<table>
<thead>
<tr>
<th>Title</th>
<th>On the basic G-space in equivalent K-theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Minami, Haruo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 11(2) P.353-P.359</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1974</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7804</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7804</td>
</tr>
</tbody>
</table>
1. Introduction

Let G be a compact, connected Lie group such that $\pi_\lambda(G)$ is torsion free and let \mathcal{A}_G denote the category of compact, locally contractible G-spaces of finite covering dimension and G-maps. Throughout this paper all spaces will be supposed to be in \mathcal{A}_G and K^K_G will denote the equivariant K-theory defined in [5]. We use the following definition by Hodgkin [1].

Definition. A G-space Z is called a basic G-space if the following conditions are satisfied.

(i) $K^K_G(Z)$ is projective as an $R(G)$ (= $K^K_{\operatorname{point}}$)-module.

(ii) For any $X \in \mathcal{A}_G$ the external product homomorphism

$$K^K_G(Z) \otimes K^K_G(X) \rightarrow K^K_G(Z \times X)$$

is an isomorphism.

Using the notation of [1], Snaith [6] proved that if G is a torus then $\Gamma^G_\ast(-,-)$ vanishes.

In this paper we give a simple proof of Snaith's theorem ([6], Theorem 2.11) and show that if G is $SU(n)$, $U(n)$, $Sp(n)$ or G_2 then $\Gamma^G_\ast(-,-)$ vanishes.

Consider the construction of the K"unneth formula spectral sequence [1], then we see that the above statements are equivalent to the following

Theorem 1.1 (Snaith [6]). Let T be a torus and Z a T-space. If $K^K_T(Z)$ is projective as an $R(T)$-module then the T-space Z is a basic T-space.

Theorem 1.2. Let G denote the (special) unitary group ($SU(n)$) $U(n)$, the sympletic group $Sp(n)$ or the exceptional group G_2, and let Z be a G-space. If $K^K_G(Z)$ is projective as an $R(G)$-module then the G-space Z is a basic G-space.

In the following sections we denote by μ the external product homomorphism $K^K_G(X) \otimes K^K_G(Y) \rightarrow K^K_G(X \times Y)$.

2. Proof of (1.1)

Lemma 2.1. Let T be the n-dimensional torus and S a closed subgroup of T. If $K^K_T(Z)$ is projective as an $R(T)$-module for a T-space Z then
\[\mu : R(S) \otimes K^\#_{R(T)}(Z) \rightarrow K^\#_S(Z) \]

is isomorphic.

Proof. First we consider the following situation: Let \(T = Z_{m_1} \times \cdots \times Z_{m_{r-1}} \times S^1_r \times \cdots \times S^1_n \), \(S = Z_{m_1} \times \cdots \times Z_{m_{r-1}} \times S^1_r \times \cdots \times S^1_n \) where \(Z_{m_j} \) is a cyclic group of order \(n_{ij} \) and \(S^1 \) is the circle group, \((1 \leq j \leq r, r \leq k \leq n)\), such that \(Z_{m_i} \subset S^1_i \) and let \(Z \) be a \(T \)-space such that \(K^\#_S(Z) \) is \(R(T) \)-projective.

Let \(C(T/S) \) be the cone on \(T/S \). Then \(C(T/S) - T/S \) is isomorphic to the representation space \(V \) of the \(m_r \)-fold tensor product of the canonical 1-dimensional, non-trivial representation \(t_r \) of \(S^1_r \) since \(T/S = S^1_r/Z_{m_r} \) is isomorphic to \(S^1 \).

Consider the exact sequence for the pair \((C(T/S) \times Z, T/S \times Z) \) then we get the diagram

\[\begin{array}{cccc}
K^*_{R(T)}(V \times Z) & \rightarrow & K^*_{R(T)}(Z) & \rightarrow & K^*_S(Z) \\
\phi_* & \downarrow & & \downarrow & \\
& & \rightarrow & & \\
& & K^*_S(Z) & \rightarrow & 0
\end{array} \]

where the row is an exact sequence, \(\phi_* \) is the Thom isomorphism and \(j^* \phi_*(1) = 1 - t_r^{m_r} \). Since \(K^*_S(Z) \) is \(R(T) \)-projective and \(R(S^1_r) \) has no zero divisors we get a short exact sequence

\[0 \rightarrow K^*_S(Z) \xrightarrow{(1-t_r^{m_r})} K^*_S(Z) \rightarrow K^*_S(Z) \rightarrow 0 \]

from the above diagram.

Apply the functor \(\otimes_{R(T)} K^*_S(Z) \) to the exact sequence obtained by putting \(Z = a \) point in the above short exact sequence then we also have an exact sequence

\[0 \rightarrow K^*_{R(T)}(Z) \xrightarrow{(1-t_r^{m_r})} K^*_{R(T)}(Z) \rightarrow K^*_S(Z) \rightarrow 0 \]

Here consider the commutative diagram

\[\begin{array}{cccc}
0 & \rightarrow & K^*_{R(T)}(Z) & \xrightarrow{f} & K^*_{R(T)}(Z) & \rightarrow & K^*_S(Z) & \rightarrow & 0 \\
\| & & \| & \downarrow & \| & \downarrow & & & \mu \\
0 & \rightarrow & K^*_{R(T)}(Z) & \xrightarrow{f} & K^*_{R(T)}(Z) & \rightarrow & R(S) \otimes_{R(T)} K^*_S(Z) & \rightarrow & 0
\end{array} \]

where the rows are exact and \(f = (1-t_r^{m_r}) \cdot \). Then we see that \(\mu : R(S) \otimes R(T) K^*_S(Z) \rightarrow K^*_S(Z) \) is an isomorphism by the five lemma.

In the general case we may consider that \(T = S^1_1 \times \cdots \times S^1_r \times H \), \(S = Z_{m_1} \times \cdots \times Z_{m_j} \times H \) and \(Z_{m_j} \subset S^1_j \), \((1 \leq j \leq l)\), where \(H \) is a torus, by Proof of [1], Lemma 7.1 or [6], Lemma 2.3.
Put \(S_k = \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_k} \times S_{k+1}^1 \times \cdots \times S_3^1 \times H \) for \(0 \leq k \leq l \). By the preceding discussion we have an isomorphism

\[
R(S_k) \otimes_{R(S_{k-1})} K_{S_{k-1}}^*(\mathbb{Z}) \to K_{S_k}^*(\mathbb{Z})
\]

for \(1 \leq k \leq l \) inductively. This completes the proof of Lemma 2.1.

Proof of (1.1). \(K_{\mathbb{R}}^*(\mathbb{Z}) \otimes_{R(T)} K_{\mathbb{R}}^*(_,\mathbb{Z}) \) is a cohomology theory since \(K_{\mathbb{R}}^*(\mathbb{Z}) \) is \(R(T) \)-projective and \(K_{\mathbb{R}}^*(\mathbb{Z} \times _,\mathbb{Z}) \) is so. Using the Segal's spectral sequence [5] and the natural transformation \(\mu : K_{\mathbb{R}}^*(\mathbb{Z}) \otimes_{R(T)} K_{\mathbb{R}}^*(_,\mathbb{Z}) \to K_{T}^*(\mathbb{Z} \times _,\mathbb{Z}) \), compare these cohomology theories. Then Lemma 2.1 shows that \(\mu \) induces an isomorphism of the \(E_r \)-terms of these spectral sequences. Therefore this concludes (1.1).

3. Proof of (1.2)

Let \(T \) be a maximal torus of \(G \). According to [6], §3 it suffices to show that

\[
\mu_G = \mu : R(T) \otimes_{R(G)} R(T) \to K_{\mathbb{R}}^*(G/T)
\]

is an isomorphism

for a proof of (1.2). However, from Proof of [6], Theorem 3.6 we see that

\[
\mu_G \text{ is a monomorphism for any compact, connected Lie group } G \text{ such that } \pi_1(G) \text{ is free.}
\]

Therefore it suffices to prove that \(\mu_G \) is an epimorphism.

Now, since \(R(T) \) is a projective \(R(G) \)-module [4], we see by (1.1) that

\[
\text{(3.3) If (3.1) is true then the } T \text{-space } G/T \text{ is a basic } T \text{-space.}
\]

(1) **Proof for \(U(n) \).** This follows from [5], Proposition (3.9) (See [6], Corollary 3.7).

(2) **Proof for \(SU(n) \).** Let \(T \) be a maximal torus of \(U(n) \) and put \(ST = T \cap SU(n) \). Then \(ST \) is a maximal torus of \(SU(n) \) and \(SU(n)/ST \cong U(n)/T \) as \(T \)-spaces.

By (1) and (3.3), \(U(n)/T \) is a basic \(T \)-space and so

\[
K_{\mathbb{R}}^*(U(n)/T) \cong K_{\mathbb{R}}^*(ST \times U(n)/T)
\]

\[
\cong R(ST) \otimes_{R(T)} K_{\mathbb{R}}^*(U(n)/T)
\]

\[
\cong R(ST) \otimes_{R(U(n))} R(T).
\]

Hence we get the following commutative diagram
where $i: SU(n) \to U(n)$ is the inclusion of $SU(n)$, and this shows that μ is surjective for $G=SU(n)$.

(3) Proof for $Sp(n)$. We regard $Sp(n)$ as a closed subgroup of $U(2n)$ by the canonical embedding. Then $Sp(1)=SU(2)$ and so the proof for $Sp(1)$ follows from (2). We shall prove the case of (3) by induction on n.

Suppose $Sp(k)$ satisfies (3.1) for $1 \leq k \leq n-1$. Then (3.1) is true for $Sp(n-1) \times Sp(1)$. Because

$$K^\ast_{T_1 \times T_2}(Sp(n-1) \times Sp(1)/T_1 \times T_2) \cong K^\ast_{T_1}(Sp(n-1)/T_1) \otimes K^\ast_{T_2}(Sp(1)/T_2)$$

$$\cong R(T_1 \times T_2) \underset{R(Sp(n-1) \times Sp(1))}{\otimes} R(T_1 \times T_2)$$

where T_1 and T_2 are maximal tori of $Sp(n-1)$ and $Sp(1)$ respectively, by the inductive hypothesis and [3]. Therefore, by [6], Theorem 3.6 $Sp(n-1) \times Sp(1)/T$ is a basic $Sp(n-1) \times Sp(1)$-space and so

$$R(T) \underset{R(Sp(n-1) \times Sp(1))}{\otimes} K^\ast_{Sp(n-1) \times Sp(1)}(Sp(n)/T) \cong K^\ast_{T}(Sp(n)/T)$$

where T is the standard maximal torus of $Sp(n)$. Hence it suffices to show that

$$R(T) \underset{R(Sp(n-1) \times Sp(1))}{\otimes} K^\ast_{Sp(n-1) \times Sp(1)}(Sp(n)/Sp(n-1) \times Sp(1))$$

is an isomorphism, because of $K^\ast_{Sp(n)/Sp(n-1) \times Sp(1)}(Sp(n-1) \times Sp(1)) \cong K^\ast_{Sp(n-1) \times Sp(1)}(Sp(n-1) \times Sp(1))$.

Put $R(T)=\mathbb{Z}[t_1, \ldots, t_n; t_1^{-1}, \ldots, t_n^{-1}]$, then $R(Sp(n))=\mathbb{Z}[\sigma_1, \ldots, \sigma_n]$ as a subring where σ_k is the k-th elementary symmetric function in the n variables $t_1+t_1^{-1}, \ldots, t_n+t_n^{-1}$ ([2], §13, Theorem 6.1).

Define the ring homomorphism $\phi: R(Sp(n))[\theta] \to R(Sp(n-1) \times Sp(1))$ by the restriction $R(Sp(n)) \to R(Sp(n-1) \times Sp(1))$ and the correspondence $\theta \mapsto t_n+t_n^{-1}$. Then we have

Lemma 3.1. $R(Sp(n))[\theta]/(\sum_{j=0}^{n}(-1)^j \sigma_j \theta^{-j}) \cong R(Sp(n-1) \times Sp(1))$.

Proof. By the definition of ϕ, ϕ is surjective obviously.

If $\phi(f(\theta))=0$ for $f(\theta) \in R(Sp(n))$ then $(\theta-(t_n+t_n^{-1}))$ divides $f(\theta)$. By symmetry, $(\theta-(t_j+t_j^{-1}))$ divides $f(\theta)$ for $1 \leq j \leq n$. Hence $\sum_{j=0}^{n}(-1)^j \sigma_j \theta^{-j}$ divides $f(\theta)$. This shows Lemma 3.1.

The following lemma completes the proof for $Sp(n)$ by the preceding discussion.
Lemma 3.2. $\mu: R(T) \otimes R(Sp(n-1) \times Sp(1)) \rightarrow K_T^*(Sp(n)/Sp(n-1) \times Sp(1))$ is an isomorphism for any $n \geq 2$.

Proof. $Sp(n)/Sp(n-1) \times Sp(1)$ is homeomorphic to the projective space of dimension $n-1$ over the quaternion number field. By the canonical embedding $P^{n-2}(Q) \subset P^{n-1}(Q)$ we have an equivariant embedding $i: Sp(n-1)/Sp(n-2) \times Sp(1) \subset Sp(n)/Sp(n-1) \times Sp(1)$.

For simplicity we write $P^{n-1}(Q)$ for $Sp(n)/Sp(n-1) \times Sp(1)$. Then we have

(a) $\mu': R(T) \otimes R(Sp(n-2) \times Sp(1)) \rightarrow K_T^*(P^{n-1}(Q))$

by the inductive hypothesis and

(b) $\mu: R(T) \otimes R(Sp(n-1) \times Sp(1)) \rightarrow K_T^*(P^{n-1}(Q))$ is a monomorphism

by the analogous argument to the proof for (3.2). Moreover the T-space $P^{n-2}(Q)$ is isomorphic to the representation space W of $t_1 t_{n-1} \oplus \cdots \oplus t_1 t_{n-1}$.

Consider the exact sequence for the pair $(P^{n-1}(Q), P^{n-2}(Q))$, then by Lemma 3.1, (a) and (b) we obtain the diagram

$$
\begin{array}{cccc}
0 & \rightarrow & K_T^*(W) & \rightarrow K_T^*(P^{n-1}(Q)) & \rightarrow K_T^*(P^{n-2}(Q)) & \rightarrow 0 \\
& & \varphi * & \mu & \cong & \mu' \\
R(T) & \rightarrow & R(T)[\theta]/(\sum_{j=0}^{n-1} (-1)^j \sigma_j \theta^{n-j}) & \rightarrow & R(T)[\theta]/(\sum_{j=0}^{n-1} (-1)^j \sigma_j \theta^{n-j-1}) & \rightarrow 0
\end{array}
$$

where the row is an exact sequence, $\varphi *$ is the Thom isomorphism and the definition of θ' and σ_j', $(0 \leq j \leq n-1)$, are similar to that of θ and σ_j. In this diagram we see that i^* is surjective from the fact that $i^*(\mu(\theta)) = \mu'(\theta')$, and furthermore we can easily check that $j^* \varphi_*(1) = (t_{n-1})^{n-1} \sum_{j=0}^{n-1} (-1)^j \sigma_j \mu(\theta)^{n-j-1}$. Therefore we see that μ is surjective. q.e.d.

This completes the induction.

(4) Proof for G_2. G_2 contains $SU(3)$ as a closed subgroup of maximal rank and the homogeneous space $G_2/SU(3)$ is homeomorphic to the unit sphere S^9.

Let T denote a maximal torus of $SU(3)$ and put $R(T) = Z[t_1, t_2, t_3; t_1^{-1}, t_2^{-1}, t_3^{-1}](t_1 t_2 t_3 - 1)$. Moreover we denote the representation space of $t_1 t_2 t_3$ by W and the unit sphere in $R \oplus W$ by $S(R \oplus W)$ where R is the real number field. Then we see easily that

Lemma 3.3. $G_2/SU(3)$ is homeomorphic to $S(R \oplus W)$ as T-spaces.

The following lemma completes the proof for G_2 by the same reason as for $Sp(n)$.
Lemma 3.4. \(\mu : R(T) \otimes R(SU(3)) \to K^*_T(G_2/SU(3)) \) is an epimorphism.

Proof. Consider the exact sequence for the pair consisting of the unit ball \(D(W) \) and the unit sphere \(S(W) \) in \(W \), then we have the diagram

\[
0 \to K^*_T(W) \xrightarrow{j^*} K^*_T(D(W)) \xrightarrow{i^*} K^*_T(S(W)) \to 0
\]

where the row is exact and \(\varphi_* \) is the Thom isomorphism, and then we get

\[K^*_T(S(W)) = R(T)/(\lambda_2 - \lambda_1) \]

since \(j^* \varphi_*(1) = \lambda_2 - \lambda_1 \) where \(\lambda_1 \) and \(\lambda_2 \) are the ring generators of \(R(SU(3)) \) as in [2], §13, Theorem 3.1.

Next we divide \(S(R \oplus W) \) into two closed \(T \)-subspaces \(D^\pm \) as follows: Put \(D^\pm = \{(r, z_1, z_2, z_3) \in S(R \oplus W); r \geq 0 \) or \(r \leq 0 \} \) and then \(D^+ \cup D^- = S(R \oplus W) \) and \(D^+ \cap D^- = S(W) \). Consider the diagram obtained by the Mayer-Vietoris exact sequence for the triple \((S(R \oplus W); D^+, D^-) \) then we obtain the diagram

\[
0 \to K^*_T(S(R \oplus W)) \xrightarrow{(j^*_+, j^*_-)} K^*_T(D^+) \oplus K^*_T(D^-) \xrightarrow{i^*_+ - i^*_-} K^*_T(S(W)) \to 0
\]

where the row is exact and \(j^\pm \): \(D^\pm \to S(R \oplus W) \) and \(i^\pm \): \(S(W) \to D^\pm \) are the inclusion maps. Then we see that \(K^*_T(S(R \oplus W)) \) is isomorphic to the submodule of \(R(T) \oplus R(T) \) over \(R(T) \) generated by \((1,1)\) and \((\lambda_2 - \lambda_1, 0)\), and \(\mu \) satisfies \((j^*_+, j^*_-)\mu(1 \otimes 1) = (1, 1)\) and \((j^*, j^*)\mu(1 \otimes \lambda_1) = (\lambda_1, \lambda_2)\). This shows that \(\mu \) is surjective.

Osaka City University

References
