<table>
<thead>
<tr>
<th>Title</th>
<th>Correction to : A generalized local limit theorem for Lasota-Yorke transformations’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Morita, Takehiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 30(3) P.611-P.612</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7797</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7797</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
CORRECTION TO
"A GENERALIZED LOCAL LIMIT THEOREM FOR
LASOTA-YORKE TRANSFORMATIONS"

TAKEHIKO MORITA

(Received October 12, 1991)

Definition 1.1 of a Lasota-Yorke transformation in [1, p. 580] is incomplete because it is not consistent with the assertion of Remark 1.1. Therefore we have to change the condition (iii) of (1) as follows:

(iii) The set of the images \{T(\text{Int } I_j)\}_{j} consists of only a finite number of distinct kinds of intervals.

In virtue of this improvement, Proposition 1.2 in p. 582 and its proof will be changed as follows.

Proposition 1.2. (Lasota-Yorke type inequality). Let \(T \) be an L-Y transformation which satisfies the expanding condition (1.2) for \(N=1 \). Let \(\mathcal{L} \) be the P-F operator of \(T \) with respect to \(m \). Then for any \(n \in \mathbb{N} \) and \(f_0, f_1, \ldots, f_{n-1} \in BV(I \rightarrow S^1) \), we have

\[
V(\mathcal{L}^n((\prod_{k=0}^{n-1} f_k \circ T^k)g)) \leq (2 + \sum_{k=0}^{n-1} Vf_k)[e^n Vg + 2(\iota_1 + R_n(T))\|g\|_1] ,
\]

where \(\iota_n = \min\{m(T^n J_j) ; J_j \text{ is the element of a defining partition of } T^n\} \) and \(R_n(T) = \sup_x \frac{|(T^n)'(x)|}{|(T^n)(x)|} \).

Sketch of Proof: Noting that \(S_j = T^n | \text{Int } J_j \) is a homeomorphism from \(\text{Int } J_j \) onto its image for each \(j \), we have, for any right continuous version of \(g \in BV \),

\[
V(\mathcal{L}^n((\prod_{k=0}^{n-1} f_k \circ T^k)g)) \leq \sum_j V_{J_j}[(T^n)' | \cdot |^{-1}(\prod_{k=0}^{n-1} f_k \circ T^k)g] + \sum_{J_j \supset j} \sum_j |(T^n)' |^{-1}(|g(a_j)| + |g(b_j)|)
\]

\[
= \sum_j I_j + \sum_j II_j ,
\]

where \(J_j = (a_j, b_j) \), \(V_j \) denotes the total variation on \(J_j \), and \(\sup_{J_j} \) is the supre-
mum which is taken over all \(x \in \text{Int} J_j\). Since we have
\[
|(T^n)'(x)|^{-1} \leq ||(T^n)'(x)|^{-1} - |(T^n)'(y)|^{-1}| + |(T^n)'(y)|^{-1}
\leq R_n(T) m(J_j) + |(T^n)'(y)|^{-1}
\]
for any \(x, y \in \text{Int} J_j\) and
\[
m(T^n(\text{Int} J_j)) \leq (\inf_{(T^n)'} m(J_j))^{-1} m(J_j),
\]
we conclude that \(\sup_j |(T^n)'|^{-1} m(J_j)^{-1} \leq \inf_{(j)}\leq R_n(T)\), where \(\inf_{(j)}\) denotes the infimum which is taken over all \(x \in \text{Int} J_j\). By using this fact the estimates of \(I_j\) and \(II_j\) are carried out in the same way as in [1]. One may notice that the proof become simpler than it was because we do not need to classify the indices \(j\).

References

Department of Mathematics
Faculty of Science
Osaka University
Toyonaka, Osaka 560
Japan