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1. Introduction 

Since agar, carrageenan, alginate, and pectin with a low degree of esterification are simple to 

use, they have been widely used for food products such as dessert jellies for a long time. However, 

agar gels that are formed on cooling become relatively turbid and the gel strength becomes weaker on 

addition of acid. Pectin with a low degree of esterification can form gels only in the presence of 

divalent cations. Seaweeds that are the source of alginate, carrageenan, agar, are subject to the 

uncertainties of nature and are not always available in sufficient quantities to satisfY market demand. 

Moreover, in most countries the range of gelling agents available for food use is limited by regulation. 

In the development of new textures and in the formulation of new products we have to rely on 

combinations of two or more of these permitted gelling agents. Mixed systems are therefore of 

great practical importance and there is much research in this area, although most of it is very empirical 

and unhelpful in understanding or illustrating general principles. 

The carrageenans are sulfated polysaccharides, which are essentially alternating 

copolymers of 1, 3-linked ~-D-galactose and 1.4-linked 3, 6-anhydro-a-D-galactose. They are 

extracted from marine algae of the class Rhodophycae and, depending on source, differ in the 

extent to which they carry sulfate groups. Nevertheless, it is possible by selecting suitable 

genera of algae to extract at least two classes of carrageenan, which conform closely to the 

simple repeat formula. These are t and K-carrageenan and most research has been 

concentrated on these two types. 

Milk proteins are classified as 'casein' and 'whey proteins'. Caseins are a group of 

phosphoproteins insoluble at pH 4.6 (the isoelectric point), where the whey proteins remain 

soluble. There are four primary proteins, a81 , as2, ~and Kin the approximate ratio 40:10:35:12, 

all relatively small molecules of about 20,000-24,000 Daltons. Because of their high content of 

phosphoseryl residues, caseins bind polyvalent ions strongly, principally Ca2
+ which promotes 

aggregation. In normal milk, about 95% of the casein exists as casein micelles. These are 

coarse colloidal particles with molecular weights of about 108 and mean diameters of about 

1 OOnm. Sodium caseinate, as used in this study, is prepared by adding acid to milk to 
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precipitate the casein at the isoelectric point. 

adding sodium hydroxide to restore neutrality. 

The washed protein is then redissolved by 

The high overall proportion of hydrophobic 

amino acid side chains throughout the casein primary structure causes sodium caseinate to form 

aggregates (or 'sub-micelles') in aqueous solution, with the bulk of the non-polar regions 

residing in a dense inner core with little associated (Farrell et al, 1990). But further association 

of sub-micelles to form the large casein micelles present in milk is prevented by the removal of 

most of the calcium. 

Gelation and thickening of dairy products is one of the most important food applications of 

the algal polysaccharides, particularly 1- and K-carrageenan. Milk gels formed by the addition 

of K-carrageenan are of considerable practical importance. Thus, K-carrageenan reacts 

specially with a5-casein, stabilizing the protein to precipitation by calcium chloride (Hanse, 

1968). It can also form a stable complex with K-carrageenan with K-casein (Grinsrod, 1968, 

Snoere, et al., 1975). For example, in chocolate milk, the weak gel network provided by 

addition of a small amount of K-carrageenan (0.25~0.35 g/kg) prevents sedimentation of cocoa 

particles. Similarly small concentrations of K-carrageenan can be added to give 'body' to 

skimmed milk; larger concentrations (2~ 3 g/kg) can be added to form gelled milk products such 

as pie fillings and custards. Addition of 1 g/kg gives a 10~20 % increase in the yield of 

cottage cheese base (Kilapthy et.al., 1992); addition of 0.25g/kg gives an approximately 10% 

increase in the yield of Cheddar cheese (Kanombirira et.al., 1995). 

Despite this widespread use the mechanism of gelation is still not well understood, 

although it has long been known that 1- and K-carrageenan and casein micelles (Hansen, 1968, 

Grinsrod & Nickerson, 1968, Dalgleish & Morris, 1988, Langendorff et al., 1997, Snoeren et al., 

1975, Lin & Hansen, 1970; Sukura & Nakai, 1981, Ozaka et al., 1984, Oakenfull et al., 1999 & 

2000). Dalgleish and Morris (1988) have studied the interactions between A-, 1- and 

K-carrageenan adsorb to casein micelles. They have measured electrophoretic mobilities and 

diffusion coefficients and showed that A- and K-carrageenan adsorb to casein micelle until the 

surface is covered and that k-carrageenan also adsorbs strongly, but with less complete coverage. 

Whether or not the carrageenan is in the helix or random coil conformation appears to make little 

or no difference to the interaction. Xu and her colleagues (1992) have accordingly proposed 

that such interactions are the first step in the gelation process. But whereas Dalgleish and 

Morris (1988) envisaged the entire carrageenan chains wrapping around the casein micelle, Xu 

and her colleagues (1992) suggested that only part of the carrageenan chain is adsorbed. Most 

of it, they suggested, is free in solution in the form of loop or tails. As the solution is cooled to 

below the carrageenan's helix-coil transition temperature, the free K-carrageenan chains link to 

form a gel network by forming double helices (Figure 1 ). This figure is consistent with 

electron microscopy studies (Hood & Allen, 1977), which showed aggregation of casein micelles 
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m milk with added K-carrageenan but little or no aggregation with A-carrageenan. 

A-carrageenan binds to casein micelles (Dalgleish and Morris, 1988) but it does not form gels 

(Glicksman, 1983). Langendorff et al. (1997) have studies the mixed gels formed by 

t-carrageenan and sodium caseinate micelles. They found that t-carrageenan added to milk 

(0.56g/kg) produced gels with higher elastic modulus and gelation temperatures. More 

recently, Alexander & Dalgleish (2007) have investigated the interaction of casein micelles with 

K-carrageenan using diffusing wave spectroscopy, and Arltoft et al. (2007) have studied the 

interaction between carrageenan and milk protein by micro-structural and rheological methods. 

b 

0~~.0 .. 
~_to 

Fig. 1 
Schematic representation of the gelation of casein and K-carrageenan as proposed by Xu et al. (1992). 
(a) Casein micelle and random coi I carrageenan in solution; (b) casein micelle-carrageenan interactions 
in solution; (c) gel formed from casein and carrageenan . 

In their investigation, Xu and her colleagues used electron microscopy combined with 

rheological measurements, but confined to a single temperature (5°C). In this study, it has been 

extended the investigation of the K-carrageenan-casein systems to thermal properties, measured 

by differential scanning calorimetry (DSC), and to oscillatory rheological measurement over 

temperature range encompassing gelation and melting. Moreover, we report here a parallel 

investigation of mixed gels of K-carrageenan and skimmed milk powder (SMP) in view of their 

wide application on the dairy industry. 

2. Materials and Methods 

2.1. Material 

K-carrageenan was from Sigma. Analysis of the material by ICP-AES (carried out by the 

CSIRO Division of Exploration and Mining) gave the following percentages of calcium, 

potassium and sodium: Ca 1.96; K 20.93; Na 1.16. 

Sodium caseinate, as used in this study, was a commercial product (Murray-Goulbum 

Cooperative Ltd) prepared by acid precipitation followed by neutralization with sodium 

hydroxide. Analysis of the material by ICP-AES gave the following percentages of calcium, 
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potassium and sodium: Ca 0.046; K < 0.02; Na 0.96. 

Low heat skimmed milk powder (SMP) was also analyzed for calcium, potassium and 

sodium: Ca 13.9; K 17.5; Na 4.4. 

2.2. Sample Preparation 

Throughout this paper, concentrations are given by weight in grams of solute per kilogram 

of solution (g/kg). Sodium caseinate or SMP was dissolved in deionised water and heated for 

30 min in a water bath at 95°C. K-carrageenan was also dissolved in deionised water and heated 

for 30min in a water bath at 95°C to ensure complete dissolution. Appropriate weights of the 

two solutions were mixed hot with deionised water for the preparation of gels. The pH was 

6.45 at 25°C. 

2.3. DSC measurements 

DSC measurements were carried out with a Setaram micro DSC-III calorimeter, Cauire, 

France. Approximately 900 mg of the sample solution was sealed hermetically into the DSC 

pan and the pan then accurately weighted. For each sample a reference pan was filled with 

distilled water to within ±30 micrograms of the weight of the sample pan. The two pans were 

then placed inside the calorimeter, heated to 95°C and held at this temperature for 1 Omin to 

annihilate the thermal history. The temperature was then lowered to 5°C at 1.0 K/min and 

raised again at the same rate to 95°C. 

Transition temperatures (heating and cooling) were estimated from peak areas. The 

magnitude of ~H estimated from DSC scans can be sensitive to how the base line is drawn. In 

each case we drew base lines within the range of possible positions and estimated the uncertainty 

in the results accordingly. 

2.4. Rheological measurements 

Oscillatory rheological measurements were made with a Dynamic Stress Rheometer DSR 

from Rheometries Co. Ltd., NJ, USA. Parallel plate geometry was used, of diameter 50mm. 

The hot sample was poured directly onto the plate of the instrument. The temperature 

dependence of G' and G" was observed at a frequency 1.0 rad/s. All measurements were 

made within the linear viscoelastic regime. 

Difficulty was encountered with syneresis, which was very pronounced in the mixed gels. 

For concentrations of K-carrageenan in excess of 4g/kg and of sodium caseinate in excess of 

30g/kg, syneresis developed so rapidly as to caused slippage between the plates of the rheometer. 

We therefore also made complementary measurements of absolutes shear modulus by the method 

of Oakenfull, Parker and Tanner (1989). This method is not affected by syneresis because it 

relies on insertion of a probe into a gel formed in a cylindrical container, as minutely described 
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in the previous study (Oakenfull et al., 1999). The absolute shear modulus (G) was calculated 

from the formula G=0.0208Y (Oakenfull, 1989). This method is equivalent to measurement 

of G' at zero frequency. For K-carrageenan alone, for which G' is almost independent of 

frequency (Morris, 1989), the two methods gave concordant results (data not shown). 

3. Properties of Mixed Gels of K-Carrageenan with Sodium Caseinate 

In this study, it has been carried out the following two series of experiments. 

(i) Holding the concentration of sodium caseinate constant, the concentration of K-carrageenan 

constant was varied. 

(ii) Holding the concentration of K-carrageenan constant, we varied the concentration of 

sodium caseinate. 

3.1. Differential Scanning Calorimetry 

Figure 2 shows heating and cooling DSC curves for 20g/kg sodium caseinate with various 

concentration of K-carrageenan. The cooling curves showed distinct single endothermic peaks; 

the heating curves showed multiple peaks (endothermic), which were broader and not well defined. 

For the cooling curves, the mid-peak temperatures (Tc) and the corresponding enthalpy values 

(~He) both increased with increasing concentration of K-carrageenan (shown in Figure 3 (a) (b), 

both of which include for comparison the corresponding data forK-carrageenan alone). 

r 
Jo.tmw , 

10 20 !Xl 40 50 60 70 10 20 3J 40 50 ED 70 

Temperature I OC 

Fig. 2 

6glkg 
5glkg 

4glkg 

DSC heating and cooling curves for sodium caseinate (20g/kg) with various additions of K-carrageenan. 
The rate of heating and cooling was 1.0K/ min. 
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Fig. 3 
DSC mid-peak cooling (gelation) temperatures (Tc) (a) or Enthalpy of cooling (gelation) transition 
(.6.Hc) (b) as a function of concentration of K-carrageenan, with (broken I ine; •) and without (solid 
I ine; ~) addition of sodium caseinate. 

In Figure 4, it was shown the equivalent heating and cooling DSC curves for 

K-carrageenan at 5g/kg with various additions of sodium caseinate. The cooling curves again 

showed distinct single exothermic peaks. It was observed shallow minima in plots of Tc and 

~He vs. the concentration of sodium caseinate, as shown Figure 5 (a) (b). Minima were also 

seen with 3 and 6g/kg K-carrageenan, but shifted to lower and higher concentrations, respectively 

(data not shown). The heating curves again showed multiple peaks (endothermic), which were 

broader and less distinct than those seen on cooling. 

with increasing concentration of sodium caseinate. 

They became progressively broader 

_..---· 601 g/kg 
140g.lkg 

...-~._..~. 

aoglkg 
20glkg 

-----·· 10 g/kg 
5 g:lkg 

1<. ·t'.fPl. alone 

40 50 ,60 70 10 20 30 40 50 60 70 

Temperature I QC 

Fig. 4 
DSC heating curves for K-carrageenan (5g/ kg) with various additions of sodium caseinate. 
The rate of heating and cooling was 1. 0K/ min. 
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Fig. 5 
DSC mid-peak cooling (gelation) temperatures (Tc) (a) or Enthalpy of cooling (gelation) transition 
(L~ He) (b) as a function of concentration of added sod i urn caseinate. 

3.2. Rheometry 

The variation of storage modulus (G') and loss modulus (G") with temperature, with a 

cooling-heating cycle, is shown in Figure 6 forK-carrageenan alone (5g/kg) and for mixtures of 

K-carrageenan (5g/kg) with sodium caseinate at lg/kg and lOg/kg. On cooling, G' and G" 

both increased sharply at about 25°C (Tc) and G' became greater than G", indicating that 

gelation had occurred (Morris, 1989). On reheating, there was a sharp drop in both G' and G" 

There was clear hysteresis with Tm about 20oC higher than Tc. For 

the concentrations of sodium caseinate above 30g/kg syneresis caused slippage in the rheometer. 

Tm and Tc were still well defined but the absolute values of G' and G" were unreliable. 

with casein at lglkg with casein at lOg/kg 

10"4 

1&"5-f-_,---,-.,.-...,.......,-........ 
owoo~~~oorobw~oo~~~wo~w~~~oo~ 

Temperature I •c 

Fig. 6 
Storage modu I us (G' , e 0) and I oss modu I us (G" .A .6.) at 1. Orad/ s as a function of temperature 
for K-carrageenan (5g/ kg) with different addition of sodium caseinate (1 and 10g/ kg). 
The rate of heating and cooling was 1. OK/ min. 

The form of the heating curves for G' and G" changed markedly with the addition of 

sodium caseinate. G' and G" decreased less sharply than for K-carrageenan alone but in each 

case the decrease started at lower temperatures, suggesting the presence of a complex mixtures 
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of species with different melting temperatures. Lunch and Mulvihill (1994) have reported 

similar observations for gelation of mixtures oft-carrageenan and sodium caseinate. 

In Figure 7, we show G' (at 15°C) vs. the concentration of K-carrageenan alone and 

K-carrageenan with a fixed addition of sodium caseinate (lOg/kg). The curve appears biphasic, 

with an abrupt change in slope at a concentration of K-carrageenan of 6.8g/kg. The 

K-carrageenan concentration at the breakpoint increased linearly with concentration of sodium 

caseinate, as shown Figure 8, and from the slope of the line, we estimate the adsorptive capacity 

of the sodium caseinate forK-carrageenan to be 0.2g/g. This is consistent with an observation 

reported by Elfak et al. (1979). They studied the effect of sodium caseinate on the viscosity of 

solutions of K-carrageenan and found a maximum effect at a concentration ration of 1:4. It is 

also qualitatively in good agreement with Dalgleish and Morris's electrophoretic mobility studies 

(1988) that indicate an adsorptive capacity of ca 0.28-0.4g/g. 

2000 / .... ~ 

iiOOO / _j 
.... 

. ---"·-· ... ···. 
0 ----~_,~=---~~--~~~ 

0 2 4 8 10 

K~carrageenan (g{kg) 

Fig. 7 
Static shear modulus (G) at 15°C as a function of concentration of K-carrageenan, with and without 
addition of sodium caseinate (10g/ kg) . 

12 -C) 
~ -~ 8 ... 
c 
0 
a. 4 ~ 

" G) ... 
.a 

0' 
0 10 20 30 

sodium caseinate (gfkg) 

Fig. 8 
Position of the breakpoint in plots of G vs. concentration of K-carrageenan as a function of the added 
concentration of sodium caseinate (10g/ kg). 
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In Figure 9, we show G' (at 15°C) vs. concentration of casein for a fixed concentration of 

K-carrageenan (5glkg). The curve shows a minimum, corresponding to the minimum in L1Hc 

shown in Figure 5 (b). In addition, the magnitude of the hysteresis (Tc- Tm) initially increased 

with increasing concentration of casein to a plateau value at a concentration of casein coinciding 

with the minimum in G'. 

400 .... -~-~----------------~-~-------------, 

300 ·. 
-; 
Ill. -
0 

100 

0 
0 5 110 15 20 

sodium casei nate (g(kg) 

Fig. 9 
Storage modulus (G' ) at 15°C and 1 rad/ s for K-carrageenan at 5kg/ kg as a function of concentration 
of sodium caseinate. The curve was calculated from Equations 6~8; see below. 

Within experimental error, Tc determined rheometrically agreed with Tc determined 

calorimetrically. Thus the peaks observed in the DSC cooling curves correspond to full 

gelation, not simply the K-carrageenan's helix-coil transition alone. 

4. Gelation Mechanism of Milk Gel Formed with K-Carrageenan 

4.1. Thermal properties by DSC 

Looking firstly at the DSC cooling curves (Figure 2), sodium caseinate has surprisingly 

little effect on the thermal properties of K -carrageenan during gelation. When K -carrageenan was 

added to a fixed concentration of casein (20g/kg), L1Hc and Tc were indistinguishable from the 

corresponding values forK-carrageenan alone, as shown in Figure 3 (a) (b). From the slope of L1Hc 

vs. the concentration of K-carrageenan, the enthalpy of gelation with 20g/kg casein was 32.8±0.3Jig 

(ofK-carrageenan the enthalpy of gelation with 20g/kg casein was 33.9±0.05 Jig forK-carrageenan 

alone. Our value for K-carrageenan alone was very close to the range of values reported by Rochas 

and Rinaudo (1982) for melting of potassium-set gels ofK-carrageenan: 35~41 Jig. 

Similarly, when sodium caseinate was added to a fixed concentration of K-carrageenan, the 

changes in L1Hc and Tc (Figure 5 (a) (b)) were small compared with the corresponding changes in 
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G'. The shallow mm1mum seen m ~He can be explained by complexation with sodium 

caseinate; at low concentrations of casein the concentration of complex is below the gel 

threshold and the bound K-carrageenan is withdrawn from the gel network. 

In summary, the thermal effects of added casein on the gelation of K-carrageenan were 

very small-almost on the limit of delectability. Thus when K-carrageenan binds to sodium 

caseinate, the thermodynamics of the coil-to-helix transition remain almost unchanged. This 

suggests that there is only, at most, very minimal contact between the K-carrageenan and the 

sodium caseinate molecules (Dalgleish and Morris, 1988). However, Dalgleish and Morris 

(1988) showed that under the conditions of their measurements, the surface area of the sodium 

caseinate micelles was approximately equal to the area that could be covered by the carrageenan 

at the concentration of saturation binding (1988). They suggested therefore that the micelles 

are totally covered, with the carrageenan molecules intimately wrapped around them. If this 

were the case, we would expect casein to have a significant influence on the enthalpy of the 

coil-helix transition. Although it is of course possible that the less well-defined aggregates 

formed by sodium caseinate might behave differently from the sodium caseinate micelles of 

unprocessed milk studied by Dalgleish and Morris (1988). 

There were more obvious changes to the thermal behavior during gel melting. The 

melting peak becomes progressively broader with increasing addition of sodium caseinate 

(Figure 4). This effect can be interpreted in terms of the 'zipper' model (Nishinari et al., 1999). 

K-carrageenan forms a gel network by association of double helices (Clark and Ross-Murphy, 

1987, Oakenfull, 1987), and such a structure can be considered as a molecular zipper with N 

Links. Nishinari and colleagues (1999) showed that the heat capacity C of such a system of v 

zippers is given by: 

c G 2x N(N +l )x [- x N-1+(N + I)x- N] 

=v(ln - / [ -- + (l) 

k x 1-xi [1- (N+ l).x '+ Nx +lf 

where 

X= G exp (-EikT) (2 

In this last expression the terms have the following meaning: (1) when links 1, 2 ... p are open, 

the energy required to open the (p+ 1 )st peak is E and (2) each open link can assume G 

orientations (i.e. the open state of each link is G-fold degenerate). It follows from this model 
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that in a system of zippers with a range of values for E, the temperature distribution of heat 

capacity is correspondingly broad. Thus addition of sodium caseinate to K-carrageenan 

appears to generate 'zippers' with a wide distribution of energy values and/or degrees of 

rotational freedom. 

The model also explains the observed hysteresis and the much sharper peaks observed 

during the cooling (gelation) process. When the temperature is raised, G will start from the 

lower values ( G g) corresponding to the gel state. The gel expands, giving rise to an increase 

on the rotational freedom. Conversely, when the temperature is lowered from temperatures 

higher than the melting point, G will start from the higher value ( Gs) corresponding to the sol 

state. Thus the opening of zippers starts at small G values during the heating process while 

during the cooling (gelation) process, G starts from higher G values at higher temperatures. 

The average effective value of G is therefore small during heating and large during cooling. 

As a first approximation, we can stay that the melting temperature (Tm) is determined by a certain 

average Ggand the gelation temperature (Tc) is determined an average Gs of G for the sol state. 

Gg < Gs hence T m would be expected to be higher than Tc. During heating, the transition 

caused by the opening of zippers will start as soon as the temperature reaches the tail of the C-T 

corresponding to G=G g· During cooling, the pair-wise coupling cannot start so easily because 

of the difficulty of a long molecule finding its partner in appropriate positions for zipper 

construction. A state like super cooling may therefore occur, explaining the sharp transitions 

invariably seen on cooling, compared with the much broader transitions seen on heating. 

Gelation of K-carrageenan is believed to proceed via a two-step mechanism, as shown in Figure 

10 (Clark and Ross-Murphy, 1987, Oakenfull, 1987). Carrageenan chains associate by the 

formation of intermolecular double helices, but there do not in themselves produce a gel network. 

Gelation occurs with the subsequent aggregation of these helices mediated by specific binding of gel 

promoting cations (particularly K+ and Ca2l . Rochas and Rinaudo (1982) have shown that the 

enthalpy of gelation (~Hg) is greater than the enthalpy of the coil-helix transition by ~9J/g. The 

close agreement we observed between ~g for K-carrageenan alone and the mixed gel (with, for 

example, 20g/kg casein) therefore suggests that the formation of the mixed gel involves the same 

two-step mechanism. Such a process might occur as shown in Figure 11. In a hot solution, 

above the coil-to-helix transition temperature, K-carrageenan molecules in the random coil 

conformation are either in free solution or bound to casein. Below the coil-to-helix transition 

temperature, helices form from both free and bound K-carrageenan molecules; gelation then occurs by 

interaction of helices, as in the gelation of K-carrageenan alone. It seems not unreasonable to 

suppose that the steric constraints imposed by the presence of casein could cause less than complete 

overlap of K-carrageenan molecules in their subsequent aggregation to from a gel network. 

the presence of"zippers" with a distribution of energy values in the mixed system. 

Hence 
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Fig. 10 
The two-step "domain" mode I for ge I at ion of K -carrageenan. Potass i urn or other ge 1-promot i ng 
cations are indicated by e ( (G I as stone & Lewis , 1962) . 

Fig. 11 
Proposed two-step mechanism for gelation of mixtures of sodium caseinate and JC-carrageenan. 

4.2. Rheological Properties 

The broadening of the DSC peaks for melting seen on addition of casem had its 

counterpart in the change of the shape of the curves of G' and G" vs. temperature (Figure 6). 

Again, this result indicates that in the mixed gel, the junction zones are heterogeneous with a 

wide distribution of melting temperatures. 

The minimum seen in G' when casein was added to fixed concentrations of K-carrageenan 

(Figure 9) can be explained as follow: 

(1) When small amounts of are added, some of the K-carrageenan is bound to the sodium 

caseinate micelles. Bound K-carrageenan is no longer available to contribute to the 

K-carrageenan network; sodium caseinate micelles are too few in number for themselves to 

form an equivalent network. Thus G' decreases. 
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(2) As the concentration of sodium caseinate increases, sodium caseinate micelles with bound 

K-carrageenan become sufficiently abundant to form a continuous network, as shown in 

Figure 11. G' then increases. 

On this basis, we have developed a mathematical model relating G' to the concentration of 

casem. Considering firstly the binding of K-carrageenan to casein, we make the simplest 

possible assumption, that there is a single association constant (a Langmuir-type model 

(Glasstone, 1962)). This is defined by 

C;.B] 

K= (3) 

[CJ] [B]I 

where [C1] is the concentration of free K-carrageenan, [C1.B] is the concentration of bound 

K-carrageenan and [B] is the concentration of binding sites, all on a molar basis. Iff is the 

fraction of bound K-carrageenan, n the number of available binding sites (in moles) per gram of 

casein (i.e. the adsorptive capacity), C2 the concentration of sodium caseinate (g/1) and [C1 t] the 

molar concentration of K-carrageenan, it then follows that 

f 
K= (4) 

Since the K-carrageenan is polydisperse, and we do not in any case know its molecular weight, it 
is convenient to incorporate this into K, redefining K on a weight concentration basis as Kw and 
nw as the maximum weight (g) ofK-carrageenan bound per gram of casein, so that 

I 
Kw = -------- (5) 

( 1 1) (n~'' w21-w{!) 

We next consider the separate contributions toG' from the networks of free K-carrageenan (G' 1) 

and the casein-K-carrageenan complex (G\ 2). To a good approximation, G' for both 

K-carrageenan and casein-K-carrageenan gels increases with the square of the concentration 

(Oakenfull, 1989) so that 

(6) 
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Where the subscript 1 denotes K-carrageenan and the subscript 1, 2 the K-carrageenan/sodium 

caseinate complex, A1 and A1, 2 are constants and c1 ° and c1, 2 ° are the respective gel thresholds. 

In principle the polymer blending laws (Sperling, 1992) can be used to estimate the upper 

(isostrain) and lower (isostress) limits for the modulus of the mixed network: 

isostra in G ob = G1V1 + G l,2 V 1,2 (8 

VI VI.-

isostress + (9 

G obs G1 G1,-

Where V 1 and V 1, 2 are the respective volume fractions of the two networks. However, the 

evidence from electron microscopy (Xu et al. , 1992, Hood & Allen, 1977) indicates that the two 

networks are interpenetrating, rather than phase separated. Thus only the isostress model (Equ 

8) is applicable, with vl and vl, 2 equal (and equal to unity). ForK-carrageenan alone, Al and 

C1° are known from the data (not shown); from the results shown in Figure 8 we know that llw = 

0.20g/g. Combining Equations 3, 6, 7 and 8 then gives a relationship between G' obs and the 

concentrations of K-carrageenan (w/) and casein (w2t) with three unknown quantities- Kw, A1, 2 

and c1, 2 °. Values for these were estimated by a standard curve-fitting procedure to best and c1, 2 ° 
= 0.597. The curve thus generated for K-carrageenan at 5g/kg and varied concentration of 

casein is shown in Figure 12 (solid curve). Also in Figure 12 (dotted curves), we show the 
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Fig. 12 
Storage modulus (G' ) at 15°C and 1 rad/ s for K-carrageenan at 5g/ kg as a function of concentration of 
sodium caseinate. The curves were calculated (see text) . The solid curve shows calculated values of 
G; the dotted curves show the i nd i vi dua I contributions of G' from the comp I ex and free K -carrageenan. 
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separate contributions to G' from the complex and K-carrageenan. The contribution from 

K-carrageenan decreases as, with increasing concentration of casein, the carrageenan forms the 

complex with casein; the contribution from the complex increases, once it has passed the gel 

threshold. 

Using the same parameters, we also calculated the equivalent curves for 3 and 6g/kg 

K-carrageenan, which are shown in Figure 13. Despite its obvious crudity, the model 

successfully predicts the positions of the minima. 

800 

sodium caseinate (g/k,g) 

Fig. 13 
Storage modulus (G' ) at 15°C and 1 rad/ s for K-carrageenan at 3 (..&.) and 6 g/ kg (•) as a function 
of concentration of sodium caseinate. The curves were calculated (see text). 

The model was less successful in explaining the biphasic curves seen in plots if shear 

modulus (G) vs. concentration of K-carrageenan with fixed concentrations of casein, as 

shown in Figure 14. Again, the curves are theoretical. The solid curve shows the calculated 

G and the dotted curves the separate contributions to G from the complex and K-carrageenan. 

The contribution from the complex reaches a plateau value as the concentration ofK-carrageenan 

becomes high enough to saturate the binding sites on the sodium casein ate micelles; the 

contribution from K -carrageenan continues to increase and dominates at high concentrations. 

The model fails quantitatively at high concentrations of K-carrageenan - probably because 

calcium ions associated with the sodium caseinate enhance the contribution to G from the 

K-carrageenan network (Morris and Chilvers, 1983). The parameters used to calculate the 

contribution from K -carrageenan were calculated from data forK -carrageenan in the potassium form. 

The model also explains why only very small additions of K-carrageenan are required to 

for a gel network in milk. The 'best-fit' values for the constants in Eqn 8 give a gel threshold 

for the complex ( c1, 2 °) of 0.60g/kg. Milk contains about 28g/kg sodium caseinate (Webb, 
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1965). From Eqn 3, the concentration of K-carrageenan required to give a concentration of 

complex at the gel threshold is ca 0.4g/kg - much the same as the concentration routinely added 

to chocolate milk to suspend the cocoa particles (0.25-0.35g/kg). Our estimated value for the 

gel threshold for the complex is very much lower than the gel threshold for enzyme-induced 

sodium caseinate gels, which is about 5.6g/kg (Clark & Ross-Murphy, 1987). However, in a 

study in which they compared the rheological properties of rennet-induced gels formed by casein 

micelles of different size, Niki and his coworkers (1994) found a lower gel threshold for small 

micelles. Another factor that may be significant is that enzyme-induced (and acid-induced) 

casein gels appear to have clusters of casein micelles, as would be formed by random 

aggregation (Roefs et al., 1990, Tombs, 1974). K-carrageenan- induced gels appear to have a 

more filamentous structure (Hood and Allen, 1977), closer to a 'string - of - beads' network 

structure (Doi, 1993). The more random the aggregation process, the more protein that is 

required to form a gel network (Tombs, 1974). 

300·0 

- 2000 
Cl 
Ia. ._. 

'" 1000 

0 
0 2 4 

// 

/" A _.·· K-cgn 
1 

& •• ••• I 

A . :=-.. -~·:- -· · tfompliix- ~ 

6 8 10 

K-carrageenan {g/kg) 

Fig. 14 
Static shear modu I us (G) at 15°C and 1 rad / s as a function of concentration of K -carrageenan with 
a fixed concentration of sod i urn caseinate (1 Og/ kg). The curves were ca I cuI ated (see text) . The so I i d 
curve shows calculated values of G; the dotted curves show the individual contributions toG from the 
complex and free K-carrageenan. 

5. Applications: Gels prepared from Skimmed Milk Powder 

Mixed gels of K-carrageenan and SMP have been studied by differential scanning 

calorimetry (Miyoshi et al., 2010). Figure 15 shows heating and cooling DSC curves for 

25g/kg SMP with various additions of K-carrageenan. The cooling DSC curves showed single 

peaks, but these were broader and not well defined. 
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The enthalpy of gelation (~Hg) estimated from the sol-gel transition peak in DSC cooling 

curves (Miyoshi, 1996), appeared to be independent of the level of addition of SMP. This 

suggests that a gel network is formed either (a) from K-carrageenan alone, with the casem 

micelles having no significant interaction with the polysaccharide and merely acting as a filler 

and a source of calcium-ions which promote gelation of the K-carrageenan, or (b) by a 

mechanism analogous to that proposed by Xu and her colleagues (1992) in which K-carrageenan 

molecules are adsorbed to casein micelles which they link to form a mixed gel network by 

association of carrageenan double helices -but with only small segments of K-carrageenan chain 

adsorbed, leaving the bulk of the polysaccharide as loops and tails, free to form double helices 

such that the magnitude of ~Hg is largely uninfluenced by proximity to the casein. 
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DSC heating and coo I i ng curves for K -carrageenan (5g/ kg) with different additions of SMP (0-15 g/ kg). 

The variation of storage modulus (G') and loss modulus (G") with temperature, within a 

cooling-heating cycle, is shown in Figure 16. On cooling G' and G" both increased sharply at 

about 25-30°C (Tc) and G' became greater than G", indicating that gelation had occurred. On 

reheating, there was a sharp drop in G' and G" at around 45-55°C (Th) as the gel melted. At 

low to intermediate concentrations of SMP (2-15g/kg), the heating curves showed broadening of 

the transition, as observed with DSC. However, at the higher concentrations of SMP 

(25~40g/kg), this effect disappeared and the curves reverted to the smooth, sharp transition 

observed with K-carrageenan alone. 



294 

Carragcman alone (5g lkg) 
10'1 -

1:'1 loS 
·a o2 
z101 

'"' OHP' 

0 10"1 

t o-2 

10"9 1 

• 
• 

!J.M o.~/3· 
~.0; ... 

101"4 ' - ' . - -
ow~~~~ooro ow~n~~~ roow ~oo®~~w 

Tem.peratm'e I ·c 

Fig. 16 
Storage modulus (G' . tt ()) and Loss modulus (G" ~ ~) at 1 rad/ s as a function of temperature for 
K-carrageenan (5g/ kg) with different additions of SMP. 

Judging from our results, it is argued that the second mechanism (b) is more likely to be 

correct because: 

(1) K-carrageenan is known to adsorb to casein micelles. 

(2) The peak broadening observed in DSC heating curves indicates increasing heterogeneity of 

the junction zones with addition of SMP. 

(3) Plots of storage modulus (G' ) and Loss modulus (G") vs. temperature also indicate junction 

zone heterogeneity with addition of SMP. 

( 4) Gels formed from SMP and low methoxly pectin (which does not form a complex with 

casein) show very different relationships between modulus and concentration of 

polysaccharide and SMP compared with equivalent gels formed from SMP and 

K -carrageenan. 

(5) When gels were formed from K-carrageenan and SMP separated by a dialysis membrane, G' 

was substantially less that for equivalent gels with the components intimately mixed - again 

indicating that in the mixed gel, SMP is more than an inert filler and a source of calcium ions. 

At high ratios ofK-carrageenan to SMP, a purely- carrageenan network also appears to form, 

presumably interpenetrating the network formed from concentration of casein micelles. 

Our results suggest that the gelation mechanism proposed for mixed gels of K-carrageenan 

and sodium caseinate are also appropriate is also appropriate for SMP. In broad outline this is 

the same as the mechanism proposed by Xu and her colleagues who were the first to propose 

(1992) that only part of the K-carrageenan chain is adsorbed to the casein micelle, with the rest 

free in solution as loops or tails, able to form a gel network by forming double helices. We are 

suggesting, however, that perhaps more of the K-carrageenan remains free to form helices than is 

indicated by Xu and her colleagues 'model. At high ratios of K-carrageenan to SMP, a purely 
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K-carrageenan network also appears to form, presumably interpenetrating the network formed 

from concentration of casein micelles. 
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Gelation and thickening of dairy products is one of the most important food applications of 

the carrageenans, particularly K-carrageenan. In this study, mixed gels of K-carrageenan and 

sodium caseinate or skimmed milk powder (SMP) were examined by differential scanning 

calorimetry (DSC) and rheological measurements. 

DSC showed that during gelation (i.e. cooling) the thermal behavior of K-carrageenan was 

almost uninfluenced by the presence of sodium caseinate. Thus the interaction of 

K-carrageenan with sodium caseinate has little (or no) effect on the carrageenan's coil-to-helix 

transition. In contrast, during melting, the added sodium caseinate strongly modified the 

thermal behavior. The DSC peak became progressively broader with the addition of sodium 

caseinate, indicating that the junction zones are highly heterogeneous in the mixed gel. 

Rheometry showed that sodium caseinate strongly influences the storage modulus (G'). 

Experiments in which the concentration of sodium caseinate was fixed and that of K-carrageenan 

varied, the plot of G' vs. the concentration of K-carrageenan was biphasic, with an abrupt change 

in slope at a concentration that increased linearly with the concentration of sodium caseinate. 

When the concentration of K-carrageenan was constant and that of sodium caseinate van'ed, G' 

as function of concentration of sodium caseinate passed through a minimum. This behavior 

could be modelled quantitatively by assuming that: (a) the sodium caseinate adsorbs 

K-carrageenan, but with a limited adsorptive capacity, (b) sodium caseinate aggregates 

(sub-micelles) with adsorbed K-carrageenan can associate and form a gel network and the 

network formed by K-carrageenan alone is additive. At low ratios of K-carrageenan to sodium 

caseinate, the sodium caseinate and K-carrageenan combine and form a mixed gel. As the 

ratio of K-carrageenan to sodium caseinate increases, the sodium caseinate becomes saturated 

and no further association with K-carrageenan can occur - the increase in G' as further 

K-carrageenan is added comes from a gel network formed by K-carrageenan alone. 

K-carrageenan forms a complex with casein micelles and it appears to act as a molecular 

"Velcro" - interaction between the free ends of bound K-carrageenan molecules linking casein 

micelles to form a gel network. At high ratios of K-carrageenan to SMP, a pure K-carrageenan 

network also appears to form, presumably consisting of more extended cross-linked 

K-carrageenan structures within which the casein micelles are enmeshed. 


