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1. Introduction

Let G be a compact, connected Lie group such that z,(G) is torsion free
and let A; denote the category of compact, locally contractible G-spaces of
finite covering dimension and G-maps. Throughout this paper all spaces will be
supposed to be in As and K# will denote the equivariant K-theory defined
in [5]. We use the following definition by Hodgkin [1].

DEFINITION. A G-space Z is called a basic G-space if the following con-
ditions are satisfied.

(1) K¥&(Z) is projective as an R(G) (=K&(point))-module.

(ii) For any X & A the external product homomorphism

Ké(Z})e((g)Ké(X) — K¥(ZxX)
@

is an isomorphism.

Using the notation of [1], Snaith [6] proved that if G is a torus then
T¥(-, -) vanishes.

In this paper we give a simple proof of Snaith’s theorem ([6], Theorem 2.11)
and show that if G is SU(n), U(n), Sp(n) or G, then T'§(_ _) vanishes.

Consider the construction of the Kinneth formula spectral sequence [1],
then we see that the above statements are equivalent to the following

Theorem 1.1 (Snaith [6]). Let T be a torus and Z a T-space. If K¥(Z) is
projective as an R(T)-module then the T-space Z is a basic T-space.

Theorem 1.2. Let G denote the (special) unitary group (SU(n)) U(n), the
sympletic group Sp(n) or the exceptional group G,, and let Z be a G-space. If K&(Z)
is projective as an R(G)-module then the G-space Z is a basic G-space.

In the following sections we denote by u the external product homomor-
phism K#(X )Rg))K HY)->KEXXY).

2. Proof of (1.1)

Lemma 2.1. Let T be the n-dimensional torus and S a closed subgroup of T.
If K*¥(Z) is projective as an R(T)-module for a T-space Z then



354 H. Minamt

n: R(S) @ KH(Z) — K¥(Z)
is isomorphic.

Proof. First we consider the following situation: Let T'=Z,, X -+ X Z,,, |
XSIXSr X X Sp, S=2Z,, X X Z,y X Z,, X S}1X - X Sy where Z,, is a
cyclic group of order m; and S} is the circle group, (1<j<r, r<k<m), such
that Z,, .S}, and let Z be a T-space such that K ¥(Z) is R(T)-projective.

Let C(T/S) be the cone on T/S. Then C(T/S)—T/S is isomorphic to the
representation space V of the m,-fold tensor product of the canonical 1-dimen-
sional, non-trivial representation ¢, of S} since 1/S=S}/Z,, is isomorphic
to S*.

Consider the exact sequence for the pair (C(T[S)xX Z, T/S X Z) then we
get the diagram

i
— K¥(VxZ) 1o K$(2) > K¥Z) -
¢*I
KH(Z)

where the row is an exact sequence, @y is the Thom isomorphism and
J*opx(1)=1—17. Since K#(Z) is R(T)-projective ard R(S%) has no zero
divisors we get a short exact sequence

l_t;”'r .
0 &32) VL kyz) - kE2) - 0

from the above diagram.
Apply the functor @ K#(Z) to the exact sequence obtained by putting
R(T)

Z=a point in the above short exact sequence then we also have an exact sequence

1—gm)-
0 &32) TV k52) ~ RES)Q KHZ) 0

Here consider the commutative diagram

0> K5Z) > K3(2) —> K¥Z) —> 0
TR B

0> K¥Z)— K¥Z) - R(S)REG;)K’;(Z) -0

where the rows are exact and f=(1—#7)-. Then we see that u: R(S) ® K¥}(Z)
R(T)

— K¥(Z) is an isomorphism by the five lemma.

In the general case we may consider that T'=S1X -+ X S{X H, S=Z,, X -
X Zp,x H and Z,, . CSj, (1< j<I), where H is a torus, by Proof of [1], Lemma
7.1 or [6], Lemma 2.3. ‘
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Put §,=Z,, X -+ X Z,, X SiaX X S;xH for 0<k<I. By the preceding
discussion we have an isomorphism

R(Sy) @ K%, (Z2)— K%,(Z)
RSg-1
for 1 <k<!inductively. This completes the proof of Lemma 2.1.

Proof of (1.1). K"T‘(Z)R%'))Ki(_) is a cohomology theory since K#(Z) is

R(T)-projective and K#(Zx _) is so. Using the Segal’s spectral sequence [5]
and the natural transformation p: K¥(Z) @ K¥%(.)—>K%(Z X _), compare these
R(T)

cohomology theories. Then Lemma 2.1 shows that x induces an isomorphism
of the E,-terms of these spectral sequences. Therefore this concludes (1.1).

3. Proof of (1.2)

Let T be a maximal torus of G. According to [6], §3 it suffices to
show that

(3.1) pe=p: R(T)QR(T)— K*(G|T) is an isomorphism
R
for a proof of (1.2). However, from Proof of [6], Theorem 3.6 we see that

(3.2) e s a monomorphism for any compact, connected Lie group G such that
7(G) is free.

Therefore it suffices to prove that us is an epimorphism.
Now, since R(T) is a projective R(G)-module [4], we see by (1.1) that

(3.3) If (3.1) is true then the T-space G|T is a basic T-space.

(1) Proof for U(n). This follows from [5], Proposition (3.9) (See [6],
Corollary 3.7).

(2) Proof for SU(n). Let T be a maximal torus of U(zn) and put ST=
T NSU(m). Then ST is a maximal torus of SU(r) and SU(n)/ST =U(n)|T as
T-spaces.

By (1) and (3.3), U(n)/T is a basic T-space and so

KE(Un)|T)=K*¥(T|STx U(n)/T)
~R(ST)@ KHU(n)|T)
~R(ST) ® R(T).

R (n))

Hence we get the following commutative diagram
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KE(SUm)ST) <«—— K2 (U(n)T)
g 1Qi* =
R(ST) ® R(ST) <—— R(ST) ® R(T)

R(SUT (n)) RU(n))

where 7: SU(n) —U(n) is the inclusion of SU(n), and this shows that p is
surjective for G=SU(n).

(3) Proof for Sp(n). We regard Sp(n) as a closed subgroup of U(2n) by
the canonical embedding. Then Sp(1)=SU(2) and so the proof for Sp(1)
follows from (2). We shall prove the case of (3) by induction on z.

Suppose Sp(k) satisfies (3.1) for 1<k<n—1. Then (3.1) is true for
Sp(n—1)x Sp(1). Because

K1 (Sp(n—1) X Sp(1)[ Ty X T,) = K },(Sp(n—1)| T)Q K 1,(Sp(1)/ T>)
=R(T,xT,) X R(T,xT)

R(8p(n-1)x8p(1))
where T, and T, are maximal tori of Sp(n—1) and Sp(1) respectively, by the in-
ductive hypothesis and [3]. Therefore, by [6], Theorem 3.6 Sp(n—1)x Sp(1)/T
is a basic Sp(n—1) X Sp(1)-space and so
RT) @  Kuxspo(Spm)|T)=K3(Spn)/T)

R(Sp(n-1)xSp(1)

where T is the standard maximal torus of Sp(n). Hence it suffices to show that

R(T) @ R(Sp(n—1)xSp(1)) — KF(Sp(n)/Sp(n—1)x Sp(1))

R(Sp(n))
is an isomorphism, because of K%(Sp(n)/Sp(n—1)x Sp(1)) = K&, u-vxspw
(Sp(m)/T).

Put R(T)=Z[t,, -+, tn; t1", +++, t5'], then R(Sp(n))=Z[o,, :**, o,] as a sub-
ring where o, is the k-th elementary symmetric function in the n variables
b e ttat ([2], 813, Theorem 6.1).

Define the ring homomorphism ¢: R(Sp(n))[0] —R(Sp(n—1) x Sp(1))
by the restriction R(Sp(n))— R(Sp(n—1)x Sp(1)) and the correspondence
0—t,+t;t. Then we have

Lemma 3.1 R(Sp(n))[0]/(S-o(— 1)’ 6"7)=R(Sp(n—1) x Sp(1)).

Proof. By the definition of ¢, ¢ is surjective obviously.

If ¢(f(0))=0 for f(6)=R(Sp(n)) then (§—(t,+¢2%)) divides f(6). By
symmetry, (6—(¢;+t5")) divides f(f) for 1<j<n. Hence >Y}_o(—1) ;60" 7
divides f(6). This shows Lemma 3.1.

The following lemma completes the proof for Sp(n) by the preceding
discussion.
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Lemma 3.2. u: R(T) . (%? R(Sp(n—1)x Sp(1)) = K#%(Sp(n)/Sp(n—1)x
R(Sp(n))
S(1)) 7s an isomorphism for any n>2.

Proof. Sp(n)/Sp(n—1)Xx Sp(1) is homeomorphic to the projective space of
dimension z—1 over the quaternion number field. By the canonical embed-
ding P"~*@)C P""'(Q) we have an equivariant embedding 7: Sp(n—1)/Sp(n—2)
x Sp(1) = Sp(n)/Sp(n—1)x Sp(1).

For simplicity we write P”~}(Q) for Sp(n)/Sp(n—1)x Sp(1). Then we have
(@) w:R(T) ® R(Spn—2)xSp(1)—KHP"*(Q)
by the inductive hypothesis and
(b) R(T)R S® R(Sp(n—1)x Sp(1)) - K$(P"*(Q)) is a monomorphism

(Sp(n))

by the analogous argument to the proof for (3.2). Moreover the T-space P"'(Q)
—P""%@Q) is isomorphic to the representation space W of ¢, P---Pt,_,t;'PH
1D Dty ta
Consider the exact sequence for the pair (P"(Q), P*7*(Q)), then by
Lemma 3.1, (a) and (b) we obtain the diagram
* i*
0> KHW)— K3(P"(Q) ———> KH(P"*(Q)) >0

4

(p*T IJ‘T g],,,
R(T) R(T)[0]/(X5-o(—1) 0;6"7)  R(T)[0]/(=4(— 1) o077

0

where the row is an exact sequence, @y is the Thom isomorphism and the
definition of 6" and ¢/, (0<j<n—1), are similar to that of § and o;. In this
diagram we see that ¢* is surjective from the fact that #*(u(6))=pn'(9’), and
furthermore we can easily check that j*@,(1)=(£1)" "' 2 1z5(— 1) o} ()7
Therefore we see that 4 is surjective. q.e.d.

This completes the induction.

(4) Proof for G,. G, contains SU(3) as a closed subgroup of maximal rank
and the homogeneous space G,/SU(3) is homeomorphic to the unit sphere S°.
Let T denote a maximal torus of SU(3) and put R(T)=Z[t,, t,, t,; t1%, 37,
t3']/(¢,8,2,—1). Moreover we denote the representation space of #,Pt,Pt, by
W and the unit sphere in RGW by S(RPW) where R is the real number field.
Then we see easily that

Lemma 3.3. G,/SU(3) is homeomorphic to S(RPW) as T-spaces.

The following lemma completes the proof for G, by the same reason as for

Sp(n).
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Lemma 3.4. p: R(T) Q R(SU(3))— K¥G,/SU(3)) is an epimorphism.
Ry

Proof. Consider the exact sequence for the pair consisting of the unit ball
D(W) and the unit sphere S(W) in W, then we have the diagram

0 — KE(W) Lo KE(D(W)) —> KA(S(W)) = 0
?x| I
R(T) R(T)

where the row is exact and @y is the Thom isomorphism, and then we get
KHS(W)) = R(T)[(ha—2s)

since j* @4(1)=x,— A, where A, and A, are the ring generators of R(SU(3)) as
in [2], §13, Theorem 3.1.

Next we divide S(RPW) into two closed T-subspaces D* as follows:
Put D*={(r, 2,, 2,, 2;) €S(RPW); r>0 or r<0} and then D" UD~=S(RPW)
and D*ND~=S(W). Consider the diagram obtained by the Mayer-Vietoris
exact s2quence for the triple (S(RPW); D*, D~) then we obtain the diagram

0 — KHS(ROW)) —— KHD")SKHD") —— KH(S(W)) -0

,LI I R
R(T) @ R(SU(3)) R(T)OR(T) R(T)/(ro—2s)
2

where the row is exact and j.: D*—S(RPW) and i.: S(W)— D*are the
inclusion maps. Then we see that K#¥(S(R@W)) is isomorphic to the sub-
module of R(T)DR(T) over R(T) generated by (1,1) and (A,—2,, 0), and o
satisfies (7%, j¥)u(1®1)=(1, 1) and (5%, *)u(1@N,)=(A;, X;). This shows that
u is surjective.
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