa~tp ™ (pR)™! pPIREPI X

, I)S(p"'l).,‘9 )d(i:)
< |ul|Cpoa 1,0 1 /)R 1Al E PHisp lRS(p 1)(—

peN
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<« [ulCoatp (R I(D2 ) (X, ).

2) Leta > p andpB # 0 such thatje| +v =m.
By applying the second estimate of Lemma 4.2 and the first ra@pm of Lem-
ma 4.1, we obtain

1 k]! K

BY u(x,y) <« |lu = —X X
ety <l 3 S| (K + [l — el Kt 7

k+pu—a>0
keN"

(slk| +v)! (DSK*Dg R)d (&)
(slkD!  {s(k|+ 1!

x (PR (pR)" Pl (pR)>
By using the condition (A), (6.11) and (6.12), we obtain

k]! k +1 s'( +1)(Ds(p+1)‘PpR)d(E)
(6.13) D D I I ] M
por| el K|=p k! {s(p+1}!
keN"
<< Cop Hlull(R* (@2 2)*(x, y). 0

Thus, by using the same techniques presented in the proolisnmohas given in
the holomorphic case ([3]), we obtain the following results

Lemma 6.2. Let«a # u such thatja| < || and B € N9,
1) If || +v < m, then there exists &g)(R, p) > 0, independent of asuch that

w, _ d
Yu e GO (QR),  Awpu(x, y) << Cp(R p)a Hiull(®2 g)°(x, ¥).
2) If |a| +v =m, then there exists &g (R) which depends only on R such that
0} — _ d
Vu e 690 (QR),  Awpu(x, Y) << Cap(RIUIRE p=71(03 ) (x, y).

Lemma 6.3. Leta # u such that|a| = || and B € N9,
1) If || +v < m, then there exists £g)(R, p) > 0, independent of asuch that

Yu e Q(F?,);,j,),(QR), Xi A pU(X, ¥) << C p)(R, ,o)a_1||u||(<I>21R)d(X, y).

2) If |x|+v =m, then there exists £> 0, independent of ap and R such that

Yu e g(,;‘j;j'g(szR). X A@.pu(X, y) << Cole‘f"||u||p*‘f"(cl>$’R)d(x, y).

Lemma 6.4. Leta # u such thatje| > || and B € N9,
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1) If jal+v <m—|ul, then there exists £ (R, p) > 0, independent of asuch that
) i _ d
Vu e G (Qr),  BE) pu(x, ¥) << Cap(R, p)a~[lull (@2 g) (X, V).
2) If |Ja|+v =m—|ul, then there exists £> 0, independent of ap and R such that
Q) i _ _ d
vu e 6D (Qr), BY ulx, ) << Collullp PR ¥I(@2 o) (x, y).

7. End of the proof of Proposition 6.1

In this section, we take an arbitrary parameger 1 and fix it.

Since the coefficients of the operatdt belong to G@)(C" x Q), we can use
Lemma 5.2. For evenR > 0 and p > 0 satisfyingnRp > max{diam(2), 1}, there
exists some constantsl!, ,(p, R), M s(p, R), M/ 4(p, R), and C} ;(p, R) depending
only on p and R such that the following holds.

For |a| +d|f] < m—1,

. (i i npR d
(71) if o > U, then a.((x')ﬂ(x, y) K Ma,ﬂ(p' R) (m) y

if « ¥ uand|a| < |ul|, then

npR ‘
(7.2) y,8(X, ¥) << Myg(p, R) <m) '

if « # pn and|a| =|ul, then

0O : npR ‘
(7.3) 3,5, Y) << My 0. R) (m) '

For |a|+d|B] <=m—|u|—1, if « ¥ n and|a| > ||, then

_ i npR ’
(7.4) ey (%, ¥) << Coplo, R) <M> |

By applying the first estimate of Lemmas 6.1-6.4, we obtain

n
> Y alx yBYu, y)
Jae[+d[Bl<m—1 i=1
(7.5) azp

R d
<< My(p, R)a™*||u (ﬁ) (qD;R)d(Xa y),



276

(7.6)

7.7)

(7.8)
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Z Ay p(X, V) A pU(X, y)

la|+d|B]<m-1
aZpandle|<|u|

noR d a
<< Ma(p, R)a | (m) (CDP,R)d(X: y),

3o 3l yxiAagu(x, y)

la[+d|Bl<m-1 i=1
aZpand|e|=|up|

R d
<< Mg(p, R)a *||u (WRZ’)*M> (@2.2) (%, ),
> bl y)Brux,y)

lo|+d|B]<m—|u|-1
aZpandla|>|ul

R d
< My(p, Raju] (ﬁ) (@3 2) (x, ),

n
Mi(p, R) = Cry max Z ML,ﬂ(p, R)Cw.p)(R, p);la|+d|fl <m—1, a > u}

i=1

MZ(IO! R) :Cm maX{C(a,ﬂ)(Rl p)Ma,ﬂ(pr R)) |a| +d|lB| S m_ 1! o % l"Ll |(X| < |/“L|};

n
Ms(p, R) = Cnmax{ >~ M 4(p, RICwp) (R p)i la +d|Bl <m—1, o # s, || = |M|],

i=1

Ma(p, R) = Cnmax{C}, ,(0, R)ICu ) (R, p); la| +d[B] <m— || — 1, a # s, || > |l},

where Cy,, is the number ofd, B) satisfying || +d|8| < m.
From the second majoration of Lemma 4.1 and the first of Canplb.1, we obtain

(7.9)

(7.10)

(7.11)

(7.12)

S YAl x nBLulx, y) << Mi(p, RiaHjull (@3 ¢) " (x, y),

la[+d|B|<m-1 i=1
L Em

ST s Aasu(x, ) << My(o, RiaHull (92 5) (x, ),

|| +d|B|<m—1
aZp and |a|<|u|

n
S Y Al v Awsu(x, ) << Ma(o, Ra~Hull (92 ) (x, v),
le|+d|Bl<m—1 =1
aZp and |al=|u|

> Bl Y)BL pulx, y) << My(Ria H|ull(93 g)(x, y),

|+d|B]<m—|u|-1
aZp and e|>|ul
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where M/(p, R) = (n/(n — ))M(p, R), | € {1, 2, 3, 4.

According to Remark 6.1 and the estimate (5.8) of Propositd3, there exists
constantsA('ﬁ(R) by 5(R), C('ﬂ(R) d “)(R) independent ofp and a, such that the
following holds. Form — 1 < |@| +d|B| < m, we have

(|) ~10) npR ’
(7.13) Vo > 8%, y) << (1pR)” Aa,ﬁ(R)(m> *

| _ B npR ‘
(7.14) Vo # i lol < |ul: ap(X, y) << (1pR)”! lb“‘ﬁ(R)(m> '

d
(7.15) Yo # ol = |pl: @ ﬂ(x y) < (noR)PI- 1c"ﬂ(R)<%> ;

and form— |u| — 1 < || +d|B] <m— |u|, we have

d
(7:16) Yo ol = Il B0 9) < (R, (R )

By these estimates and the second estimates of Lemmas 4.1 have

> Z a0 (x, y)BL,u(x, y)

m—1<|a|+d|B|<m i=1
azp

(7.17)
1 npR 4
K Cy(R)p ||Ull<m) (P5R) (X, Y),
Y (X y)Aapu(x, y)
m—1<|a|+d|f|<m
(7.18) a#pandle|<|pu|
< Co(R)p ull __mwR d(o1>a )d(x )
e wR—(z+g)) R OV
> Za S (%, Y)% Aa pU(X, y)
(7.19) P
<« C3(R)p Hul L d(<1>a )%, y)
3 P R— (T +§) R v Y)
> (X, Y)BL sU(X, y)
m—|p|—1<la+d|B|<m—|u|
(7.20) aZpandle|>|u|

npR d
<< C4(RIp Hul (WR’_‘)*M) (©2,)"0x ),
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where

n
C1(R) = CnComax{ nI "1 3~ AU (R m—1 < jaf +dIBl < m, o > u},
i=1

Ca(R) = Crnmax{n "=, s(R)Ca s(R:;m — 1 < o] +dIB| =M, & Z . || < |ul},

n
Ca(R) = CmComaxt n*™* 3 " COL(Rim —1 < fal +dIfl <m, o # . || = |u|},
i=1

Ca(R) = CnCo max{n'?"1d], ,(R);
m—|ul—1<la|+dfl <m—|ul, & % p, la| > |ul}.

Hence, again by the second majoration of Lemma 4.1 and theofiGorollary 5.1,
we obtain

(7.21) > AR NBUKY) << cl(R>p-1nun#(d>2,R)“(x, y),
m—l<\(;x\z+l§i|ﬂ\§m i=1
(7.22) Y s Y Ausu(x, y) << C2(R)p u] n%l(eb;,R)"(x, Y,

m—1<|e|+d|B|<m
aZpandlel<|u|

n
723) > > alx y)xiAssu(x, y) << Ca(R)p Hull - u 1(<1>$,R)"(x, y),
m—1<|a|+d|f|<m i=1
o pandle|=| |
(7.24)
n

> Bl (x, y)BIu(x, y) << Ca(R)p|lull
m—|p|—1<la|+d|f|<m—|u|
a#pandle|>|pu|

n— 1(¢2,R)d(x’ y).

Thus, by using the estimates (7.9)—(7.12), (7.21)—(7.244 the expressions of
the operatorsA and B given in (6.2) and (6.1), respectively, we obtain thaRifo >
max{diam(2), 1} anda > 1, then

(@ + tut ) << (S5 + HE ) @2 0,y

where

C(R) = n%l(cl(R) +Cy(R) + C5(R) + C4(R))

and

M(R, p) = Mi(R, p) + Ma(R, p) + M3(R, p) + My(R, p).
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Hence, from the definition of the north- ||, we obtain

1B+ Al < CE)R) M(R. 7).

a

If we take parameterg anda such that
p>2C(R) and a>2M(R, p),

then we get||B+ A| < 1 and therefore the operator € (B + .A)) is invertible in the
Banach spac@(‘”d) (2r), which shows the existence and uniqueness of the solution
of the problem (3.9) in this space. Ll

8. Construction of global solutions

From now on, the nornj - |; denotes the norm ogg‘f;’?pi (2R).

Lemma 8.1. If R>0,a; >0,a >0, p; > p» > 0, then we have a continuous
; d ; d
embedding fronGs’ (Qr) into G4 (2R).

Proof. Ifue gg‘;‘f?pl(QR), then

(8.1) V6 e NI, VyeQ, Diu(x,y)< [lulsD'o® o(x,0)8]1 %

By using the construction of formal seri@s -, we obtain

5 0) = o (18] + P "SZ‘ ~a
DYl le(x,O)-pEENI”(le) e T Gpl m W
(8.2)

[8]+sp

_No(o\PsI*sp 1 (R al)'
=2 (%) (sp)! (le)‘leZ

peN

Since we have

[5]+sp

R |
va>0, Vp>0, 1<Z( a)

and
1 _ 1
(p1RPIHL = (pp R)IIH
we obtain the following estimates from (8.2).

for p1>p2 >0,

[81+sp

P51 +sp! 1
Dl;s\ (X 0) « Z( R) sp!  (p2R)PML ( Z

peN

(Rpx a)) Z (R 2a)|
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< eRaplo® (x,0).
By substituting this estimate into (8.1), we obtain
V6 e NI, VyeQ, Diu(x,y) < [lull:e”RaD/ % o(x, 0)5|1% .
Thus, we obtain our embedding and

R
llullz < [lull.€™"®. U

This lemma allows us to use the same techniques by GourdirVeuthab in [7],
for unique global construction of the solution.
By using Proposition 6.1, we obtain the following result fach fixedR > 0.

Proposition 8.1. There exists i € N* and an increasing sequence of positive
numbers(an)n=n, such that the problen3.9) admits a unique solution ) satisfying

w,d
Un, € [ ) Ged (QwR).

n>ng
Proof. By Proposition 6.1, there existg € N* such that

VYn > ng, 3a, > 0: the problem (3.9) admits a unique solutiop € Q(F;‘fé‘:?n(QR).

We also have a unique solutian; € GSi. . 1(QR).
By Lemma 8.1, we have

d d
gg&zl,n+1(9 R) C gg{jaﬂ?n(g R)l

which implies that the solutions, and un+; belong to the same spa@‘éfﬁ?n(QR),
where there is the uniqueness of solution. Hence,

Un = Up,, ON Qg for n > no. ]

9. Existence of solutions inG©9(Qg/)
Proposition 9.1.

Un, € G (Qp/22).
Proof. By Proposition 8.1, we have

(91) ¥n=no, V6eN', VyeQ Diun(X,y) < [n, oDy ®R(x, 0)8[19.
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Since the functioncbﬁ*jR is analytic in the open set
{(z.§) € C2 (NR*PIe|° + 5] < nRY,

which contains the polydisk
R R
Or = {(r,é) eCxRjlr| < nz—s and [§] < %}

By using Cauchy’s formula for this polydisk, we obtain thastence of constant, =
Cn(an, n, R) > 0 satisfying

nR/25 nR/2
"("R/2%) — 7 (NR/2) — &’

DrR(X, y) < M

which implies

nR/2% |5]! nR
for |t|=|no| < —.

8] g2n
(92) Dg q)n,R(X’ O) < My (n R/ZS) s (n R/Z)‘al 2s

By substituting this result in (9.1), we get
(9.3)

vn>no, V8eN9 VyeQ, Dlup(X,y) < [unllnM R/Z 191" |sp1d-1
— 10, ’ ’ yYno\ A, nolln n(R/ZS)—O‘(nR/Z)W : ’
which gives
(9.4) vn>no, ¥SeNI, VyeQ, [Diun(x,y)|=C ;mld
. — 1o, 1 ’ y No l = n(nR/2)|8| L
where
R/2s
Ch=M = .
¥ nxeS;R?zs (R/zs)_a‘”unoun

Hence, we obtain that for alh > 0O, there exists an integar > maxno, 2/(hR)}
such that

(9.5) Vs e N, V(X,Y) € Urjz x @, |Diun,(x, y)| < Chh®!|5[19.
Thus, we haveu,, € G@D(Qg/x). O

10. Uniqueness of solution inG@9 ()

Let T > 0 andug, u; € G“9(Qr) be two solutions of the problem (3.9). From
Corollary 5.2, there exist® > 0 such that

d
U, Up € Q‘é‘fa,,))(QR),
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where there is the uniqueness. Thus, we have
Vy e, up(-,y)=uzx(-,y), on .

Since % is an connected open set %, and sinceu;, U, are analytic onZ4, by the
analytic continuation, we get

ui(-,y)=uz(-,y), on %.

11. End of the proof of the main theorem

In this final section, we finish the proof of Theorem 2.1.

Let g € G@I(C" x Q) be a function introduced from functiof in Section 3. For
an arbitraryR > 0 and an arbitrary open s€t' € 2, we haveg € G@9(Bg x Q).

Applying the results up to Section 10 f&@' instead of2, we have proved that
for all R > 0, the problem (3.9) admits a unique solutiog in G“9(QR). Hence, by
the uniqueness, we have a unique solutioa G (C" x Q) of the problem (3.9).
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