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Estimations of Some Unknown Viscosities and Self-diffusivities

for Liquid Metals’

Ikuo OKAMOTO*, Takamichi IIDA** and Hiroshi KIHARA***

Abstract

Both viscosity and self-diffusion of liquid metals obey approximately a simple form of exponential (the Arrhenius)

equation.

It is shown that simple empirical relationships exist between the temperature dependences (activation energy) of vis-

cosity and self-diffusion for liguid metals and their melting points.

The constant in the exponential equation can be

obtained from the expressions which have been derived by authors previously.
The temperature dependences of viscosity and self-diffusion of liquid metals are clasified into two groups; one is
normal metals (typical metals) and the other is semi-metals.

The structure factors for liquid metals can be clasified into two groups as well as the temperature dependences of vis-

cosity and self-diffusion.

Consequently, viscosities and self-diffusivities can be estimated in cases where experimental data is lacking.

1. Introduction

Transport processes are concerned with the flow
of mass, momentum, and energy in fluids in nonuni-
form states. For normal liquids near equilibrium, the
transport rates are proportional to gradients of con-
centration, mass velocity, and temperature; and
diffusivity, viscosity, and thermal conductivity are the
respective proportionality constants. The theory of
thermal conductivity is less well developed and more
complex than the first two, and avialable data is
also few, because of the considerable difficulty in the
experimental techniques.

Interest in the viscosity and diffusion of liquid
metals today stems both from technological consider-
ations of welding, metallurgy or nuclear engineering
(atomic reactor coolants), and from theoretical con-
siderations, such as the fact that- their structural
simplicity marks them good media to test- the current
theories of liquid state.

Academically, for equilibrium properties, the pair
potential and pair distribution function are the start-
ing point and the calculation proceeds via equilibrium
statistical mechanics. By such approach, the infor-
mation regarding time variation of particle positions is
not considered. In contrast, for transport coefficients
the calculation proceeds via a .detailed atomic
(molecular) dynamics method. That is, the transport
coefficients themselves are integrals over time".
These integrals can not be expressed in a simple way
in terms of the pair potential and pair distribution
functions, and they can not be calculated in a similar

way as to the equilibrium cases. Therefore, for trans-
port coefficients, rigorous expressions have not been
derived at present. In such cases approximate expres-
sions are commonly employed. For this reason, it is
usual to propose models of liquid first ‘and then
calculate the transport coefficients for the models.
Intuitively, the viscosity or diffusivity will depend
upon three fundamental parameters: pair potential
(the interatomic bond strength), the atomic size (the
atomic weight), and the coordination number (the
tadial distribution function, that is, the structure of
liquid metals). '

Experimental viscosity and diffusion data exist for
only about 50% of all metallic elements (metals are
the elements consisting over three-fourths of the peri-
odic table), excluding the rare-earth group. And a
practical determination of these properties for many
of the remaining metals would prove difficult experi-
mentally, owing to their chemical reactivity, their
refractoriness, or their scarcity. Therefore, several
mathematical or empirical methods have been
suggested for calculating viscosities and diffusivities
of liquid metals, but none are successfull expect for
few metals.

From the practical standpoint, it would be useful
that viscosities and diffusivities of many liquid metals
can be estimated by simple expressions in cases.
where experimental data is lacking. According to ex-
perimental *results, both viscosity and self-diffusion
obey approximately the general form of Arrhenius
equation. Simple empirical relationships exist between
the temperature dependences (activation energy) of
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viscosity and self-diffusion for liquid metals and their

melting temperatures. Furthemore, the constant in

the Arrhenius equation can be calculated from the ex-
pressions which have been derived by present

authors” ' previously. The temperature dependences
of viscosities and self-diffusivities for liquid metals

have been clasified into two groups: one is normal

metals* (typical metals) and the other is semi-metals.**
Furthermore, they correspond to the structure factors

which have been determined by means of X-ray or

neutron diffraction and have been calculated from

hard sphere model. These approaches have usually

involved a discussion of the analytical relationship

between viscosity and self-diffusion.

It is propossed to estimate viscosities and self-
diffusivities of liquid metals, whose metals are not so
far studied experimentally. It should be understood
that this simple relationship represents a first approxi-
mation only.

2. Estimations of some unknown viscosities for
liquid metals

The beginnings of the modern theory of transport
processes in liquids were set forth by Kirkwood”,
and by Born and Green”: Rigorous expressions for
viscosity were derived which applied equally to liquid
and gas. They consist of two.parts due to the
thermal motion and molecular (atomic) forces respec-
tively, of which the first is dominant for the gas, and
the second for liquid. By approximating the rigorous
formular, viscosity of liquids was obtained by Born
and Green”. Born and Green® thought that a
method of successive approximations could overcome
the calculational difficulties of the formular, but un-
fortunately this has not yet been accomplished.

A simple form expresses the relationship between
viscosity n and temperature T in ‘K., as follows:

—A. Hy
n=Aexp( 4
or (1)
~ __Ho 1
log 7= Z3m3r T TleA

The experimental values log » all fall on straight
lines when plotted against 1/T. Where A is a con-
stant, R the gas constant and H;, the slope of (log 7,
1/T) (if the mechanism of viscosity is an activated
process, Hy is the energy of activation for viscous

* Normal metals (typical metals) are defined as those that crystallize
in the bee, fce, or hep structure.

** Semi-metals are defined as those that crystallize into (more)
complex crystal structures.
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flow). In addition, from a general kinetic theory of
liquids, Born and Green" found that the approximate-
ly exponential temperature dependence exists. The
simple exponential representation is a useful engineer-
ing correlation of viscosity for liquid metals. Many
pure metals, however, do not show exactly linear
plots logn vs.1/T over wide temperature range. A
number of alternatives to equation (1) have been pro-
posed which are more successful for particular group
of liquids. But even if these have greater justification,
the limited-accuracy of the available data probably

does not justify a more complex equation than equa-

tion (1).

If the constants A and H, are given, viscosities
can be estimated from equation (1). From the
theoretical and experimental standpoint, it has been
suggested that any kind of relationships between
viscosity and the other physical properties of liquid
metals. It was found by Grosse” that a simple
empirical relationship exists between H,), the slope of
(logn, 1/T) of viscosity for liquid metals and their
melting points. This was shown in log-log plot.
Grosse® observed a monotonic function of the melt-
(According to Eyring’s
views®, H, is proportional to’the energy of vaporiza-
tion.) Consequently, use of this empirical relation-
ship makes it possible to estimate the variation of
liquid metal viscosities with temperature.’

However, from the experimental and theoretical
investigation of the physical properties of liquid
metals (the structure factors or radial distribution
functions) it would be considered that viscosity and
diffusion at or near the melting point, being sensitive
to the structure of liquids, correspond to the crystal
structure in solid state. Furthermore, the experi-
mental viscosity data of liquid metals which was taken
by Grosse”, is quetionable today, because experi-
mental difficulties normally. encounted in viscosity
measurements of liquid metals precluded accurate
measurements with early techniques.

A consideration of the best data now available
appears in Table 1. They are obtained from the
recent review by Wilson” and have in some
instances been supplemented by Takeuch and Iida®.
Relationship between Hj, and melting point (T,,) is
shown graphically in Fig. 1. As can be seen from
Fig. 1, the slope of (logy, 1/T), H, is described by
H,=1.3RT, for semi-metals and H,=17RT,~
3.5RT,, for normal metals. From experimental data,
Hrbek” has proposed H,=3RT, for many liquid
metals. From Fig. 1, however, relationship between
H, and T, can inadequatly be expressed only a
straight line. That is, the temperature dependences
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Table 1. Slope of (log 5, 1/T) (activation energy) for viscosity
in pure liquid metals.

Metal (‘:Z) (K call-_]r;]lole_') Ref.
Li 453.7 1.33 7

' Na 371.0 1.25 7
K 336.4 1.2 7
Rb 312 1.23 7
Cs 301.8 1.15 7
Me 923 7.3 7
Ca 1123 6.5 7
Al 932 3.95 7
Cu 1357 7.3 7
Ag 1234 5.3 7
Au 1336 5.1 7
Zn 692.7 2.7 8
cd 594 3.0 8
Heg 234.3 0.53 8
Ga 302.9 1.0 8
In 429.3 1.25 8

Sn 505 1.25 8
Pb 600.6 1.9 8
Sb 903 2.6 8
Bi 544.5 1.25 8
Fe 1809 9.9 7
Co 1768 10.6 7
Ni 1725 12.0 7
Pu 913 3.1 7

16
14 - © { Normal metals) A5RTm
OCO/ Hrbek)

# oRy 13RTm
o R —
i .:;j/
T
H; in Sn
N L n "

2 5 10_ . 2 15 20 25
Tm(*K} x 10

Fig. 1. H,, slope of (logn, 1/T) (activation energy) for viscosity in
pure liquid metals as a function of melting temperature.

of viscosities of liquid metals should be clasified into
two groups: one is normal metals and the other is
semi-metals. The slope of (logn, 1/T) vs. melting
temperature relationship is shown graphically in Fig. 2.
As Fig.-2 indicates, it can be clasified into the two
groups. Furthermore, fairly linear relationships exist
between H;, and T,, respectively. As can be seen
from Fig. 2, the slopes of (logy, 1/T) of viscosity for
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Fig. 2. Slope of (logn, 1/T) (activation energy) for viscosity in pure
‘liquid metals vs. melting point.

liquid metals are described by H,=1.2IT," for
normal metals and H,=0.75T,"* for semi-metals.

The constant A is obtained by the expression of
viscosity which have been derived by present authors”
previously. The expression is:

a

’7::_ vP(T) mp’ fo g(r) r'dr )
where v is a vibrating frequency of atoms, P(T)
means the life time which -corresponds to the proba-
bility of atom to vibrate at each site, m is atomic
mass, p is the average number of atoms per unit
volume, and g(r) is-the. radial distribution function.
At the melting point, viscosity »,, (equation (1)) is ex-
pressed as follows:

. MTo)?*

o )

7]m:57><10_ v F

where M is the atomic weight and V,, is liquid atomic
volume at the melting point. Expression of this type
has been derived before by Andrade’. Consequently,
the constant A is as follows:

Ao STX107 (M To)
Vm%exp(H-v/R Tn)

4)
Finaly, viscosities of liquid metals are given by

the following expression;

_ 57X107 (M Ta)*
Vutexp(H,/R Tn)

Hj
exp ( RT ) (5)
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3. Estimations of some unknown self-diffusivities
for liquid metals

An analogous Arrhenius expression to that used
for viscosity is found to fit all available data.in dif-
fusivity ;

H
D=Djexp(— R; )
or (6)
—__Hp 1
log D= 3303k T + log D,

where D, is a constant and Hp the slope of (log D,
1/T) (If the mechanism of diffusion is an activated
process, Hp the activation energy for self-diffusion).
It is suggested for self-diffusion as well as viscosity
that. simple relationships exist between Hp and the
melting point. Saxton and Sherby"” have studied vis-
cosity and atomic mobility in liquid metals, and have
proposed, in an interesting phenomenological analysis
of viscosity and self-diffusion data for liquid metals,
Hp=3.0 RT,, for normal liquid metals and Hp=2.75
RT,, for semi-metals. On the other hand, Nachtrieb”
has proposed a empirical relation Hp=3.35 RT, for
pure metals. From the recent review by Hachtrieb'”
and.for alkali metals more recent data by Larsson
et al'” (Table 2), relationships between Hp and T,
are shown in Fig. 3. As can be seen from Fig. 3,
Saxton and Sherby’s observation is found for semi-
metals. For normal metals, however, both Saxton and
Sherby’s observation and Nachtrieb’s observation are

Table 2. Slope of (log D, 1/T) (activation energy) for self-diffusivity
in pure liquid metals.

Tm HD Ref.
Metal °K) (K cal-mole™)
Li 453.7 2.87 13
Na 371.0 2.22 13
K 336.4 2.02 13
Rb 312 1.98 13
Cs 301.8 ( 1.86) 13
Cu 1357 9.71 12
Ag 1234 7.66 12
Zn 692.7 5.09 12
Hg 234.3 1.16 12
Ga 302.9 1.12 12
In 4293 (2'43) 12
\2.55/.
Sn 505 2.58 12
Pb 600.6 4.45 12
Sb 903 5.0 11
Bi 544.5 3.0 1
4.6%C 12.2
Fe 1809 < > 12
2.5%C 15.7
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Fig. 3. Hp, slope of (log D, 1/T) (activation energy) for self-
diffusion in pure liquid metals as a function of melting
temperature.

That is, the relationships are
for

rough approximations.
inadequately represented with a straight line
normal metals.

Log-log plots of the Hp, the slope of (log D, 1/T)
against the melting temperature are shown in Fig. 4.
It can be seen that fairly good straight lines are
obtained for normal metals and semi-metals, respec-
tively. Namely, the temperature dependences of
self- diffusivities of liquid metals can be clasified into
two groups (normal metals and semi-metals) as well
as viscosities. The empirical relationships Hp=
2.5T," for normal metals and 2.0T, " for semi-metals
are found from Fig. 4.

As have been shown by present authors', self-
diffusivities of liquid metals at the melting point- are
given by the following simple expression;

)

— T 3 L
Dm=35>< 10 ¢ (_m)z \/m3 (7)
M
50.0 T T
40.0 | 4 1+
4
300 - 4 4]
- +
20.0
15.0 gFel 2.5%C)
< ZOFe(46°,C)
10.0 o
2:@ Yond
: A
.0 b
5.0 F‘,Jh ’l‘ab
E 40
2 e
© 3.0 Bi
o Na'e#Sn
o
o 20 In
D P
Il
o s
x 1.0 Hg
7
o
=
05
0.4
0.3 } F+ 1t — |
[ . O Normal m-=tals
0.2 % i l [ ] 3‘?rri|—'r\et=ls ]
EREE |
0.1 [ i s
01 02 030405 1.0 20 304050 10%x10
Tm (°K)

Fig. 4. Slope of (log D, 1/T) (activation energy) for self-diffusion in
pure liquid metals vs. melting point.
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By combining above expression with equation (1), the
constant D, can be obtained.
35X107 T V,F

_ 3 (8
Do =" MF oxp(— Hp/RTo) )

Consequently, self-diffusivities of liquid metals are
expressed as follows;

3.5%10° TF V¥

Hop
D= T J— —
T MFexp(—Hp/RTp) P RT ) ®

On the other hand, Nachtrieb” has suggested D
=constant: T

D=C-T (10)

From the equation (7) and (10), self-diffusivities of
liquid metals are represented ;

_35XI07V,E

(MT,)* an

It is considerable importance that the physical
properties of liquid metals, such as viscosity and dif-
fusion, can be clasified into two groups; one of
normal metals and the other of semi-metals. This fact
has a meaning in engineering parameters as well. For
instance, as shown in Fig. 5, the ratio of surface
tension () to viscosity (i. e. ideal penetration coef-
ficient in engineering) of liquid metals is also clasified
into the same groups. As can be seen from Fig. 5,
the values of (T,/M)* for tin and lead are nearly
equal to each other, but the value of (y,/7n,) for tin
(ideal penetration coefficient at the melting point) is
considerably larger than that for lead.

7 - o (Nomal metais)
o ( Semi—metals ) o o
Al Li
6+
5
-4
Jm 19 °
Mm 4k Co
(dxn{m" ) &, 0re
poise .‘Sn Ni
3 Inga
oBi e 3
A/ Ay Sl 7.0 x1
o ope( /.0 x
2 T & 0zn pe( 7.0 x10°)
Pb %
1k ORp
Cs
I 1 1 1 1 1 1 1 1

hN
e

Fig. 5. Ratio of surface tension to viscosity for pure liquid metals at
their melting point vs. (melting yemperature, °K/atomic weight,
g-more™)¥. (molar volume, cm?®- mole™ ¥,

4. Relationships between the temperature depend-
ences of viscosities and self-diffusivities of liquid
metals and their structure factors
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A complete treatment of the transport properties
of a liquid requires a discussion of the position and
momentum of each atom at each instance of time".
Thus it is useful to define more general distribution
functions involving position (¥), momentum (P) and
time (t), which describe the distribution at some time
t, relative to the initial distribution at t,. The simplest
of these is the general pair distribution function,
namely f(%, Bi, ti; T2, D2, t,) is the probability of
finding an atom at T, with momentum p, at time t,,
if there was an atom at (f;, P,, t;). Many transport
properties may be discussed in terms of a simpler
function (G) involving only space and time, i. €.;

G(f—T,, tl_tl):ff f(fi, P, t; T2y P2, &) dPidpy

Phisically, G is proportional to the probability of find-
ing an atom at T, at the time t,, if there was an
atom at (T,, t;). It depends only upon the space and
time difference because the system is in thermal equi-
librium. These differences will be denoted by T—T,
=T and t,—t=7. G(T, ) is known as the van
Hove correlation function or total space-time correla-
tion function. The theory of space-time-dependent
correlation function (G (T, t)), in viscosity and dif-
fusion, has not been developed to the point where
rigorous expressions may be derived. In these cases
approximate expressions, based on models, are com-
monly employed.

For each of the solid and gaseous states there is
an ideal model which is good approximation to reality
and forms the basis for theoretical discussion. These
are the ideal crystal lattice and the ideal gas models,
respectively; for the former, emphasis is on structural
order modified slightly by the thermal motion of
atoms while, for the latter, the model describes the
random thermal motion of the atoms from random
atomic positions. On the other hand, at present
there is no ideal model which gives a good approxi-
mation to liquid state. If such a model is found it
would (in constrast to the crystal and gas models)
need to cover structural and thermal properties with
equal emphasis.

The mechanism of an activated process, based
on cell model (hole, lattice or free volume model) in a
liquid is not well understood, but a jump process,
such as is usually visualized in solids, does not seem
likely and is certainly not supported by the evidence
from neutron diffraction experiments.

Intuitively, viscosity or diffusion will depend upon
the structure of liquids. North et al'”” have deter-
mined the structure factors for four liquid metals (Zn,
TI, Sn and Bi) a temperature close to the melting
point, by means of neutron diffraction. The data for
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Fig. 6. Structure factors S(Q) for liquid Sn and TI (Scale (a) : Sn at
250°C; Scale (b): Sn at 600°C; Scale (c): TI at 320°C) (after
_North et al).

liquid tin and thallium are shown in Fig. 6. As can
be seen from Fig. 6, the result of tin at 250°C con-
firms the existence of a shoulder (subsidiary maximum)
on the high Q side of Q,,. In contrast, the results of
liquid thallium and tin at 600°C do not.

Intensity patterns have been obtained by X-ray
diffraction from liquid bismuth up to 652°C by
Isherwood and Orton', and the experimental struc-
ture factor (a(K)) curves were compared with those
caluculated from hard sphere model. The results are
shown in Fig. 7. The experimental information
obtained from their investigation is the high tempera-
ture diffraction. pattern at 652°C.  This temperature
coresponds to one-third range (melting point to boiling
point) and, as can be seen from Fig. 7, a subsidiary
maximum is still present. When the peak heights of
the experimental and hard sphere a(K) curves are
compared, there are two main differences between
the best fitting hard sphere a(K) curves and those of
bismuth. One is the small difference in position the
first peak and the other is the presence of the sub-
sidiary maximum. The first peak position of hard
sphere a(K) curves lies between the main -and sub-
sidiary peakes of experimental curve.

Ashcroft and Lekner'”’ were comparing the hard
sphere curves with experimental curves from the
alkali metals, which do not show a subsidiary maxi-
mum. The results for potassium and rubidium are
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compared with that predicted by Percus-Yevick hard-sphere
theory (full curve). a(q) is structure factor and ¢ the hard-
sphere diameter. (after Ashcroft and Lekner).

shown in Fig. 8.

The structure factors for liquid metals can be also
clasified into two groups as well as the temperature
dependences of viscosity and diffusion; one is normal
metals and the other is semi-metals. The subsidiary
maximum (shoulder) is a minor structural effect.
Consequently, it influences the transport properties,
such as viscosity or diffusion.
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Conclusion

Viscosities and self-diffusivities for pure liquid

metals can be estimated in such cases where experi-
mental data is lacking.
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