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Abstract
Let G/H be a compact 4-symmetric space of inner type such that therdiion
of the centerZ(H) of H is at most one. In this paper we shall classify involutions
of G preservingH for the case wherdimZ(H) =0, or H is a centralizer of a toral
subgroup ofG.

1. Introduction

It is known that Riemanniak-symmetric spaces is a generalizations of Riemann-
ian symmetric spaces. The definition is as follows:

Let G be a Lie group andH a compact subgroup d6. A homogeneous space
(G/H, {, )) with G-invariant Riemannian metriq/ , ) is called a Riemannian
k-symmetric spacé there exists an automorphism on G such that
1. GJ c Hc G whereG? and Gj is the set of fixed points o and its identity
component, respectively,

2. ok=Id ando' #1d for anyl <k,

3. The transformation o66/H induced byo is an isometry.

We denote by G/H, ( , ),o0) a Riemanniark-symmetric space with an automorphism
o. Gray [5] classified Riemannian 3-symmetric spaces (sex \&fslf and Gray [15]).
Moreover compact Riemannian 4-symmetric spaces is clasdifreJeménez [7]. The
structure of Riemanniak-symmetric spaces is closely related to the study of finite or
der automorphisms of Lie groups. Such automorphisms of estgimple Lie groups
were classified (cf. Kac [8] and Helgason [6]).

It is known that involutions ork-symmetric spaces are important. For example,
the classifications of affine symmetric spaces by Berger [&] & essence, the clas-
sification of involutions on compact symmetric spacggH preservingH. Similarly,
such involutions play an important role in the classificated symmetric submanifolds
on compact symmetric spaces (cf. Naitoh [11] and [12]).

On a compact 3-symmetric spacg€/H, ( , ), o), an involutiont preservingH
satisfiestoo =0 ot or too =0 tor. The classification of affine 3-symmetric spaces
([15]) was made by classifying involutions satisfyingt o 0 = o o 7. Moreover, [13]
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644 H. KURIHARA AND K. ToJO

and [14] classify half-dimensional, totally real and tbtageodesic submanifold (with
respect to the canonical almost complex structures) of emtmRiemannian 3-symmetric
spaces G/H, ( , ), o) by classifying involutionst on G satisfyingz oo =0 2o 1.

In general, there exists an involution such thatt oo o ™ # o or o~ for
Riemannian 4-symmetric spaces. These automorphisms dappatar in Riemannian
symmetric spaces and 3-symmetric spaces. However, if therdiion of the center of
H is at most one, each involution preservingH satisfiest co ot™* =0 or o721

According to [7], a compact simply connected Riemanniarymaetric space de-
composes as a produdd; x - -- x M,, whereM; (1 <i <r) is compact, irreducible
Riemannian 4-symmetric space. In this paper we treat a coinpeeducible Riemann-
ian 4-symmetric space3(/H, ( , ), o) such that the dimension of the centertéfis at
most one. In particular we classify involutions &f preservingH for the case where
dimzZ(H) =0, or dimz(H) =1 andH is a centralizer of a toral subgroup &. More
precisely, letg and h be the Lie algebras o6 and H, respectively. Then we first
prove that there exists a maximal abelian subalgebo& g contained inh such that
7(t) = t for any involution r preservingh. Except for the case where difd(H) = 1
andt oo ot =071, we classify involutionsr of the root system ofy with respect
to t. Moreover, for each involution (z # Id) of the root system of), we prove that
there exists an involutiony preservingh such thatr|, = . Then each involutiorr
can be written ag = 79 o Ad(exp+/—1h) or = = Ad(exp+/—1h) for some/—1h € t
sincet|; is an involution of the root system df, and we obtain alt by considering
conjugations within automorphisms preservingFor the case where dif{H) =1 and
too ot =071, using graded Lie algebras, we classify alby an argument similar
to that in [13].

According to [14], for 3-symmetric space§&[(H, (, ), o) with dimZ(H) = 0,
each involutiont with 7 o o o 771 = 0~1 preservingH is obtained from a grade-
reversing Cartan involution of some graded Lie algebra efithird kind. In the case
where G/H, (, ),0) is 4-symmetric with dinZ(H) =0 androoor =071, we can
see that there exists which is not obtained from a grade-reversing Cartan invofut
of any graded Lie algebra of the fourth kind.

The organization of this paper is as follows:

In Section 2, we recall the notions of root systems and gradedlgebras needed
for the remaining part of this paper. Moreover we recall soa®iits on automorphisms
of orderk (k < 4).

In Section 3, we remark on some relation between involutafrésymmetric space
(G/H, (, ), o) reservingH and root systems of the Lie algebra Gf

In Section 4, by using the results in Section 3, we descrilee réstrictions of
involutions to the root systems for the case where the dimensf the center is zero.

In Section 5-8, we enumerate all involutiomsof compact 4-symmetric spaces
such thatr(H) = H and the dimension of the center Bf is zero, orH is a centralizer
of a toral subgroup ofG.

In Section 9, we describe some conjugations between invokit
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In Section 10, by making use of the results in Section 5-8thmgewith conju-
gations in Section 9, we give the classification theorem ef élquivalence classes of
involutions.

2. Preliminaries

2.1. Root systems. Let g and t be a compact semisimple Lie algebra and a
maximal abelian subalgebra gf respectively. We denote by and tc the complexi-
fications ofg andt, respectively. LetA(gc, tc) be the root system aofc with respect
to tc and I1(gc, tc) = {aa,...,an} the set of fundamental roots af(gc, tc) with respect
to a lexicographic order. Far € A(gc, tc), put

(2.1) go ={X egc; [H, X]=a(H)X for any H € t¢}.

Since the Killing formB of g¢ is nondegenerate, we can defiHg € tc (o« € A(gc, tc))
by a(H) = B(Hqs, H) for any H € tc. As in [6], we take the Weyl basifE, € ga; o €
A(ge, to)) of ge so that

[Ee, E-o] = Ha,

[Ea, Egl = NogEatp, Nop € R,

Neg = —N_g g,

Ay =E,—E 4 By i=v-1(E,+EL,) eg.

We denote byA*(gc, tc) the set of positive roots of\(gc, tc) with respect to the order.
Then it follows that
n
(2.2) g=t+ >  (RA,+RB,), t=) RV-1H,.
aeA* (g, te) i=1
For @ € A(gc, tc), define a Lie subalgebras,(2) of g by
(2.3) s5u,(2) =RV —1H, + RA, + RB, = su(2).

We denote by, the root reflection forr € A(gc, tc). Then there exists an extension
of t, to an element of the group Inf( of inner automorphisms of, which is denoted
by the same symbol as. Since the root reflection ofu,(2) for & coincides with the
restriction oft, to Rv/—1H, andt, is the identical transformation on the orthogonal
complement ofRv/—1H, in t, the following lemma holds.

Lemma 2.1. There exists an elemegte Int(su,(2)) (C Int(g)) such thatp|¢ =t,];.
DefineK; etc (j=1,...,n) by

ai(Kj) =6, i,j=1,...,n,
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and denote the highest roétby

é = mjaj, mj € 7.

1
[y

We set
4 := Ad(exprv/—1H), H € tc.
Then from (2.1) we have
(2.4) H(E.) =€ ME,, a e Age, to).
Assume thafg is simple. Then the following is known.

Lemma 2.2 ([10]). Any inner automorphism of ordex on g is conjugate within
Int(g) to somerk, with my =1 or 2.

If h—h = Zi":la Ki, g € 2Z for h, h" € t¢, we say thath is congruent toh’
modulo Z1(gc,tc) and it is denoted byn = h (mod 271 (gc, tc)). It follows from (2.4)
that t, = oy if h=h (mod 27 (gc, tc)).

REMARK 2.1. According to Lemma 2.2, for any inner automorphisg of or-
der 2 ong, there exists an inner automorphismof g such thatv(H) = Kj (m; =1
or 2) (mod Z7(gc, tc)).

We write h ~ k if 7, is conjugate ta within the group of inner automorphism gf

Lemma 2.3. (A,) If g is of type A, then K ~ Kpi1-.
(D) If g is of type O, then K ~ Kn—ij (1 <i <[n/2]). In particular if n is odd
then K,_1 ~ K.
(Eg) If g is of type K, then K ~ Kg, Ko ~ Kz ~ K.

Proof. (Ay): We identify A(gc, he) with

le—eg;l<i#Zj=n+l

(for example, see [6]), whergey, ..., &1} is an orthonormal basis &"*. From [2]
there exists an element of the Weyl groupW(g, t) of g with respect tot such that

w(g) =en_j+2 (1 <j <n+1). Seto; =6 — &+1. Then we have

w(ei) = w8 — §+1) = Bn—i+2 — En—j+1 = —On_j+1.
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It is easy to see thab *(Ki) = —Kns1-i = Kneri (Mod 2T (gc, he)). Hencer,, -y, =

-1 —
w OTK; OW = TK 1+

(Dn):
A(ge, he) = {6 +e; 1<i #j <n}.
Set
=g -6 (1l<i<n-1), ay=€_1+6en.
Since there existsy € W(g, t) such thatw(ej) = en_j+1 (1 < j <n), we have
w(ei) = w(g — €+1) = €r—iv1 — En—i = —An-i.

Hence we getw1(K;) = —K,_; = K,_; (mod 2[1(gc, hc)). In particular, ifn is odd,

then there exists a unique € W(g, t) such that{oy, ..., an} = {(—o1, ..., —an). If
w(w) = —a; for 1 <i < n, thenw = —Id, which is a contradiction (cf, [2]). Thus
we get

w(i) = - (1<i<n-=2), wln-1)=—an, wlan)=—an_1.

Hence we obtainw™(K,_1) = =K, = K, (mod 2T(gc, hc)).
(Eg): There exists a unique € W(g, t) such that{as,..., a6} - {—a1,..., —ag}.
Similarly as in the proof of D), we have

w(og) = —ag, w(ag) = —az, w(az) =—as, w(wg) = —ay.

Hence we obtainy~(K;) = —Kg and w(K3) = —Ks. On the other hand, it is easy to
see thatty, +g,+205+ 204405 © taprasras(K2) = —Ks + 2Kg = Ks (mod 21 (gc, he)). Thus we
have Ks ~ Ks. ]

Let (G/H, (, ), o) be a compact Riemannian 4-symmetric space suchdthiat
inner. Then the following holds.

Lemma 2.4 ([7]). o is conjugate withinint(g) to some Ad(exp(r/2)+/—1hy)
where either

ho = K, m; = 4,

hy = Kj or Kj + K, m =3, mj =mg =2,
h2 = Kj +Kj, m =1, mj =2,

hs = Ki + Kj + K, mi =mj =mg =1,
hs = K, m =1,

hs = Ki, Kj + Ky or 2Kp+Kg, my =2, mj=mg=mp=mg = 1.
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REMARK 2.2. (1) If o is conjugate tory,oyn,, then a pair §, g”) is symmetric.
Indeed, fora =Y |, krar € A(ge, tc), we havea(hs) =k and

a(hy) =0 (mod 4)< a(hs) =0 (mod 2)<= k =0

sincem; = 1. Therefore it follows thag™2x = g’i. Hence §, g°) is a symmetric
pair, becausey, is an involution.

If o is conjugate torg,2)n,, then a pair g, g”) is 3-symmetric. Indeed, for exam-
ple, if hs = 2K, + Kq, then we have

a(hs) = 0 (mod 4)<=> a(K, + Kq) = 0 (mod 3)<=> k, = kq =0,

for @ =Y [ kar € A(ge, tc). Therefore, we obtaig™2ns = gi@axe«a, and hence
(g, g°) is @ 3-symmetric pair becausgs)k,+k,) IS of order 3.

(2) Let 3 be the center ob. If o = Ad(expfr/2)v/—1h,) (@ =0, 1, 2, 3), then the
dimension ofj is equal toa ([7]).

2.2. Graded Lie algebras. In this subsection we recall notions and some results
on graded Lie algebras.

Let g* be a noncompact semisimple Lie algebra ofer Let T be a Cartan in-
volution of g* and

(2.5) gr=t+p, tle=Ide, T]p = —Idp

the Cartan decomposition @f corresponding tar. Let a be a maximal abelian sub-
space ofp* and A the set of restricted roots agf* with respect toa. We denote by
T ={\,..., M} the set of fundamental roots of with respect to a lexicographic or-
dering of a. We call a collection of subsetdTy, Ty, ..., I1,} of IT a partition of IT

if ITy #9, IT, #¢% and

n=IyJUrU---Ull, (disjoint union).

Let /7 and IT be fundamental root systems of noncompact semisimple lgebahsg*
and g* respectively. Partitiong$/To, ITy, ..., [Ty} of IT and {ITo, IT4, ..., IT,} of IT are
said to beequivalentif there exists an isomorphisg from Dynkin diagram ofIT to
that of I7 such thatm=n and¢(/7) =1T; (i =0, 1,..., n).

Take a gradation

g*:g’iv+...+gg+...+gz,

[0 9g] C Gpeqr T(gp) =02y —v =P, d=v,

of v-th kind on g* so thatg; 7 {0}. We denote byZ the characteristic element of the
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gradation, i.eZ is a unique element ip* N g such that
gp={Xeg"[Z, X]=pX}, —v=p=v.

Let

be two graded Lie algebras. These gradations are said isob@orphicif v = v and
there exists an isomorphisg: g* — g* such thatg(g’) = g* (—v <i <v). Then the
following holds.

Theorem 2.1 (Kaneyuki and Asano [9]). Letg* be a noncompact semisimple Lie
algebra overR and IT a fundamental root system @f. Then there exists a bijection
between the set of equivalent classes of partitiong7oind set of isomorphic classes
of gradations ong*.

The bijection in the theorem is constructed as follows: (&b, I14,..., I1,} be a
partition of I1. Defineh;: A — Z by

h(h) = Z mi+22 mj+---+n Z Mk, A:Zmu\ieA.

)\.| EH]_ )\.JEHZ )\kEHn i=1

Then there is a uniqu& in a such thatA(Z) = hg(A) for all A € A. For a partition
{ly, M, ..., II,} we obtain a gradatiog* = ) |__ g° whose characteristic element
equalsZ. This correspondence induces a bijection mentioned in hberem.

Definehj ea (i=1,2,...,1) by

rj(hy) = &j.

Let t* be a Cartan subalgebra gf such thata C t*. Take compatible orderings afi
and a. We clarify the relation betweeK; and h;.

Lemma 2.5. Let A; be any root in/1.
(1) If there exists a unique; € IT(gg, t7) such thataj|, = A;, then h = Kj.
(2) If there exist two fundamental roots, ax € I1(gg, ti-) such thatej|, = axla = A,
then h = Kj + K.
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Proof. (1): Considering the classification of the Satakegmims, forop €
IT(gg, t5), p 7 j, it follows that apls = 0 or apls = Aq for someq (g #i). Thus
we have

ap(hi) =apla(hi) =0, «aj(hi)=2i(h) =1,

which impliesh; = Kj.
(2): Similarly as above, fow, € IT(gf, ), p 7 j, Kk, it follows thatap|, = 0 or
apla = Aq for someq (q #i). Therefore

ap(hi) = apla(hi) =0, am(hi) = amla(hi) = 2i(hi)) =1, m=j,k,
which impliesh; = Kj + K. O

3. Riemannian 4-symmetric spaces

In this section we use the same notation as in Section 2. GgH( ( , ), o) be
a Riemannian 4-symmetric space with an inner automorphisof order 4. Letg and
h be the Lie algebras o6 and H, respectively. Note thaj coincides with the seg”
of fixed points ofo. Choose a subspace of g so thatg = +m is an AdH)- and
o-invariant decomposition. Letbe a maximal abelian subalgebragtontained inb,
and 3 the center off.

Suppose thay is a compact simple Lie algebra. Let A(f) be the set of auto-
morphisms ofg preservingh.

Lemma 3.1. Assume = Ad(exp(r/2)v/—1K;), m; = 3or 4, wheres = )"\ mj«;
is the highest root ofA(gc, tc) as in Section 2. Then for eachu € Auty(g), we have
pwooopu =0 oro L

Proof. Sinceu(h) = b, we obtaing’ = h, whereo := oo ou L. In particular,
we haveoT, = Id;. Therefore, it follows from Proposition 5.3 of Chapter IX [@&] that
there is/—1Z € t such that

3.1) = Ad(exp%ﬁZ).

Since o = Ad(expér/2)v/—1K;) with m; = 3 or 4, we obtainE,, € hc (j #i) and
E., & bc. Moreover, sincey” = g° = b, it follows from (3.1) that

(3.2) 6(Ey) = By, 6(Ey)=CEy,

for somec € C with |c| = 1. Thenc* =1 andc?® # 1, becauses* = Id and 62 #
Id. From (3.2), we can see that @ = +/—1, theno =0, and if c = —/—1, then
§=0L O
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REMARK 3.1. Lemma 3.1 dose not hold in general. df is conjugate to
Ad(expr/2)v—1(K; + Kj)) (m; =m; = 2), then Lemma 3.1 holds. However in other
cases, Lemma 3.1 dose not hold.

REMARK 3.2. If o is an automorphism of order 2 or 3, then by an argument
similar to the proof of Lemma 3.1, it follows thatoo ou™t = o for any u € Auty(g).

Lemma 3.2. Suppose that = Ad(exp(r/2)v/—1K;) with m = 3. Let r be an
involutive automorphism of such thatz(h) =h. Then
(i) too=0oort if and only if the coefficient of; in 7(§) is equal to3.
(i) oo =0"1or if and only if the coefficient of; in (8) is equal to—3.

Proof. It is easy to see thgt=R+/—1K; for somei with m; = 3. Sincer(h) = b,
we haver(v/—1K;) = £4/—1Kj, and therefore

L w W\ Lo if t(v=IKi) = VK,
TOUOTl‘AdC”pE’“CIKJ>"{a—1ifdviim)=—viim,

and

O = s = sk = (2, TV

This completes the proof of the lemma. ]

Lemma 3.3. Suppose that = Ad(exp@r/2)v/—1K;) with m =3 or 4.
(i) Let 1, 72 be involutive automorphisms gfsuch thatz(h) =, (i =1, 2). If there
exists i € Auty(g) such thatu oty o u ! =1, Then

(3.3) gt =g?, hNgt=hngn.

+1 l

o*lor, thent oo =0l o7/,

i) Putt’  :=potout ueAut g). If too =
b
respectively

Proof. (i) is trivial.
(ii) We have

+1 -1 _ +1

TOO=0""0T < LOTOOOU "=lLO0C0 o‘L'o;L’l

<=>T/O/¢Loaopd_1:,uoailopd_lo‘r/

Hence, it follows from Lemma 3.1 that if oo = o*lo 1, thent' oo =o*Flo . [
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In the remaining part of this paper, we suppose that Ad(exp(r/2)v/—1K;) for
someq; € I1(gc, tc) with m; =3 or 4. If m; = 3, the Dynkin diagram of) is iso-
morphic to the extended Dynkin diagram Bf(gc, tc) excepte; andwg, and if m; = 4,
it is isomorphic to that off7(gc, tc) excepte; (cf. Theorem 5.15 of Chapter X of [6]).
We denote byri(h) the fundamental root system @&f corresponding to the Dynkin
diagram ofb.

Lemma 3.4. For any involutive automorphism of g satisfyingz(h) = b, there
existsu € Int(h) such thatu o v o w=2(I7(H)) = I1(h).

Proof. Putt™:=t|,. Thent is an involution off) = 3 @ hs, wherebs :=[b, p]. It
is obvious thatr{3) =3 and 7(hs) = hs. Decomposeys into hs =h; & - - - ® hm Where
b1,...,hm are simple ideals. From the classification of compact 4-sgtrimpairs §, b)
([7]), it follows that (i) h; 2 b; for anyi, j € {1,..., m} (i #j), or (i) there exists
only one pair p, ) such thath, = hq.

Case (i). Sincet(hi) (1 <i <m)is a simple ideal ofys andb; Z b; (i Z j),
it follows that ©(hij) = h; (1 <i < m). Therefore we have a direct sum decomposition
hi =& @pi. Let q; be a maximal abelian subspacemfandt; be a maximal abelian
subalgebra of); containinga;. We take a fundamental root systeff = {Ay,..., An,}
for the set of nonzero roots with respect tp¢( tic). From Theorem 5.15 of [6], there
exists i € Aut(hi) such thatu; o tly, ourl is an automorphism ofT; of order 1 or 2.
Hence we have

(3.4) T(u () = ), T UT)) = ).
Sett:= ;ql(tl)e} @ Ut (tm) D3 and 7 := ,qu(nl)U~ - Upt(ITm). Then by (3.4),

we haver(t) =t and £(/T) = /1. Since there exist € Int(h) and w € W(b, f) such
that x(t) = t and w(w(I7)) = I1(h), we obtain

(wi) o T o (wp) 11T (h)) = (D),

which completes the proof of the lemma for the case (i).

Case (ii). If z(hj) =h; fori =1,..., m, then by the same argument as in the
case (i), we can prove the claim. Hence we assume thatény) = hq andz(h;) =b;
for i # p, g. Define isomorphisms;: hg — b, and w2 h, — hq by

(X, Y) = (ra(Y), 72(X)), X € bp, Y € by.
Sincert is an involution, it follows thatr; o7, = o077 = Id. Hence we have (X, Y) =
(1Y), 7 H(X))-
Put b := h, and define an isomorphism: b, ® hq — b G b by

(X, Y) = (X, ra(Y)).
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Then it is easy to see thabtov1(X,Y) = (Y, X). Therefore, considering a symmetric
pair (b & b, Ab) (Ab = {(X, X); X € b}), we can see that there exist a fundamental
root system off), & by preserved byr|y en,- Hence, by an argument similar to (i),
there existsy € Int(h) such thatv o t o v=1(I1(h)) = IT(h). This completes the proof of
the lemma for the case (ii). ]

In the following sections, we shall classify the equivalersiasses of involutive
automorphisms within Aut,(g) of g such thatr(h) = . From Remark 2.2 and Lem-
ma 3.1 we have the following four type:

dimj; =0, Too=0c%lor1

ilo

dmz=1, too =0 T.

4. The case where diny =0

In the remaining part of this paper we use the same notation &ection 2 and
Section 3. Let G/H, (, ), o) be a Riemannian 4-symmetric space such thas
inner and diny =0. From Lemma 2.4 together with Remark 2.2 we may suppoge tha

o= Ad(exp%V—lKi) for somei with the propertym; =4

According to Section 3 and Jiménez [7], 4-symmetric pagrsh] satisfying the condi-
tion dimj = 0 are given by

(e7, 50(6) @ 50(6) D s5u(2)), (e, su(8) @ su(2)),

4.1)
(es, 50(10)® 50(6)),  (fa, 50(6) ® 50(3)).

Let = be an involution ofy preserving). By Lemma 3.4, we may assumé) =t and
t(I1(h)) = 1 (h). If 7|, = 1d,, then there existy/—1H € t such thatr = Ad(expr+/—1H)
andtoo =cor.

Now, we assume|; # Id;. Suppose thaf is of type eg. From Section 3, the
Dynkin diagram offy coincides with the extended Dynkin diagram &@f except® as
follows:

(4.2)

[6%) [0%]
(i):::::i$:(ii):::$:i::

Qy oy o7 O o5 0Oy O3 O Qy oy o7 O o5 0Oy O3 O

We denote)">, kio; by
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In the above case (i), since; # Id; and =(I1(h)) = I1(h), the possibility ofz|; is as
follows:

() = o1, T(op) =ap, t(ag) =ag, t(as)=a7, (os) = ae.

Then we get

) ) 0
az = 1(ag) = —4t(az) — (o) — ( 6 5 4 3 2 0 2),
and hence

)= (o 1 5 5 g 5 1) €Al

By a similar argument as above, we obtain the following psigmn.

Proposition 4.1. Suppose thatimz = 0. Let r be an involution ofg such that
7(h) = b and t(I1(h)) = I1(h). Then all the possibilities of |, such thatz|, # Id; are
given byTable 1.

For Type IV in Table 1, it is easy to segK3) = —4K;, + 3K3 = —K3 (mod 4).
Hence we have oo =0 tor. Similarly, for Type | we getr oo =0 ot and for the
other types, we have oo =0 1o .

Finally, in order to compute the dimension ¢f, we prove the following Lemma.

Lemma 4.1. Lett, be the(+1)-eigenspace of|,. Then
dimg® = dimt. +#A™(gc, tc) + 2#a € A™(gc, tc); T(Ee) = Eo)
—#a € A'(ge, to); T(a) = al.

Table 1. The possibilities of|; such thatr|¢ # Id (o = r1/2)H))-

Type [ g [ H | Tl
| e7 | Ky o) > Qg, My > O, 03 > U5, 04 > Qg, Q7 > O
o1 — o1, 02 = O, 03 = O, 05 > A7, Og > O
Il €7 K4
oy > oy + oo + 203 + 304 + 205 +
o1 = g, 02 > O, 03 > 7, 05 = O
11 €7 K4
oy > oy + oo + 203 + 304 + 205 +
v ¢ K o1 = o1, 02 = g, 04 = Og, 05 > A7, g > Ug
8 s o3 > ay + 20, + 3z + day + 3as + 206 + 07
Vv . K o1 = o1, 02 = 5, 03 > (3, 04 > Oy, 07 > g, Og > g
8 6 g > oy +ap + 2003 + 3y + 305 + 30 + 2007 + g
o1 = o1, 02 = g, Og = g
VI fa | Kz
o3 > o+ 2000 + 33 +ay
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Proof. If t(a) =8, (B # £a), we can putr(E,) = cEg for somec. Sincer is
involutive andz(H,) = Hpg, it is easy to see thaE, +CcEz and E_, +c 1 E_; are (+1)-
eigenvectors ofr. If t(a) = «, we getr(E,) = E, or t(E,) = —E,. Furthermore, if
(@) = —a, we can putr(E,) = cE_, for somec. Then we haver(E, + cE_,) =
+(Ey £ cE_,). Therefore we obtain

dimg’ =dimt, + #o € A*(gc, to); T(@) # +a)
+2#{a € A%(ge, to); T(Ea) = Eo} +#a € A% (g, to); () = —a}
=dimt, + #A™(gc, tc) + 2#a € A™(ge, te); T(Eq) = Eo)
—#a € A%(ge, te); (o) = al. O

5. The case where din3=0 andtoo =0"1or

We consider the cases of Type I, Ill, IV, V and VI in Table 1.rdtiwe construct
7 by using graded Lie algebras. Lgt be a normal real form of a complex simple Lie
algebragc. Let t* be a Cartan subalgebra gf. Then we have a Cartan decomposition
g* =t +p* with

(5.1) b= Y  RA, pr=t+ Y RJ-1B,.

a€A™(g,te) aeA*(gh th)
We take a gradatiog* = Z‘F‘);ng; of the fourth kind ong* corresponding to a partition
I1=IIpUIl, II;={x}, m =4.

Then the characteristic element of the gradation coincidids K;.

Let t* be the Cartan involution defined by (2.5). Rut= Ad(exp(r/2)v/—1K;).
Then o is an automorphism of order 4 on the compact dgaf ¢ + «/—1p* of g*.
Sincet*(K;) = —K;j, it is obvious that

(5.2) " ooo(t*) =01

By Lemma 3.4 and Proposition 4.1 is conjugate within Inff) to an involutive auto-
morphismz!’ of Type II, I, IV, V or VI in Table 1, that is, there existg € Int(h)
such thatr|; = (u o * o u™Y)|. Note that ding = 0 by Theorem 5.15 of Chapter X
of [6], and it follows from (5.1) that

(5.3) hne= > RA,.
aeA*(g*C,tE)
«(Kj)=0 (mod 4)

Now we prove the following Lemma.
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Lemma 5.1. Let u be inInt(h). Thenpot* o=t is conjugate withinint(h) to
1

Hot*ou too.
Proof. Putv := t_1/4,. Then we havevo t*ovt=t*ovlovi=r*0o0.
Sincev € Int(h), it follows that

-1 _

MO‘L'*O/J,_lOO':,lLO‘L'*OO'OILL —,uovor*ov_lopfl

ZIJop,oz'*oy,_lov_l,

and henceu o t* o u~1 is conjugate within Intf) to wot*oputoo. O

In the remaining part of this section, we shall determineiraiblutions for each
type. Furthermore for each involution we shall determindy N g® and g’.

Let 77, 7;7, 73", =" be the involutive automorphisms which conjugate within(§pt
to the Cartan involutions* with respect to Type IV, V, lll, VI, respectively. We de-
note byt any involution of each types.

Type IV: Now, we investigate involutions of Type IV in Table 1. Smg* is
a normal real form and of types, the pair ¢*, £) is given by ¢g), s0(16)). Note
that dim¢ = 120. Seto = Ad(exp(r/2)v/—1K3). From (5.1) and (5.3), considering the
number of rootsx € A*(g, t) such thate(K3) =0 or 4 (for example see Freudenthal
and Vries [3]), we get dini(N€) =29. Then it follows from (5.2) and Proposition 4.1
that ;7 is of Type IV in Table 1.

Let t. be the {1)-eigenspaces of]’|;, respectively. Sincew;(z] (K;)) =
7 (ai)(K;), we have

t. = span2Ky — Ky, 2K1 — K3, 2K1 + Kg, 4K1 — K5 — K7, 4K + K4 + Kg},
t_ =spanf2K, — Kz, 2Ky — K4 + Kg, Kz — Kg + K7},

For 7,_(h_ € t_), we haver{" oty ot/ = T.nh ) = T-h_. Thus we get

(5.4) (‘L’hf)_l o ‘L’{[ oTh = ‘L’ln o Toh -

Then usingh_ :=t(Ks — K4 + Kg) € t_, we may assume;’(E,,) = Ey,. Indeed, if
11 (Es,) = bsEy, (bs € C, |by| = 1), then it follows from (5.4) that

() Yot ot (Ey) = bye ?V-IE,,

Taking t so thatb, = €27V=1 we may assume;’(E,,) = E,,. Similarly, usingh_ =
t(2K, — Kg) or ho = 2(K; — Ks + K7) — (2K — K3), we may assume ' (E,,) = Eq,
and t{7(Eq) = Eq,.

On the other hand, for any involution of Type IV, the number of the subsets
{a, B} such thata € A*(gc, tc), t(a) = B, o # £B8 and a(K3) = 0 (mod 4) is 12.
Since dimt. =5, by an argument similar to the proof of Lemma 4.1 we obtain

dim(h N g’) > 5+ (12 2) = 29.
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Because dinf(N g') = dim(p N &) = 29, we obtain

1 (Ee;) = —Eayy 7' (Ea,) = Eags 71 (Eus) = C1Eg,,

(5.5) - K .
i (E"‘4) =By T (Eds) =By, T (Eote) = —Eg,»

where 81 = a1 + 2, + 3z + 4oy + 35 + 206 + 7 (See Table 1) and; € C with |c;| =1
(cf. Corollary 5.2 of Chapter I1X of [6]).

REMARK 5.1. Except for conjugations within Ayfg), we can determine the con-
stantc; uniquely. Indeed, from the proof of Theorem 5.1 of ChapterdiX[6], there
exists u € Aut(g) such that

/'L(Eotl) = Eutla M(Evtz) = Euto! M(Ewg) = Eﬁll M(Ea4) = Eolgv
(56) /“L(Eots) = Eot71 H‘(Eote) = Eotel H‘(EON) = EOt5! H‘(Eotg) = EOt41

M(an) = GOE(le /L(Eﬂl) = 6,51 Eo{3v
whereeg = +1 andeg, = 1. Note thateg andeg, are uniquely determined sinde.,
(1 <i < 8) generatggc. Since (¢/7)" o p)|¢ = Idy, it follows from Proposition 5.3 of

Chapter IX of [6] that there exists/—1H € t such that {]") topu =7y, and therefore
w= 11” oty. PutH = Zig:la; Ki, & € R. Then from (2.4), we have

B, = 1(Ewy) = 77 0 Tu(Ey,) = €Y 1M[I(E,) = —e" 1E, .

Thus we getay = a3(H) =1 (mod 2). Similarly as above, we obtai =0, a4 = 0,
as=0,a =1, a; =0, ag=0 (mod 2). Moreover, since

Ep, = W(Eyy) = €1 I(E, ) = ¢ie™V Ty,
we have
(5.7) cL=e ™V 1
Then by (5.5) and (5.6) we have
€0Ea; = 1(Euo) = {7 0 TH(Eoo) = €V TIRE,,,

and it follows from (5.7) that] = «.

If € =1, thenc, = £1 or +4/—1. Considering (5.4) foh_ = 2K, — K3 € t_,
we may assume that, =1 or /—1. Moreover, by Lemma 5.1 we may assume that
c1=1. If ¢¢=—1, then by the same argument as above, we may assyme(”/“)*/jl.
Consequentlyc; is uniquely determined except for conjugations within &uj.
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By an argument similar to (5.5), we may assume

T(Eﬂtl) = :I:Eﬂtl’ T(Eaz) = EOto' T(Eﬂts) = élEﬂl'

(5.8)
T(Eazx) = Eas! t(EOts) = Eot71 T(Eae) = iE%’

where€; € C and |€| = 1. Then, by Proposition 5.3 of Chapter IX of [6], there exist
v—1h € t such thatr =7/" o 7. Put

h:=h,+h_,
he = ki (2K — Ko) + ko(2K1 — K3g) + k3(2K 3 + Kg)
+ka(4K1 — Ks — K7) + ks(4K 1 + Kg + Kg) € v—1t,,
h_ := ke(2Kz — K3) + k7(2K, — Ky + Kg) + kg(Kz — Ks + K7) € v/—1t_,

whereky, ..., kg € R. Then sincer? =1d andt]’(h) =h, —h_, we havery, =Id and
hence B, =0 (mod 2Z1(gc, tc)). Therefore we geky, ..., ks € Z. Then we have

h = kK3 + koKg + ks K4 + kaKs + ksKe + ks K7 + ksKg
+Ke(2K2 — K3) +k7(2K2 — Kg + Kg) + kg(K2 — Ks + K7)  (mod 21(gc, tc)).
Considering (5.5) and (5.8) together with (2.4), we obtain
az(h) = aa(h) = ag(h) = as(h) = a7(h) =0 (mod 2),
and therefore
h = (ko — ke)Kz +ksKs  (mod 27 (gc, tc)).-

Furthermore, since(Eq,) = 71’ (Ey,) = Eq,, it follows that ag(h) = 0 (mod 2), and
therefore R € Z. Hence we may assume thatis one of the following:

mo_n m m m -
Ty, Ty OTK;, Ty OTK; 00, T OTKgKes T3 O TKaz+kg 0O, ] =3, 6.

Indeed, 7{7 o t_isk, iS conjugate within Intf) to one ofz{! andz{’ oo since

1

=60 oa)oo L

7 e
Ty ©T—(1/2K3 =Ty OO0
Moreover, sincery, =02 andti’ oo =o~tot!!, it follows that 7" otk, and t{7 o4k,
are conjugate within Intf to /7 and {’ o 7,, respectively. Consequently, is con-
jugate within Aug(g) to one of following:

n n n
i, Ty OTKgy Tp OTKgOO.
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Now we shall compute the dimension 6fn g’ and g°, where6 is one of ¢,
o o 1, and t{T o tx, 0 0. Sincet{? o 1k (Ey,) = Eue and dimg Ng') = 29, we have
dim(h ﬁgflno%) =36. Therefore we gefNg™ = D, D; andp ﬂgffo% =Cy0 D1.
Putv :=t|. It is easy to see that positive roatssuch thatv(«) =« are
ay, o, a5 tagtay, astostagtoytag, oaptayt 203+ 2004 + s,
a1 +opt+ 203+ 20 tastas, a1 tapt 203+ 200+ 205 tag g,
Qi oo+ 203 + 2004 + 2005 + 206 + 07,
a1 +ap + 203+ 3og + 205 + o + o7 + g,
a1 +ap + 203+ 3o + 205 + 2006 + 007 + g,
ay +ap + 203 + 3og + 3os + 206 + 2007 + g,
ay +ap + 203 + 3og + 305 + 30 + 2007 + g,

2001 + 205 + 4oz + By + dos + 3wg + 2007 + og

We consider the case ag” 0 Tks. PUty ‘=1 +ap+ 203+ 204 + 5. Take a Weyl
basis so that{'(E,) = E, (cf. see Gilkey and Seitz [4]). Then it is easy to see that
‘L’JI_-[(Ea) = E, for anyo € A:\{Oll,()(6,0(5+()16+Ol7,014+0(5+047, 2001 + 2000+ 4oz +5oeg +dos +
3as + 207 + g} and thereforer]” o t¢ (E,) = E, for any o € A\ {«1}. It follows from
Lemma 4.1 that dirgﬁ"“Ks =136. By using the classification of symmetric spaces, we
get grl”OIKG = E; 0 Ag

Similarly as above we can obtaipnn g? andg” for 6 = [T o 7¢, 0 0.

By an argument similar to above, we can obtain all involusiorof Type V and VI,
and determinéy N g* and g*, which are listed in Table 2.

Now we investigate involutions of Type Il and Ill in Table 1linSe g* is a normal
real form and of type;, the pair ¢, £) is given by ¢;7), su(8)). It is easy to see that
dim(h N €) = 13. On the other hand, for an involutianof g, we can see that

. _ |4 it < is of Type I,
dim . = {5 it 7 is of Type Ill

and if ¢ is of Type Il (resp. Type Ill), the number of the subséts 8} such that
a € A*(ge, te), () =B, o # £8 and a(K4) = 0 (mod 4) is 6 (resp. 4). Hence we
obtain

dmhng®) >16 if t is of Type Il,
dim(hNg®) >13 if t is of Type Ill.

Therefore the Cartan involution® of g* = e7(7) is conjugate within Intf) to an involu-
tion =’ of Type Ill. By an argument similar to Type IV, we can obtair iavolutions
T of Type lll, which are listed in Table 2.
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Table 2. dimy=0,T00 =07 tort, o = T2H, E=g0.

(3. b H) | T e hne

! Dsg D4 @ Dy

(e, s5u(8) @ su(2), K3) 717 0 Tkg E;® A | Cad Dy
tln 0 TKg O T(1/2)Kg Dg Cs® D1
4 Dg B2®B2®B1® By
tzn O TKy+Ky Dg B, ® B, ® B1 @ B;
il o Tk, 4K, © T(1/2)Ks Dsg Bo® B, ® B1 @ B
737 0 Tk, +Kg E7® AL | Bs®B2®B;
T 0 Tk, +Kg © TW2)Ke Dg B3 ® B, @ By
il o Tk kg Er®@ AL | Bsd B @By
737 0 Tk +Kg © T(1/2)Ks Dsg B3 @ B, @ By

(s, 50(10) ® 50(6), Ke) 75 0 7Kg Dg B:&B® By By
4T o k4 0 T2)Ks Dg B>® B, ® B1 @ B
737 0 Tk +Ka+Ky Er®@ AL | D2 B1 @By
T 0 Tk +Katk, 0 T(1/2)Kg | E7® AL | D2 ® B By
T 0 Tk, +KatKg Dg B3 @ B, @ By
737 0 Tk +Ka+Kg O TW/2)Ks | E7® A1 | B3® B2 @ By
il 0 TkgiK kg Er®@ AL | Bs3d B, @By
737 0 Tka+K,4+Kg © T(1/2)Ks | D8 Bs@® B2 ® By
Z8 A7 Bi®B ®B®Bi®B @R
73! 0 TKy+K, De®A1 | B@B1®Bi®A
747 0 Tk +K5 © T(1/2)K4 De® AL | BdB1®B1D A
73! 0 Tk +Ke Es®R | B,@B,®R

(e7, 50(6) @ s0(6) ® su(2), Ka) ‘[:,1’7 0 TK+Kg © T(1/2)Ky4 A7 Bo®B,dR
trf O TKp+Kg De® A1 | Bo@B1@®B1® A
il 0 Tk,yeKg © T(1/2)Ks De® A1 | B2®&B1®B1® A
oy De® A1 | D3® D1
t3{7 0@ 0 T(1/2)Ky A7 Dz @ D1
74 Cs® AL | BioB @D

(f4, 50(6) ® s0(3), K3) tf O TKy+Ky4 Bs B, @ By
T 0 Tk 4K, © T(1/2)Ks C3® AL | B® B

i1 Ey > —Egy, Ea, > Eo, Euy = C1Eg,, Eo, = Eog, Eog = Eopy Eog > —Eq,
(B1 = a1 + 2005 + 33 + Aoy + 3o + 206 + )
i Eyy > —Egy, Eup, > Eug, Euy = —Euyy Eoy > —Eu,, Eoq = GEp,, Eu > Ey,
EQB = —Eag, (B2 = a1 + ap + 203 + 304 + 3as + 3o + 2007 + ag)
' Ey > —Egy, Eo, > —Eey, Eoy > Eoyy Eoy > C3Epy, Eog > Eoyy Eoq > —Egg,
(B3 = a1 +az + 203 + 34 + 2005 + )
1471 Eqy > —Eqy, Eu, > Eyy, Eoy > CiEg,, Eoy > —Eq,, (Ba = a1+ 20 + 303 + 0tg)
wherec (i =1, 2, 3,94 is some complex number witfg;| = 1.
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Finally we consider the Type Il. P83 := a1 + ap + 203 + 304 + 205 + 5. Let r3”
be as above. Then, since dipt g’s") =dim(h N ¢) = 13, it follows that

13" (Eoy) = —Eayy T3 (Eay) = —Eoy, 74" (Eay) = Eug,

(5.9
T?{Y(Ea‘t) = c3Eg,, Ts{Y(Eas) = By, TSH(Eas) = —Eg,

for somecs € C with |c3] = 1. On the other hand, from Theorem 5.1 of Chapter IX

of [6], There exists an automorphisg on g such that

W(Eal) = Eae: W(Eaz) = Eaz! W(Eag) = Easa (p(Eom) = Eot4a
(p(EOts) = Eas! (p(Eae) = EOtl’ (p(EOU) = Eﬂto’ §0(an) = EEO‘?’

wheree = +1. If ¢ = —1, then we have

¢*(Ex) =Ey (1<i<®),
{‘pz(Em) = _Ea7-

Thus the inner automorphisg? has the formry,. Hence we have

(5.10) ¢ =t+ > (RA,+RB,).

a€A¥(gc, te)
Ot(K7):O

Put y := az +az + 204 + 205 + 206 + 7. Then we geip(y) = —y and from the proof of
Theorem 5.1 of Chapter IX of [6], we get

o(E))=¢,E_,, o(E_))=€_,E, (¢, =€, =£1).
Therefore we obtain

p(A)) =€, (E-, —E)) = —¢, A,
¢(B,)) =v-1e,(E, +E_)) =¢,B,.

This implies that
A, or B,eg’cC g”.
This contradicts (5.10). Thug(E,,) = E,,, that is,

¢(Es) = Eos, 9(Ew,) = Eayy 9(Eay) = Eas @(Eq,) = Ea,,
W(Eas) = Egs, (p(Eae) = Eu, 9(Eg;) = Es» W(an) = Eq;.

(5.11)

Thentj’ o 9 maps

1> o, Q2> 02, a3 > o7, o5k ap, 04> P,
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and it is easy to see

r3n op(Ey)=¢o ré_[(Eal) = —Eg,, 1:?f7 o0p(Ey)=po rg(Eaz) = —Eq,,
(5.12) 0 @(Ey) =9 o153 (Euy) = Eayy Ta' 0 9(Exs) = ¢ © 73 (Ewg) = Euy,
737 0 9(Ey,) = G3Ep,, ¢ 0 73" (Ea,) = C3p(Ep,).

Therefore ¢J7 o ¢)? = Id if and only if ¢(Eg,) = Eg,. Since dimgg, = 1, we have
g, = CXp,, where

Xps = ([l Eez» Eaals Eas)s Easls Eails Eauls Eagls Easls Easls Eaul-

Because Ey;, Eus] = [Eqys Eoe] =0, We geto(Xg,) = Xp, and thereforep|y, =1d. Thus
73’ 0 ¢ is an involutive automorphism of;. From (5.12), we obtain

09(Ea)) = —Eupy 73 09(Ea;) = —Eapr 73 09(Eqy) = Ear,

7
73
(5.13) o -
73 0 9(Eys) = By T3 0 9(Ee,) = C3Eg,.
Hence we can construct an involution of Type Il. By an argurmsmilar to Type [V,
we can give all involutions of Type II.
Consequently we obtain the following proposition.

Proposition 5.1. Suppose thatimj = 0. Let ¢ be an involution ofg such that
too =0 tor. Thent is conjugate withinAut,(g) to one of automorphisms listed
in Table 2.

6. The case where din3=1,tro0=0"1o7

In this section we investigate involutions of g such that ding =1 andt oo =
o~ L1ot. First, we construct such involutions by using graded Ligehtas. Letg* be
a noncompact simple Lie algebra ovRrsuch thatgc is simple. Letg* =¢+p* andt
be the Cartan involution as in (2.5), amdbe a maximal abelian subspacedf Let
t* be a Cartan subalgebra gf such thata C t*. We take compatible orderings an
and t*.

Take a gradatiorg* = Zf;:_3g’; of the third kind ong* corresponding to a partition

IT =TIy U Iy, Hl:{)‘i}v ni =3.

Put o := Ad(expr/2)v/—1h;). It is obvious thato € Int(g) (g = ¢+ V—1p*), o*=1d
andtoo =0 tot. Considering the classification of the Satake diagrametlegists a
uniquea; € A(gg, tt) such thatoj|, = A; with m; =3, and it follows from Lemma 2.5
that h; = K;. Therefore, by Remark 2.2 we have djrs 1.
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Generally, let G/H, ( , ), o) be a compact Riemannian 4-symmetric space such
that G is simple ando is inner. As before, let be a maximal abelian subalgebra of
g contained inh. We suppose that = 71,2k, for somew; € I (gc, tc) with m; = 3.
Then; = Rv/—1K;. From [7], a pair §, h) is one of the following:

(e6, su(3) B suB) @ su(2) dR), (e7, su(2) ® su(6) ® R), (e7, su(5) ®d su(3) ® R),
(e, SU(B)BR), (es, 5u(2) D e ®R), (fa, su(2) @ suB)®R), (g2, 5u(2) B R).

REMARK 6.1. Each 4-symmetric pair described in the above is neiliermet-
ric nor 3-symmetric. Indeed, except fog(su(2) ® R), it follows from the classifi-
cations of compack-symmetric space (= 2, 3) that each 4-symmetric pair described
in the above is nok-symmetric k = 2, 3). Now, for g, su(2) ® R), we prove that
it is not isomorphic to sk-symmetric pair K = 2, 3). First, we note that = r(1/2),
with m; = 3. From the classification of compact symmetric spacess ihivious that
the pair @2, su(2) @ R) is not symmetric. Letgs, 8) be a 3-symmetric pair. Thef
iS conjugate torp/3k, and

82709%2 = su,,(2) ® RV—1K;, = su(2) @ R.

If there existsu € Aut(g) such thatu(gz®) = wu(g2"@?x1) = g,"@32, then we have
1(suq,(2)) = su,,(2). Therefore it follows that there exiskse C with |c| = 1 such that

I’L(Eaz) = CEiOllv ﬂ(E—az) = CilE:Foq,

which implies thatu(H,.,) = £H,,. However, this is a contradiction becausg| # |a2|.
Consequently, the 4-symmetric paif2{ o) is not k-symmetric k = 2, 3).

Now we assume that = 72, for someow; € IT(gc, tc) with m; =3. Lett
be an involution ofg such thatt oo =0 1o 1. Then it is easy to see thaih) = b
and r(3) = 3. Thus we haver(v—1K;) = £v/—-1K;. If 1(v/=1K;) = /=1K;, then
Too =0 o1. Hence we getr(v—1K;) = —+/—1K;. Let g =¢+p be the canonical
decomposition ofy corresponding tar. Then we have/—1K; € p. Put

AL = {a e AM(ge, te); As, Boem),  AY = {a € A%(ge, te); Aw, By € D).

Lemma 6.1.

n
Ay ={a=)"kjej € A(ge, te); ki =04
j=1

Proof. Sincem; =3 and E, = o (E,) = e™V~"12(K)E, for any o € AT, we have
a(Ki)ZZ?zlkjaj(Ki)zki =0. D
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We define a subset! (s=1, 2, 3) of A}, as follows:

m
Af = a=ZeA+; ki=s}.
j=1
Then we have an orthogonal decompositiars m; & m, @ m3, where

ms =) (RA, +RB,).

acA}
Lemma 6.2.
T(mg) =ms, S=1,2,3.

Proof. Since

v —-1E,, a € A7,
G(Ea) = e(ﬂ\/jl/Z)a(Ki)Ea = _an = AE,
—v—1E,, «€ A3,

it follows that
o(X)=—X <<= X emy.
Hence if X € m,, then
o(t(X)) =1 0o HX) = —1(X).

Thus we obtaint(my) = mo.
Next for o € A] (resp.A3), we gett(a) € —A] (resp.—A3). Indeed, since

[Ki, 7(Be)] = t[t(Ki), Eo] = —7[Ki, Eo] = —a(Ki)7(E0),

and t(E,) € g-(), We gett(a)(Ki) = —a(K;) = =1 (resp.—3). This completes the
proof of the lemma. ]

Put
bt = (X eh; t(X)=£X}, mi:=(Xemg r(X)=%X]}.
Sincez(h) =h and t(m) =m, we can write
3
g=(0"+h )@ > (mf+my),
s=1

t=h'emiem;®m3, p=h" ®Om; Sm, Gmy.
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Put g* := ¢+ +/—1p. Then we haveZ := K; € +/—1p. We shall prove the following
lemma.

Lemma 6.3. The eigenvalues cdd(Z): g* — g* are 0, 1, +£2 and +3.

Proof. First we note thay™ + /—1h~ is the 0-eigenspace of ad).
It is easy to see that

a€A] = 0(Ay) =By, 0(By) = —A,
(6.1) a€A; = o(A)=—As, o(By) =—B,
o € A} = o(Ay) = —By, 0(By) = Ay,
and
(6.2) 02y =~y 02|y = — 10,
If X € mj, then by (6.2), we have
(0(X)) = 0 H(z(X)) = 03(X) = —o(X).
Thus we haver(m]) C m7. Similarly, we geto(m]) C mj. Therefore it follows that
(6.3) o(my)=my, o(m])=mj.
Similarly, we obtain
(6.4) o(m3)=mg, o(mg)=m3.
By a straightforward computation we have
(6.5) WV—1H, A,]= a(H)B,, [V—1H, B,]= —a(H)A,.

Put X; = ZaeAz(aaAa +b,B,) € m;. Then by (6.1), we have (X;) = ZaeAI(aa B, —
b, A.). Using (6.5), it is easy to see that

[V=1Z, X1] = o(Xy).
Similarly, we get
[V=1Z, Xg] = =30(X3), [V=1Z, [V=1Z, Xo]] = —4Xs,
for Xj e mj (j =2, 3). Therefore it follows from (6.2) that

[Z, X1 £+ —10(X1)] = F(X1 £ vV—10(X1)),

6.6
(©-6) [Z, X3 £ v/ —10(X3)] = £3(X3 & v/—15(X3)).
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Note thatXs++/—10(Xs) € g* for Xs € m{ (s=1, 3) from (6.3) and (6.4). Moreover,
Yo :=[v/—1Z, Xp] #0 andY; € m; for X, e m;, and

(6.7) [z, X + %\/—_1\(2} = :Fz(x2 + %\/—_1Y2>.

Consequently, from (6.6) and (6.7) the lemma is proved. ]

Now, we are in a position to prove the following propositiomigh classifies in-
volutions preserving) for this case.

Proposition 6.1. (1) Let g* = Zf):_g g}, be a graded simple Lie algebra of the
third kind with a grade-reversing Cartan involution, which is corresponding to a
partition {ITy, IT;} of IT = {Aq1,..., N} such thatll; = {A;} with nj = 3. Puto =
Ad(exp(r/2)v/—1hi). Theno is an automorphism of orde4 on the compact duag
of g* such thatdimz=1andtoo =0 1or.

(2) Leto = Ad(exp@r/2)v/—1K;) for someq; € I1(gc, tc) with my = 3. Then for each
involution t of g satisfyingr co = o107, there exist® € Aut(g) such thatd oo 0!
anddotof~! are obtained from a graded Lie algebra by the method desdribe1).

Proof. We have proved (1) in the above.

Now we prove (2). For each = Ad(exp(r/2)v/—1K;) andt with too =0 tor,
it follows from Lemma 6.3 that there exists a graded Lie atggly = Zf’):_3 gp with
the characteristic elememt := K; such thatr is the Cartan involution. As above, let
g* =&+ p* be the Cartan decomposition gf corresponding ta and leta be a max-
imal abelian subspace @f such thatZ € a. Moreover, lett* be a Cartan subalgebra
of g* containinga equipped with a compatible ordering. By Lemma 6.3, we have
A(Z)=0,41,£2 or £3 for any A € A := A(g*, a). If A is a reduced root system, then
from Lemma 2.4 together with Lemma 2.4 of [15] there existe W(g*, a) such that

1 1
—w(Z)=-h+T.
4 4
Here T is an element im satisfying A(T) € Z for any A € A, and h is one of the
following:
hp, Ng +hg, 20y +he, hs +hs, +hg,

with np, =1, 2, 3 or 4, Qg Ng,) = (1, 1), (1, 2) or (2, 2),n,, =n;, =1 andng, =ng, =
ng =1. If A is a nonreduced root system, then:= {1 € A; 21 & A} is a reduced root
system of typeB, with the fundamental root systedi. Applying Lemma 2.4 together
with Lemma 2.4 of [15] toA’, we can see that there exisis e W(g*, a) such that
(1/8)w(Z) = (1/4)h + T with A(T) € Z for any A € A’ and h is one of

ha, hp+he, Na=np=nc=2.



INVOLUTIONS OF 4-SYMMETRIC SPACES 667

Hence we may assume that there exists Int(t) such that
hooof = Ad(exp%«/—lh).

Note thatd o 7 0 1 = 7 because e Int(E).

Next, we shall prove that = h, for someA, e IT with n, = 3. In the case where
h =hp with n, =1, there exists a unique, € 1(gc, tc) such thatm; ) =1 ando; |, =
Ap. Therefore by Lemma 2.5 together with Remark 2.2 we Haye K;, and @, b) is
a symmetric pair, which also contradicts Remark 6.1. Sitgilaf h =hy, hg + hg,,
2h;, + hy, or hy with n, =ny =2 andng, =ng, =N, =N, =1, then a pair g, ) is
3-symmetric, which contradicts Remark 6.1.

In the case wherdr = hg + hg, + hg, with ng, = ng, = ng, = 1, there exist unique
i, O, o, € IT(gc, tc) such thaty, |, = As, (k=1,2,3). Then we havh = K;, +K;, +Kj,
and hence dimg = 3, which is a contradiction.

In the case wheré = hg, + hg,, then we obtain

h= Ki1 + Kiz or Ki1 + Kj1 + sz'
Hereai|o = Aq, Mi, =1, M, =2, oraj,|qa = Agys Xjyla = Ago M, =1 (k=1,2). There-

fore by Remark 2.2 we have dign# 1.
In the case wheré = h, with n, = 4, then we have

0] h=K;, with m =4,
or
(ii) h=Ki, +Kj, with olea=1p, m, =2 k=1, 2).

For the case (i), it follow from Remark 2.2 that djmx 0. For the case (ii), it is easy
to see that the centgfg™2r) of g@2n coincides with

(6.8) 3@ = RV-1(K;, — Kj,).

Note that if o = Ad(exp(r/2)v/—1K;) with m; = 3, then the centeg of h coincides
with Rv/—1K; as mentioned before. It is easy to see thas the centralizer of in
g. However, g"@2n js not the centralizer of(g®2r). Indeed, leta = Zj Kjaj be a
root satisfyingk;, =k, = 1. Sincea(h) =2 anda(K;, — K;,) =0, we obtain

[V-1(Ki, — Ki,), A =0, tan(As) = —Aq,

which implies thatA, belongs to the centralizer gfg®2r) and A, & g*@»". Henceo
iS not conjugate tagi/on.
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Finally, consider the case whete= h; + hy with nj = n, = 2. In this case, we
have h = Kj, + Kj, with mj; =m;, =2, orh=Kj, +Kj, + Kj with mj, =mj, =1,
m;, = 2. By the same argument as (i) above, the first case is infjessMoreover, if
h = Kj, + Kj, + K, then the center of™2" coincides with

RV=1(2K;, — Ki,) + RV=1(K}, — Ki,),

since g'@2n is generated byt and {A,, By; a(h) = 0 (mod 4}. However, this is a
contradiction.

Consequently we obtaih = h, with np, = 3 which completes the proof of (2) of
the proposition. ]

7. The case where diy=0andztoo =007

In this section we consider the case where glim0 andt oo =0 o 7. In this
case, it follows from Proposition 4.1 that, = Id; or 7 is of Type | in Table 1.

First we consider the Type | in Table 1. From Section 5 theristgexan auto-
morphisme satisfying (5.11). We note that is an involution of Type | in Table 1.
Let t. be the f1)-eigenspaces gb. Then we have

ty = spanfKi + Kg — 2K7, Ky — K7, K3+ Kg — 3K7, K4 — 2K7},
t =spanf—Kj + Kg, —Kz + Ks, K7}.
For any involutiont of Type |, it follows from Proposition 5.3 of Chapter IX of [6]
that there exists/—1h € t such thatt = ¢ o r,. We puth=h; +h_, hy € /—1t..
Then sincer? = Id, we can write
hy = ki(K1 + Kg — 2K7) + ko(K2 + K7) + k3(K3 + K5 — 3K7) + ka(K4 — 2K7),
ki € Z.

(7.1)

As in the case of Type IV in Section 5, we may assunfg&,,) = E,,, t(Eu,) = Eq
and t(E,,) = E,,. Indeed, for example, it(E,,) = b1 E,, for someb; € C with |by| =
1, then usingh_ = k(—K1+Kg) with eV~ = by, we have f, ) Lototy (Eq,) = Eg.

Using (7.1), by an argument similar to the case of Type IV ict®a 5 we can
prove thatr is conjugate within Intf) to one of the following involutions:

@, POTK, POTKy P OTK, O TKy:

Note thatsu,,(2) C h N g?, and hencd,, € Int(h N g¥). Therefore we have o t,, =
t,, o @. Moreover, sincd,,(K;) = —Kz+ Ky, it follows that ¢ o 7k, is conjugate within
|nt(b) to @ o 7k, 0 TK,.
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Putv:=t|. Itis easy to see that the saf of positive rootsx satisfyingv(a) =«
coincides with

02, 04, O+ 0, 0304+ as, ap+az+ogtas, ot ozt 2ot os,
a1 taztagtostog, artaxtoaztogtostos,
o toap+azt 204 +ost g, oy +as+ 203 + 204 + 205 + o6,

o1 + o + 2003 + 304 + 2005 + g, 8
Using (5.11), we can check thai{E,) = E, for any « € AT. For example

QD([Eas! [EOts’ Ew]]) = [Erxsa [Eas! Ea4]] = [Easa [Ea3v Ew]]a

and thusg(Egsta,+as) = Exstastas- HeNce it follows from Lemma 4.1 that dig? = 79.
By using the classification of symmetric spaces, we gfet& Eqs @ R.

The number of subset&x, 8} such thate € A*(gc, tc), t(a) = B, # £8 and
a(K4) =0 (mod 4) is 6. Furthermore € A*(gc, tc) such thatr(o) =« anda(K4) =0
(mod 4) is onlya,. Since dimt. =4, we get

dim(p N g¥) = 4 + ((6 + 1)x 2) = 18.

Therefore we getyNg? = Dg & C;.
Similarly as above we can compute dimg g*) and dimg® for the other types.
Next we consider the casg; = Id. First we suppose that is of type eg and
o = Ad(expfr/2)v/—1Ksz). Then by (4.2) (i), we have

h= A7 AL

Furthermore a maximal abelian subalgebria decomposed inté= (A;Nt) & (AL Nt).
Hence we can write

T =11, 01Ty, V=1Ty e A;Nt, /=1T, € A1 Nt.

We definev; e v—1(A7Nt), i € A:={0,2,4,5,6,7,8and v € v/—1(A1 Nt) by
i (vj) = 8j. Since ¢r,la,)?> =1da, and €r,[a,)? = 1dp,, it follows from Lemma 2.2 and
Remark 2.1 that there exigt; € Int(A;) and pu, € Int(A;) such that

0 mod 214,
v mod 2p, (i € A),

mod 21,

72) (M) = { il

0
u2(T2) = {Ul
where I15, denotes the fundamental root system of Tyfse Therefore considering
Lemma 2.3 we may assume

(73) T, = {Zmovo + 2myv, + 2mgug + - - - + 2Mgug, _ {Zmlvl,

v + 2Moug + 2Myvy + 2M3vg + - - - + 2Mgusg, - v, + 2mMqvq,
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wherei =2,4,5,6 andng, mg, my, mMy,...,mg € Z. Consequentlyt is conjugate within
Int(h) to one of the following automorphisms:

Ad(expm/—1(2mgug + 2Myvy + 2Mpvp + 2Mgavg + - - - + 2Mgug)),
(74) Ad(expn\/ —l(vi + 2Mgug + 2Myvg + 2Movy + 2Myug + - - - + 2m8v8)),
Ad(expn\/ —1(1)1 +vj + 2Mpug + 2Mqvg + 2Mpvy + 2Myug + - - - + ngvg)),

wherei =1,2,4,5,6,j =2,4,5,6 andmg, my, mp, My, ..., Mg € Z.
Now we computev;. Putv; = Y2, &K, & € R. Since Ay Nt=Ry/—1H,, and

AiNt={v/-1H e t; «j(H)=0, j=0,2,4,5,6,7, 8

we havea; =1, ay=a4=---=ag=0 anda; + 2a3 = 0. Hence we obtain; = K; —
(1/2)Ks. .

Moreover, sinceA; Nt = {«/—1H e t, as(H) = 0}, we can puty; = Y 5, bl Ky,
b{( e R, i € A. Then computing simultaneous equationgv;) = &j, i, ] € A, we
obtain

1 1 3 3
UO:_ZK:’” U1:K1—§K3, Uzsz—ZKs, U4:K4—§K3,
vs = K 5K v = K K v7 =K 3K vg = K 1K
5= Ks— 7Ks 16 =Ke—Ks, 17=K7—7Ks 15=Kg—SKs.

(7.5)

Thus (7.4) implies that is conjugate within Intf) to one of the following:

(76) Tm Kss Tvi +mKs» ij_'H)j +mKs»

wherem = —((1/2)mg + my + (3/2)m, + 3my + (5/2)ms + (3/2)m; + mg). From (7.5) if
i,j=2,5, thent? #1d. Thereforei =1, 4,6 andj =4, 6. Hencer is conjugate within
Int(h) to somez, whereh is one of the following:

Ki, K3+Kj, Ki+Kg Ki+Kz+K,

wherei =1,3,4,6,j=1,4,6 andk=4,6. If h=K,, theng™: = Dg (cf. Theorem 5.15
of Chapter X of [6]). Furthermore

hNg™ =t Z (RA, +RB,) C b (= su(8) & su(2)).

aeA*(ge, te)
a(K3)=0 mod 4
a(K1)=0 mod 2

In this case,zk,|a, = Id and AiKl = R, and hence
hNt= Ao R.

Similarly as above, we can geg*( h N g°) for eacht = 1.
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Now we consider the reflectiofy, € Int(su, (2)) C Int(h). It is easy to check that
tal mapsKi — —K1+Ks, Ki+Kg— —K1+ K3+ Ky, Ki+Kg— —Kj+K3+Kg and
Kst— Ka. Therefore we ho’er@K1 N TK +Kzr TK+Kg = TK +K3+Ky and TK+Kg ~ TK +K3+Kgs
where we writety &~ 7y if Ty is conjugate tory within Auty(g).

Next, we consider the case whegeis of type es and o = Ad(exp(r/2)v/'—1Kg).
Then by (4.2) (i), we havéy = A3;@® Ds. By a computation similar to the above case,
we obtain

1 1 3
vo——ZKey Ul—Kl_EK& Uz—Kz—ZKa, vz = K3 — K,
1

3 5 3
U4:K4—§K6, USZKS_ZKS’ U7:K7_ZK6; vs=Ks—§Ke.

7.7)

Then, considering Lemma 2.3; is conjugate within Int{) to one of the following
automorphisms:

(78) TmKB; Tva+mK6! Tvb+uc+mK5:

wherea=1,2,3,7,8b=1,2, 3,¢c=7,8, andm is equal to that of the above case.
Sincer? =d, it follows from (7.7) thatr is conjugate within Intf) to somer, where
h is one of the following:

Ki, Kj+Kg K2+K7, Ki+Kg Ki+Kg+Kg, Kz+Kg+Kg,

wherei =1,3,6,8,j =1, 3,8 andk = 1, 3. By a computation similar to the above
case, we obtaig® andhNg’. We put

- 3 — 1
’31'_<1 2 4 56 4 2)' ﬁz'"(o 00122 1)'

fa = L
*"\oo0oo012 1 0f

It is easy to check that

(7.9)

tﬁl o '[ag(Ke) = —3K6 + 4K+, tﬂz o tal(KG) = Keg, tﬂ3 o ta3(K6) = Kg,
and sotg, oty,, tg, oty,, tg, ot € Auty(g). Moreover we have

tﬂl o taS(Kg) = —Kg+2K7 — Kg, tﬂz o tle(Kl) = —Kj;+Kg,
tg, oty (K1 + Kg) = —K1 + Kg + Kg, g, 0 1,,(K3) = 2K1 — K3+ Keg,
tﬂ3 o tdg(K3 + Kg) =2K; — K3+ Kg + Kg.

Therefore we have

TKe+Kg ™~ TKgr TKi+Kg ~ TKys TKa+Kg ~ TKzr TKy+Ket+Kg =~ TKi+Kgy  TKa+Ke+Kg ~ TKg+Kg-
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For the case wherg = ¢; and o = Ad(exp@r/2)v/—1K,4), we can check that is
conjugate within Intf) to somer, whereh is one of the following:

Ki! K] +Kk1 K3+K7! KI+Km+Kny

Kp+K3+K7, Ki+Ky+Ks+Kg, Ko+ Kz+Ky+ Ky,

wherei =1,2,4,6,j,k=1,2,4,6 ( <k), I,m,n=1,2,4,6 (<m<n)andp=2,4.
Using the reflectiort,, € Int(h) we have

TKo+Kg ™~ TKps  TKy+Ko+Ky ~ TKy+Kpr  TKo+Ka+Kg ~ TKo+Kgs

TK+Kp+Ka+Kg ~ TK1+Kp+Kgr  TKp+Ka+Ka+Ky ~ TKp+Kg+Ko)
and SinCetyg+qgta; © tye € INt(H), we have
TKG ~ TK4+K6'

Furthermore puty, := o + 20 + 203 + 4dors + 305 + 206 + 7. Thent,, ot,, € Int(h) gives
the following conjugations:

TK1+K4 ~ ‘CKll TK1+K4+K6 ~ ‘CK1+K6'

Finally we consider an involutiop € Auty(g) (see (5.11)). Then it is easy to
see that

o(Ky) =Kg —2K7, ¢(Kz) =Kz —2K7, ¢(Ksz) = Ks— 3Kz, ¢(Ky) = Kg+4K7,
o(Ks) = K3 —3K7, ¢(Kg) = K1 —2K7, ¢(K7) = —K5,

and thereforep gives the following conjugations:
TKl ~ tK@l TK1+K2 ~ TK2+K5'

For the case wherg = {4, and o = Ad(exp(r/2)v/—1K3), we can check that is
conjugate within Intf) to somet, whereh is one of the following:

Ki, Kj+Kg, Ki+Kz+Ky

Herei =1,3,4 andj,k=1,3,4 (j <k). Using the reflection,, € Int(h) andty,+s,+20s+a,
we have

TKa+Ks ™~ TKyy  TKy+Kg+Ky = TKy+Kgr  TKy+Kg = TKy-

Consequently we obtain the following proposition.
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Proposition 7.1. Suppose thatim3 = 0. Let ¢ be an involution ofg such that
Too =0 ot. Thenrt is conjugate withinAuty(g) to one of automorphisms listed
in Table 3.

Table 3. dimg=0,700 =001, 0 =192 andt =g°.

(g, b, H) | h(t=n) | 4 | hnt
K1 Ds As @R
Ks EEOA | A A
Ka EFOA | ADADA DR
Ke Dg AADADAIDR
(es, su(8) @ su(2), Ks) K+ Ka Ds A A ®A DR
Kz +Kg EOA | AA: DAL DR
Ki+ Ky Er0A | A ABR
K1+ Kg Dg As® Ay R
Kl Dg D4@ DSQBR
Kz E-® A | D3® D3 D,
Ke Dg Ds ® D3
(es, 50(10) @ 50(6), Kg) ij +Kq E; g 21 Big Bz g Ez
Ko+ Ky EEOA | ALd A B R?
K3+ Kg Dg D;® D, D,®R
Ko+ Kg+ Ky | Dg As® A; ®R?
Ki Ds®A; | D;@ D, Ai®R
K, A7 D;:® Ds; @ R
Ka De® A1 | D3 Ds® As
Ki+ Ky Ec®R | D;@® D, ®R?
Ki+Kj De & AL D3®D2®A1®]R2
(er. 50(6) @ 50(6) @ 5u@), Ka) | (1} c° o e e ek
Kz + K7 A7 ADAGADR
Ki+Kz+Kg | A7 D,® D, ®R®

Ki+K3+Ky | De® A | Ds® D A O R
Ko+Kz+K; | De® AL | Ao A, DR
Ks+Ks+Ks | Es®R | A A A b R2

K1 Bs® A | D®C,®R
Ks Cs D; ® Cy
(f4v 50(6) ® 50(3)1 K3) K4 C4 D3 @ R
K+ Ky Bs® A | Ds®R
(g, b, H) | T | 4 | hnt
(] EG b R Dg D C]_
@ oK, A7 Dg® D,
(e7, 50(6) @ s0(6) D su(2), Ky) oty Ay Ds @ C,
@ O TK, O TK, A7 Dg@ Dl

¢: Ey = Eu, Eoy = Eqyy Egy = Eo, Eq, = Eqys By = Eg
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8. The case where dim3 =1, t0o0 =001

Let (G/H, (, ), o) be a compact Riemannian 4-symmetric space suchGhat
simple ando = Ad(exp(r/2)v/—1K;) for someq; € IT(gc, tc) with m; = 3. By Re-
mark 2.2, we have dim= 1. We shall classify the equivalence classes of involstion
7 such thatt oo = o o . According to Section 3 and Jiménez [7], 4-symmetric pairs
(g, h) satisfying the condition dijp= 1 are given by

(e6, 5u(3) B s5u(3) @ su(2) D R), (e7, su(5) ® su(3) ® R),
(8.1) (e7, su(6) ® su(2) ® R), (es, su(8) D R), (e, 5u(2) ® ¢ ® R),
(7, su(B) @ su(2) @ R), (g2, 5u(2) & R).

Suppose thap is of typeeg. From Section 3, the Dynkin diagram 6fis one of
the following:

(%) (2%]
(i)$::::1::(ii)$:$::i::
@y Qg o7 O o5 0Oy O3 O @y Qg a7 O o5 0Oy O3 O
CaAsE (i): In this case,o = Ad(expr/2)v/—1K3). From Lemma 3.2, the possi-

bilities of positive roots whose coefficients af are 3 are as follows:
(8.2)

3 3 3
123453 1)'\1 2345 32I'\12 3454 2)

3 3 3
12 3 46 42)’\1 23586 42)'\12 456 4 2)

3 3
1 3456 42)'\23 456 4 2)

Sincet(71(h)) = I1(h) and é +«j & A(gc, tc) (] # 2), we haver(s) + o ¢ A(gc, tc)
(k #2). Thus it follows from (8.2) that(§) = 6. If T satisfies

T(a1) =ag, t(as) =a7, t(as) =oas T(as) =as,

we get

3 o 0
(2 3456 4 2>"f(8)"3f(“2)+<2 465 4 3 2)'

Hence we have

_ 3
3t(°‘2)'<o 1 -2 021 0>'
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which is a contradiction. Therefore satisfiest|; = Id;. Hence from Proposition 5.3
of Chapter IX of [6], ¢ has a formty for a suitable elemenH € /—1t. From (8.1),
we have

(83) HTASR/IK, Tsu@B)@R and t=(A;Nt)®RV—1Kj,
and we can write
T =TH = TT+kK, = TT © TkKjy» V—1T€A7ﬂt,k€R.

Note thattr = t|a,: A7 — A7 and @1)? = Id on A;.

We definev; € v=1(A7Nt), i € A :={1,3,4,5,6,7, 8by i(vj) = 8j. From
Lemma 2.3, we may suppose thats conjugate within Intf) to one of the following
automorphisms:

(8 4) {Ad(expn«/ —1(2n1v1 +2mgug +- - - + 2mgug + sz)),

Ad(expr+/—1(vi + 2myvy + 2mguz + - - - + 2mgug + kK3)),

wherei =1, 3,4,5 andmng, mz, My, ..., Mg € Z. PutK, = Zig:l biH,. Then we have

8
Sjz=aj(Kg) =Y biej(Hy), for j=1,2,...,8,
i=1

and therefore

bs by by [ b, bs bs
by — E =0, by— —2 Olz(Haz):l, ——2 +bs — —2 =0, ——2 — —2 +by — —2 =0,
b4 b5 bg_ b5 b7_ be bg_ b7 _
2 t2 7270 Ttk =0 o =520 mo ke =0,

Indeed if j = 1, considering thex; series containingy, we haveq;(H,,) =0 for i #
1, 3 and 23(H,,)/a1(Hs,) = —1. Thus we get

8
0=a(Kg) = ) biea(Hy,) = braa(Ha,) + bsaa(He,)

i=1

= brars(Hay) + bg(—%al(Hal)) - (bl - %)al(Hal).

We can obtain the other equations by a similar computatioabase.
Computing these simultaneous equations we have

C
(8.5) Ky = §(5Hal +8Hg, + 10H,, + 15H,, + 12H,, + 9Hq, + 6Hq, + 3H,,).
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Now putv; =a;Ky +---+agKg, a1,...,ag € R. Then we getag=---=ag =0 and
a =1, sincew;(vy) =61 fori € A. Thus we havev; = Ky + axK,. Sincewv; 1 Ky,
it follows from (8.5) that 0 = (83)cg + (8/3)a,cg and thereforea, = —5/8. Hence we
havev; = K; — (5/8)K,. By a similar computation, we obtain

5 5 15 3
v1 =Ky — 2Ky, v3=—-Ky+Ksz, v3=——Ky+Ky v5=—-Ks+Ks,
(8.6) 8 4 8 2

3 3
=—ZKy+Ke v7=—"Kp+Ky vg=—>Kp+Ks.
Vg ) 2 6 v7 4 2 7 vg ) 2 8

Therefore by (8.4) and (8.6) it follows that is conjugate within Intf) to one of the
following:

(87) Tm Koy tui +mKjy»
wherem = —(1/4)(5m; + 10m3 + 15m, + 12mg + 9mg + 6m7 + 3mg — 2k). Moreover, since

2 =1d, it follows from (8.6) thatr is conjugate within Intf) to somer, whereh is
one of the following:

Ki, Kj+Ky, 1=1,2,3,4,5j=1,3,4,5.
By a computation similar to Section 7 we can obtagf,(h N g™) for eachh.

REMARK 8.1. From Lemma 2.3, we can see thgf|s, iS conjugate within
Int(A7) (C Int(h)) to 7,,|a,. Therefore by the above argumenti, is conjugate within
Int(h) to Tk, Or tk,+k,. HOwever, g™s ¥ g™, and hencerk, ~ 7k, +k,-

CASE (ii): In this case,o = Ad(exp@r/2)v/—1K7) and

h = AL®Ec®RV—-1K; T5u(2)® es DR,
t=(A1Nt) P (EsNt) ® RV—-1Kj7.
By a computation similar to the case (i), we hawe = Id,. Hence we can write

T =TT, O TT, O TkKys

where/—1T; € A1 Nt, V—1T, € EgNt, k € R. We definevg € v—1(A1 Nt) and
vaev-1(EsNt), ac A:=1{1,23,4,5, 6 by «i(v;) =8;. Then from Lemma 2.3,
we may assume is conjugate within Intf) to one of following automorphisms:

Ad(expn\/ —1(2"111)1 +. .-+ 2mgug + 2mgug + kK7)),
(88) Ad(expn\/ —1(va +2myvy + - - - + 2Mgug + 2Mgug + kK7)),
Ad(expn\/ —1(1)8 + vy + 2Myvg + - - - + 2Mgg + 2Mgug + kK7)),
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wherea=1,2,8,b=1,2 andmg, ..., mg, mg € Z. Furthermore we obtain
2 4
U1:K1—§K7, v2 = Ky — Ky, U3:K3—§K7, v = K4 — 2K7,
5 4 1
U5:K6_§K7, U6:K6—§K7, v8:K8—§K7.

Similarly as in Case (i), we can see thais conjugate within Int{) to somet, where
h is one of the following:

Ki, Kj+K7, Kg+Kg Kg+K7+Kg,

wherei =1,2,7,8,j=1,2,8 andk = 1, 2. It is easy to check that the reflection
tOts € Int([)) mapsK;+Kgi— 2K; —Kg, Ki+K7+Kgi—> K;+2K7;—Kg, K2+K7+Kg—
Ks + 2K7; — Kg and K7 — K. Therefore we haverK7+K8 N TKgr TKi+K7+Kg ~ TK +Kg
and Tk, +K,+Kg X TK,+Kg-

In the case wherg = ¢;, the Dynkin diagram of is one of the following:

(i)oooi@oea(")ccgicce

o7 (07 o5 071 o3 o1 (o)) o7 (673 o5 (o7} o3 o1 1)

CASE (i): In this case,oc = Ad(exp@r/2)v/—1K3) andbh = A; & As & Rv/—1Ks.
By an argument similar to the above, we can see th& conjugate within Intf) to
somet, whereh is one of the following:

Ki, Kj+Kz Kg+Kg K+ Kp+Ks,

wherei =1,2,3,4,5,j =1,2,4,5 ank = 2, 4, 5. Using the reflection,, € Int(h) we
obtain

TK+Ks ~ TKyy  TKp+Ko+Ks ™ TKy+Kpr  TKy+Kg+Ks ~ TKo+Kgr  TKy+Ka+Ks ~ TKy+Ks-

Furthermore, similarly as in Remark 8.1 we get.k, = t«,.
CAsE (ii): In this case,o = Ad(expfr/2)v/—1Ks) andh = A, d Ay ® R/ —1Ks.
Moreover, T is conjugate within Int{) to somez, whereh is one of the following:

Ki, Kj+Ks Kg+Kg Kg+Ks+Kg,

wherei =1,3,5,6,j =1,3,6 andk =1, 3. Similarly as in Remark 8.1 we get,.x, ~

TK71 TKi+Ks+Kg ¥ TK+K7 and TK3+Kg+Kg ~ TKg+Kz-
If g =1fs4, theno = Ad(expfr/2)v/—1K) andbh = A; & A, & RV/—1K,. In this
case,t is conjugate within Intf) to somez, whereh is one of the following:

Ki, Kj+Kg Ki+Ky+Ks,
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wherei =1, 2,3 andj, k=1, 2,3 (j Zk). Using the reflectiort,, € Int(h) we have
TKy+K, & Tk, AN Tk +Ko+Ks X TKy+Ks-

If g=g,, theno = Ad(exp@r/2)v—1K;) andh = A; & Rv/—1K;. In this case,r
is conjugate within Intf) to somer, whereh is one of

Ki, Ki+K,, i=1,2.

Using the reflectiort,, € Int(h) we haverg,.k, = t«,.
If g=r¢s theno = Ad(explr/2)v—1Ky) andh = A1 & A, & A, & R/ —1K4. By
an argument similar to the case where eg, we obtaint|, = Id; or

‘L’(Ol]_) = Ug, ‘L’(Dlg) = U5, ‘L’(O(4) = 04, 'L’(C(z) = .

If 7|y =Id¢, thent is conjugate within Inf{) to somer, whereh is one of the fol-
lowing:

Ki, Kj+Kg K +Kp+Ky, Ki+Ksy+Kg+Ks,

wherei =1,2,4,5,j,k=1,2,4,5( <k)andl,m,n=1,2,4,5( <m<n). Using
the reflectiont,, € Int(h) we have

TKotKg ™~ TKyr  TKy+Kp+Ky ™ TKi+Kgr  TKo+Ka+Ks ™ TKp#Kss  TKy+Ko+Ka+Ks ™ TKy+Ko+Ks-
Next suppose thag = ¢s and ¢ satisfies
T(a1) =ae, T(s) =as, T(oa) =os, T(2) =0z
Let t.. be the (1)-eigenspaces of|, respectively. Then we have
t. = spanfKjy + Kg, Kz, Kz + Ks, K4}, t- =spanifK; — Kg, Kz — Ks}
It is known that there exists an involutive automorphigmof outer type satisfying
(8.9) V(Ea) = Eor ¥(Ea;) = B,y ¥(Ey) = Eos, ¥(Ea,) = Ea,.

Therefore there exists/—1h, € t, such thatrhz+ =Id andt = ¢ o t,. Then by an
argument similar to that in Section 7, we can see thas conjugate within Auf(g)
to one of the following involutions:

1//1 l//O":sz 1/IO‘EKM 1/IO‘EK2+K4'

Sincesu,,(2) C g¥ andt,,(Kz) = =Kz + Ky, we obtainy ot,, =t,, o ¥ and

V0 TkytKy = ¥ O T (Kp) = ¥ Oy 0 T, © ta_zl =t (¥ o TKz)ta_zl-

Thus we obtainy o tx, = ¥ o tk,+k,. Furthermore by an argument similar to that in
Section 7, we can compute dihtig™) and dimg™ for eachh. Consequently we have
the following proposition.
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Proposition 8.1. Suppose thatlim3 =1 and o = Ad(expr/2)v/—1K;) for some
aj € H(gc, tc) with m = 3. Let T be an involution ofg such thatt oo =0 o7. Then
7 is conjugate withinAut,(g) to one of automorphisms listed ifable 4.

Table 4. dimg=1,7r00 =007, 0 =110 andt =g,

(gvva) |h(T:Th)| 4 | hnt

Ky Dg As ® R?
Ks Dg A O R
Kz Er®A | As® A dR?
K. E:0 A | Av®d A ®R?

(es, su(8) B R, Ky) Ks Ds Az ® As ®R?
Ks E-® A | As®R?
K2+ Ks Er0A | As® A & R?
Kz + Ky Dg Asd A DR
Kz + Ks Dg As @ Az d R?
Ky Dg Ds ® A; & R?
K2 Ds ADAIGABR
Ky E-0A | EsOADR
Kg E;® A | Ec®R?

(s, ¢ D su(2) O R, K7) K1+ K7 E‘r®A | Ds® A @R?

K2+ K7 Et0A | ADADAGR
Ki+ Kg E;® A | Ds®R®

Kz + Kg Ds As @ A @ R?
K1 De® A | AsdR?
Kz A; At A B R?
Ks De® A | As®ALPR
Ka De® AL | Asd At AL ®R?
Ks A; A A, dR?
(27, 5Ll(6) (&) 511(2) o R, K3) K7 EG &R A4 (&) A1 &) RZ

K1+ Kz Ec®R Ao R3

K+ Ky De® A | As®@ AL R3
K1+ Ks A7 A A DR

Kz + Ky De® AL | Asd At AL ®R?
Ks+ Ks EcOR | AD®AD A DR?

K1 De® AL | Asd A, ®R?
Kz De® AL | Ao Ay A ®R?
Ks A; Asd A DR
Kg De® A | Ay Ar B R?
Kz Es®R Ay AL @ R?
(e7, su(®) ®su3)d R, Ks) | Ky +Ks Ay As @ A, ®R?

K1+ Keg De® AL | Ac® A D R®
Kz +Ks Es ® R A ® A DA OR?
Ks+ Kg Ds® AL | DA DA DRS
K1+ K7 Es ® R Az AL D R3
Kz + K7 A7 AGA DA DR
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K, Ds®R | Av® AL D AL OR?
Ka AGDA | ADADA DR
Ks ADA | ALdA®A DR?
Ky +K; Ds®R | Ay ® AL RS
Ki+ Ky As@ AL | Ao AL D A D R?
(26, 511(3)@574(3) G}Su(Z) (&) R, K4) Kl + K5 A5 (&) Al Al [43) Al (&) A]_ (%3] Rs
Ky + Ky AADA | A,D A BR?
Ko+ Ks Ds®R | A,® A OR®
Ky +Ks Ds®R | A® A DA OR?
Ki+tKo+Ks | As@A | A AL DR
Ki+Ks+Ks | Ds®R | Al AL A R®
K1 CsdA | ADR?
K, CoA | ABGA DR
(f4, 511(3)@511(2)@R, Kg) K4 B4 A]_@ Aj_@RZ
Ki+ K3z C:dA | ADR?
Ko+ Ky C:pA | ALD AL DR?
(02, 5u(2) & B, Ky) < Ayl i
(g, b, H) | T [ e ] hne
W Fa AGABPC AR
(e, suB) P suB) P su(2)® R, Ku) | ¥ ok, C, ADPADPD R
Y o1k, C, AGASC AR

¥ Ey > Eu Eoy = Eoy, Eoy = Eu, Eoy = Egy
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9. Remarks on conjugations

9.1. dim3=1,7to0 =0o0t. The case wherg =¢s and o = 7(1/2k,. We shall
show thattk,+k, & Tk,+K,, TKy+K, =~ Tks and tk,+ks ~ Tk,. We considery e Auty(g)
(see (8.9)). Fomy := tyeas o ta, © ¥ € Aut(g), we have

IJ/]_((X]_) = —0Us, Ml(az) = —0, /J/l(ag) = —Qg,

pmiloa) =ortaa+as+as,  palos) = oz, wilos) = og.

Hence we getu; (Kq) = Kq and u; (K + Ks) = Ky — Ko + 2K4. Thus gt is in
Auty(g) and gives a conjugation betweer,:k, and tx,+k,-

Similarly as above, by usingy :=ty, oty,+as 0 ¥, ua =1ty oty 0 ¥ € Auty(g), we
obtain tx,+k, = Tk, and tk,+ks = TK,-

The case wherg = eg and o = 7(1/2)x,- From Proposition 8.1, we see thgts =
g2 andhNgt™s = hNgtkeks. Now, we shall show thatk, iS not conjugate within
Auty(g) t0 tk,+k,. Putty = g™s and &, = g™, then we havet; = € = A @ E;
andt; Nbh = e Nh. We denoter € A(ge, tc) by @ =Y 2, nio; and put

Ay, = {a € A'(ge, te); @(K3) =0, 2, 4,
Agz = {Cl € A+(g(c, f@), O[(Kg) =0, 2, 4, 6

Then

t=t® ) (RA+RB,), i=1,2

aEAy,

Puty := 2001 + 2005 + 4otz + Sota + dois + 3o + 207 +ag. Then for anye € Ay, anda’ € A,
we can see that; £ o &€ A(ge, tc) andy o’ € A(ge, tc) (cf. [3]). Therefore, we get

9.1) b1 = Uy, (2) @ 51y, (2)7, €2 =51, (2) @ su, (2)",

where su,, (2)" = sug(2)" = ¢7. For anyv € Aut(g) satisfying v(€;) = &, it follows
from (9.1) thatv(sue, (2)) =sug(2). Hence there is no automorphism in A{g) such
that it mapst; to £, becausesu,,(2) C h andsug(2) Z b.

Next we shall show thatk, is conjugate within Auf(g) to tx,+k,. Set

Y1:=ag, y2:=—o1—az— 203 — 304 — 305 — g — 207 — g,
V3i=oa7, Y4ai=o0g, V5:=05 Ve:T04, Y7:=03, Y8:.:=A1.

It is easy to see thafl’ := {31,..., yg} is a fundamental root system e§ (cf. [3]).
Therefore there exists a uniquein W(g, h) such thatv(I7) = IT". Hence we have
v(ig)=y (i =1,...,8). Then it is easy to see that(K,) = —K, and v=1(Ks) =
—3K2 + Ks. Hencev™ e Auty(g) and tk, ~ Tk +ks-

The case whergy =¢; and o = tg/2k,. From Proposition 8.1, we can see that
g™ = gtkeka and hNg™a = hNgtetka, Howevertg, is not conjugate within Ayf(g)
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to k,+k,. Indeed, note thag™s = g™s+<s = A; @ Dg, WhereA; C g™s and Ag C g™e+a
coincide withsu,,(2) (C h) andsug(2) (Z b), respectively. Hered = oy + 20p + 203 +
4o+ 3us + 206 + 7. Therefore, there is no automorphism in Aig) which mapsg™s
to g™s*ks, sincev(suy,(2)) = sug(2) for any v € Aut(g) satisfying v(g™s) = grs+<s,

9.2. dim3=0,700 =0"tor. The case wherg =¢; ando = T(1/2)ke- FOr the
reflectiont,, € Int(h), it follows from Proposition 5.1 that, toz," ot,, (Ey,) = =157 (Eas)
andt; ! o) oty,(Ey) = 73 (Es) (i #3). Hence we get

(9.2) ta_llo‘rznotal:‘rgot&,

and thereforer)’ o ¢, ~ tff ~ ti7 o 0 ~ i 0 7¢, 0 0. By an argument similar to the
caseg = ¢4, for the reflectiont,, € Int(su,,(2)) C Int(h), it follows that

T2 Otas(Eal) 030‘[2 (Eot|) r2170t013(E01j) :tﬁts OTZH(Eaj)'
wherei =1, 4 andj # 1, 4. Therefore

-1 7 i
(93) ta3 o ‘EZ © t013 - T2 o TK1+K41
which implies 73’ o tk,+k, & T3’ X 131 00 X T4 0 Tk,4k, O 0.
Next, we shall prove

Jud ~ 1 ~ 1T ~ 1
9.4) Ty O TKy+Kg Ty O TKy+Kg ¥ Ty O TK3+Ky+Kg ~ T O TK +K3+Kg © O

)i 7 7
Ty OTKy+Kg OO0 N Ty O TKu+Kg OO0 N Ty O TKy+Ky+Kg OO0 = Ty O TK +Kg+Kg-

It is easy to see thaty, (K4 + Kg) = K4 + Kg (i = 1, 3), and it follows from (9.2)
and (9.3) that

n — 1T —¢—1 7
Ty O TKy+Kg — To O TKy+Ky O TKy+Kg —t wz ©T2 © t% O TK,4+Kg
—+1
t o ‘L’z 0 TK,+Kg © las,

7 1 —3+—1 7
Ty O TKg+KtKg = Ly, © 72 oly, 0 TKetks = 1y, O T2 O Tkytkg O Loy -

For ty, € Int(h), we get

1,'217 0ty (Egs) = —tg, © 1,'217(Ea3), 1:217 0ty (Eg) =ta, 0 1,'217(Em),
wherei =1, 4, 6, 7, 8. Moreover, we obtain
."'217 o t064(E0t2) = bZIZIY(EOtz"'Om) = b2k Eot4+0t51
4012 (Eaz) =14, (Eqs) = bsEoytas,
T2 © ta4(E0t5) = b57: (Ea4+0t5) = b5k7 EO‘Z"'Q’A'
40 T2 (Evts) = taA(EOtz) b2 Ea2+a4'
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for someby, bs, k € C with |by| = |bs| = |k| = 1. Puta :=byk/bs. Then we have
‘L’ZH oty,(Eg,) = aty, o TZH(Eaz), ‘L’ZH 0 ty,(Eeg) = a‘ltw o Tg(Eas)-

Hence we haveteozt1 otdl oty, = T o 1k, 0 To(k,—Ks), Wherea=ev=1. Note thats € Z
since ((;41 otil ot,)? =1d, and thus we may assunee=0 or 1. If s=0, then we
havet;! o 7)7 oty, 0 Tk 4k, = ty,7 0 T3' © Tky+Ke © by = Ty' © Tky+Ky+Ke» WhiCh contradicts
Proposition 5.1. Thus; ! oz’ ot,, = ) o 1k, © Tk,-k, and

1 1

- 7 — 7 — I
t% 0Ty OTK +Kg © tm4 - t% 0Ty © ta4 O TK,+Kg — T O TK3+K,—Ks+Ki+Kg

7
T2 © TKy+Ks+Kg O TK7 O TKp—Ks+Ky7

7
T2 O TKy+Kg+Kg © O O T(—(1/2)Ke+K7)+(Ka—Ks+K7)) -

It is easy to see thay/—1h 1= vV—1(—(1/2)Ke+K7+K,—Ks+K>) is a (—1)-eigenvector
of ‘L’g. Thereforetaz]‘ o ‘L’ZH O TKy+Kg © Tay = T—(1/2)h © ‘L’ZH O TKy+Kg+Kg © O O T(1/2)h, which
implies 727 o tk,+k, & T3’ © Tk +Ks+ks © 0. Moreover since

n ~ 1T 2_ -1 I
Ty OTK;+Kg OO0 = Ty O TK+Kz+Kg OO0~ = O O Ty OTK;+Kz+Kg © T,

we haver)’ o tx ik, 0 0 A 1)1 0 Tk +ky+ks- We have thus proved (9.4).
Finally, by usingt,, € Int(h), we shall show that,’ o Tk +ky+k, ~ T3' O Tky+Kg+Ks O
o. It is easy to see that)’ oty (Ey) =ty 075 (Ey), i =1,..., 6, and

TZH o taB(EW) = b7T2H(E017+<¥8) = b7kE<>to+Olal
tas o z’ZI—I(EOW) = to/g(EOto) = bOEa0+ot5;

for somebyg, b7, k € C with |bg| =|b;7| = |k| = 1. By an argument similar to the above,
we obtaint; ot oty, = 737 OF T o1k,. If tzlot) oty = 757, then sincel, (K1) = Ky,
tos (Kg) = K7 — Kg, it follows that

n —4=1_ 1 —4=1_ 1
Ty OTK, O TKg = by O T Olug 0 Tkytkg = 1,7 0 Tp' O TKy+Ky+Kg O log

—+—1 1
- tag O Ty O TK;+Kg © 0 O TK;—(1/2)Kg © tas.

Thereforetl otk 1k, ~ 7,7 0 Tky+ks 00 SiNCE/—1(K7 —(1/2)Ks) is a (—1)-eigenvector
of z,’. This contradicts Proposition 5.1, and hergg o tJ’ ot,, = 7)7 o 7x,. Thus

1

-1 n - 7 — 1T
tag O Ty O TKy+Kg+K, O log = tOtg 0Ty Olyg O TK +KatKy = To' O TK +Kg+Ky O TK;

4 ~ 11
= T2 O TKy+KatKsa © 0 O TKy—(1/2)Ke ~ T2 O TKy+Ka+Ky © O

which implies T, o Tk, +kstk, A Ts' O TKy+Ka+Ks O O
The case wherg =e¢; and o = t(g/2k,. We considerts’ o tk,+k,, Ts' © Tky+Ke»
3 0 K4k, 00 and 74! o T,k 0 0 (See Proposition 5.1). Let be the automorphism
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of g given by (5.11). It follows from (5.9) and (5.11) thato z3’ = 73’ o ¢. Since
gD(Kl + K2) = K, + Kg — 4K7 and (p(K4) = Ky — 4K, we have<p co=00¢@ and

11 -1_ .11
QOT3 OTK+K, O@ = = T3 O TK,+Kgs

and therefore

-1 _ 7 -1 — 1T
=@QOT3 OTK;+K, O @ 00 = T3 OTK,+Kg O O.

(pOT3HO‘L'K1+KZOUO(p
Thus we obtaine;’ o Ti,+k, & 737 0 Tky+ke ANA T3' 0 Tky4k, ©F X T4 O Ttk O O
Next considering reflection,, € Int(su,, (2)) C Int(h), we getty, (Ey) = Ey, for
i =2,4,5, 6,7 because; + «; are not roots. PuB := aq +ay + 203 + 304 + 205 + a.
Thentf(as) = B and B £ o1 ¢ A(gce, tc). Hence we have,, (Eg) = Eg. Since

{13” 0ty (Egy) = 1tf(E—yy) = —b1E_q,,
t0‘1 ° tig(Eal) = _tdl(EOIl)) = _bl E—(Xla

{T‘?{Y ) tal(E%) B bsrg(Eal"'ﬂls) = bsk E0’0+0(11
tal ° T.’:{Y(Eﬂls) = tal(E(Xo)) = bOan+a1|

for somehy, by, bz, k € C with |bg| = |by| = |bs| = |k| = 1, there exists € R such that
tytordl oty, =t o1s,. Moreover, sincet( *oriot,,)? = Id and i’ (K3) = —3K3+2K,,
we gets € Z, and thust, o i oty, = 747 or tff o 1¢,. If t, o 1f oty =7f, then

Jud —+-1_ I —+-1 1
T3 O TKy+Ke = Ly, 0 T3 Olay O Tky+kg =15, 073" © Tt,, (K1+Ke) © to,

—3+-1 it —+—1 7
=ty ©T3 OTKy+Ks © TKg O Ly = 1,7 0 T3 O TKy4Ke © TKy O lay

-1 Jus
= tal O T3 O TKy+Kg © 0 O TKz—(1/2)K4 © t(xl-

Put i 1= ta/2)ks—(1/2)ks)- Then sinceKs — (1/2)Ky4 is a (—1)-eigenvector ofrd’, it is
easy to see that

ot —+—1 -1 n
T3 O TKy+Ke = Ly O ~0T3 OTKy+Kg OO0 O U O lgy.

Becauseu oty, € Int(h), it follows that r§7 O TK, +Kg té7 o Tk,+Ke 00, Which contradicts
Proposition 5.1. Hence,'o )’ ot,, = 7§ o 7%, and

1

-1_ .0 —t— Jos -
o, © T3 OTkytKe Oley = 1,7 073 Oty OTKytKe = T3 O TKy © TKy+Ke

— I 2 T 2
= T3 OO0 O OTKy+tKg — T3 O TKy+Kg OO O U

= ,Lfl o ‘L’:f O TK,+Kg OO O U,
sincety, (K2 + Kg) = Kz + Kg and o’ (K3 — (1/2)K4) = —(K3 — (1/2)K4). Consequently

we obtainty’ ~ i’ o 7k, and 73’ o Tk,+ks X T4’ O Tky+ke O O
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10. Classifications

From Propositions 5.1, 6.1, 7.1 and 8.1 together with thellt®sn Section 9,
we obtain the following theorem which gives the completessiféication of involutions
preservingh.

Theorem 10.1. Let(G/H, (, ), o) be a Riemanniad-symmetric space such that
G is compact and simpléSuppose that = Ad(exp(r/2)/—1K;) for somex; € I1(gc, tc)
with m = 3 or 4. Then the followingTables 5, 6, 7and 8 give the complete lists of
the equivalence classes withiuty (g) of involutionst satisfyingz(h) = b.

Table 5. dim3y =0, roo =0 tot, 0 =712 andt=g".

(g, b, H) | T | 3 | hne
ol 50(16) 50(8) ® s0(2)
(es, s5u(8) @ su(2), K3) LZReR e7 @ su(2) 5p(4) @ s0(2)
717 0 TkeH1/2Ks | 50(16) 5p(4) @ s0(2)
of! 50(16) (50(5) +50(5)) ® (s0(3) +50(3))
(¢, 50(10)® 50(6), Ke) 737 0 Tk +Kg e7 @ su(2) (s0(7) +50(3)) ® s0(5)
T 0 Tk Ka+K, e7 @ su(2) 50(9) & (s0(3) +50(3))
4T 0 Tk +KatKg 50(16) (50(7) +50(3)) @ s0(5)
24 5u(8) (s0(3) +50(3)) ® (s0(3) +50(3)) B s0(2)
LZLSE N 50(12) @ su(2)|s0(5) ® (s0(3) +50(3)) ® su(2)
37 0 Tk +Ke s R 50(5) ® s0(5) ® 5u(2)
(e7. 50(6) ® 50(6) & 51(2). Ka) r31.7 O TK,+Kg+(1/2)K4 | S1(8) 50(5) ® s0(5) & su(2)
oy 50(12) ® su(2) | s0(6) ® s0(2)
3 opotwak, |su(®) 50(6) & s0(2)
74 5p(3) @ su(2) [(so(3) +50(3)) ® 50(2)
(fa, 50(6) ® s0(3), K3) T 0 T4k, 50(9) 50(5) & s0(3)
T 0 Tk +K4+(12)Ks | SP(3) B su(2) |50(5) ® s0(3)

¢ Eqy = Eggy Eay = By Eog = Eugy Eoy = Eayy Eoy = Egy

77 Eoy = —Euay, Eay & Eags Euy = C1Ep;, Eay = Eagy Eag — Eayy Eog > —Eag,
(B1 = o1 + 202 + 33 + darg + 35 + 2006 + 007)

137 Eqy = —Eay, Eap & Eagy Eqy = —Easy Eay = —Eqy, Eag = C2Ep,, Eop > Eq,
Eug > —Eag, (B2 = a1 + 02 + 203 + 34 + 305 + 30 + 207 + g)

w1 Ey; = —Eay, Eap = —Euy, Eag v Eogs Ea, = C3Ep;, Eag > Eoyy Eug > —Eag,
(B3 = a1 + a2 + 203 + 304 + 205 + )

tf1: Egy = —Eqy, Eap = Eogs Eas = CaEp,, Eoy = —Eoy (B4 = a1+ 205 + 303 + aa)
wherec (i =1, 2, 3, 9 is some complex number witfg; | = 1.
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Table 6. dimy=1,700=0"tor, 0 =732 andt=g".

(g, b, H) | 0| m] (g, ® hne

(es, su(8) D R, Ky) Eg | a2 (eg(8), 50(16)) 50(8)

Es | a7 | (es(s), 50(16)) sp(4)
(ea, ¢ @ su(2) R, K7) Fq | a7 | (eg(—24) e7 ® su(2)) fa

E; | a3 (e7(7), 51(8)) 50(6) ® s0(2)
(e7, 5u(6) ® suR) O R, K3) Fe | wa | (75 50(12)® su(?) | 5p(3) @ 50(2)
(e7, su(5) ® su(3) d R, Ks) E7 | as (e7(7), 5u(8)) 50(5) ® so(3)

Ee | a4 (es(6), 5p(4)) 50(3) ® s0(3) ® s50(2)
(e6, 5u(3) D su(3) D su(2) ® R, Ka) Fr o (co(2), 5u(6) @ 51(2)) @) & su2)
(fa, 5u(3) @ su(2) ® R, K2) Fa | a2 | (fa), sp(3) ® su(2)) | s0(3) @ s0(2)
(g2, su(2) ® R, K1) Gz | o1 | (9202 5u(2) ® 5u(2)) | s0(2)

Table 7. ding=0,700 =0 o1, 0 =121 andt =g°.

(g, b, H) [ h(t=m) ] 4 | hne

K1 50(16) su(8) @ s0(2)
K3 e7 @ su(2) s5u(8) @ su(2)
Ks e7 @ su(2) sp(4) @ su(2)
Ke 50(16) s(u(4) +u(4)) @ su(2)

(e8, 51(8) ® 51(2), Ks) K3+ Ky 50(16) sp(4) @ su(2)
K3+ Kg e7 @ su(2) s(u(4) +u(4)) & su(2)
Ki+ Ky e7 @ su(2) s(u(6) +u(2)) & so(2)
K1+ Ke 50(16) 5(u(6) +u(2)) @ s0(2)
K1 50(16) (s0(8) +s50(2)) ® s0(6)
K3 e7 @ su(2) (s0(6) +s0(4)) & s0(6)
Keg 50(16) 50(10) & so(6)
Kg e7 @ su(2) 50(10) @ (s0(4) +s0(2))

(¢8, 50(10)® 50(6), K) Ky +Kg e7 @ su(2) (s0(8) +50(2)) ® (s0(4) +50(2))
Kz + K7 e7 @ su(2) u(3) & u(5)
K3+ Kg 50(16) (s0(6) +50(4)) & (s0(4) +50(2))
K2+ Kg + K7 | 50(16) u(3) @ u(5)
K1 50(12) @ su(2) | s0(6) ® (s0(4) +50(2)) B su(2)
Ko 51(8) 50(6) @ s0(6) & s0(2)
Kq 50(12) @ su(2) | s0(6) ® so(6) ® su(2)
Ky + K> e DR 50(6) @ (s0(4) +50(2)) ® 50(2)

(e7, 50(6) ® 50(6) ® su(2), Ka) | K1 +Kpg 50(12) @ su(2) | (so(4) +s0(2)) ® (s0(4) +50(2)) B s1(2)
K3+ K7 5u(8) u(3) ® u(3) & su(2)
Ky + Ko+ Kg | 5u(8) (s0(4) +50(2)) @ (s0(4) +s0(2)) ® s0(2)
Ko+ K3z + K7 | 50(12)® su(2) | u(3) & u(3) ® so0(2)
K3+ Ks+K7 | es®R u(3) & u(3) ® su(2)
K1 sp(3) @ su(2) | (so(4) +50(2)) & s0(3)
K3 50(9) 50(6) & s0(3)

(fa, 50(6) & 50(3), K3) Ka 50(9) 50(6) @ 50(2)
Ky +Kg sp(3) ® su(2) | so(6) ® so(2)

(g, b, H) | T | [3 | hNne

1) 6 DR 50(16) & sp(1)

(e7, 50(6) ® 50(6) ® su(2), Ka) | ¢ 0 7k, s1(8) 50(16) @ so(2)
@ oK, su(8) 50(16) @ sp(1)

¢ is the same involution as in Table 5.
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Table 8. dimy=1,7r00 =001, 0 =112 andt=g".

687

(g, b H) |h(T=Th)| 4 | hnt

K1 50(16) s(u(7) +u(l))® R
Ko 50(16) su(8)d R
K3 e7 ® su(2) s(u(6) +u(2)d R
Ky e7 @ su(2) s(u(5) +u(3))® R

(es, su(B) DR, K2) Ks 50(16) s(u(d) + u(d)) ® R
Kg e7 @ su(2) s(uw(7) +u(l))® R
Kz + K3 e7 ® su(2) s(u(6) +u(2)d R
Ko+ Ky 50(16) s(u(5) +u(3))® R
K1 50(16) (s0(10) +R) @ su(2) d R
Ko 50(16) (su(6) +su(2)) ® su(2) ® R
K7 e7 @ su(2) es @ su(2) R
Kg e7 ® su(2) e Dso(2)DR

(c8, &6 & su2) S R, K7) Ki+Ks | 7@ su(2) (50(10) +R) @ su(2) ® R
Ky +Kg e7 ® su(2) (s0(10) +R) ® so(2) ® R
K2 + K7 e7 @ su(2) (su(6) +su(2)) ® su(2) ® R
Ko+ Kg 50(16) (su(6) +su(2)) ®so(2)d R
K1 50(12)® su(2) | su(6)® s0(2)dR
Ko 5u(8) s(u(5) +u(l)) ® su(2) ® R
K3 50(12)® su(2) | su(6) ® su(2) R
Kq 50(12)® su(2) | s(u4) +u(?)) ®su?)dR
Ks 51(8) s(u(3) +u(3)) ®su?) ®R

(e7, su(6) ® su(2) D R, K3) | K7 6 DR s(u(5) +u(l)) ® su(2) ® R
K+ Ky e6 @R s(u(5) +u(l)) ® so(2) ® R
Ky + Ky 50(12)® su(2) | s(u4)+u(?))®so(2)dR
K1+ Ks 51(8) s(u(3) +u(3)) dso(2)®R
K3+ Ky 50(12)® su(2) | s(u4) +u(?)) ®su?)d R
K3+ Ks e6 DR s(u(3) +u(3)) ®su(?) ®R
K1 50(12) ® su(2) | s(u(4)+u(l)) ®su3)d R
K3 50(12)® su(2) | s(u(3) +u(2)) ®su3)dR
Ks 51(8) su(5) @ su(3)d R
Keg 50(12)® su(2) | su(5) ® s(u(2) +u(l))®d R
Kz e6 DR su(5) @ s(u(2) +u(l)) ® R

(e7, su(5) ® su(3) B R, Ks) | K1 +Ks 5u(8) s(u(4) +u(l)) ® su3)d R
K1+ Ke 50(12) ® su(2) | s(u(4)+u(l)) ® s(u2) +u(l)) ®R
K1+ Kz e ®R s(u(4) +u(1)) ® s(u(2) +u(1)) &R
Kz +Ks s DR s(u(3) +u(2)) @ su3)d R
Kz + Kg 50(12)® su(2) | s(u3)+u(2)) ® s(u(2) +u(l)) ® R
Kz + K7 su(8) s(u(3) +u(2)) ® s(u(2) +u(l)) @ R
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Ky 50(10)B R |s(u(2) +u(1)) & su(3) ® su(2) ® R
Ka su(6) @ su(2)|su(3) & su(3) d su(2) d R
Ks su(6) ® su(2)|s(u(2) +u(l)) & su(3) d su(2) ® R
K1+ Kz s50(10)® R |s(u(2) +u(1)) ® su(3) ® so(2) DR

(¢, suR) @ su@) S ) SR, Ka) e ' i |5u(6) @ su(2) | s(u(2) + u(L)) @ s(u(2) + u(1)) ® su(2) & R
Ko + Ky su(6) ® su(2)|su(3) & su(3) d so(2) & R
K1+ Kz + Ks|su(6) & su(2)|s(u(2) + u(1)) & s(u(2) +u(1)) & so(2) & R
K1+ Ka+Ks[s0(10)® R |s(1(2) +u(1)) @ s(1(2) +u(1)) & su(2) ® R
Ky 5p(3) @ su(2)|su(3) D so(2) B R
Ko sp(3) @ su(2)|su(3) ® su(2) ® R

(4, su(3) ® su(2) ® R, K3) Ka 50(9) s(u(2) +u(l)) ® su(2)d R
Ky +Ks s5p(3) @ su(2)[s(u(2) +u(l)) ® so(2)® R
Ko+ Ky 5p(3) @ su(2)|s(u(2) +u(l)) ® su(2) @ R
Ky su(2) ® su(2)|su(2) ® R

(g2, uQ) ® R, K1) Ky su(2) ® su(2)| s0(2) ® R

(g, b, H) | T | £ | hNt

v fa su(3) ® su(2) d sp(l) d R

(e6, 5U(3) @ su(3) ® su(2) B R, Kyg) | o 7k, sp(4) su(3) @ su(2) ® so0(2) ® R
Vo tk, sp(4) su(3) @ su(2)® sp(l)d R

V. Eqy = Eugr Eop = Enyy Eog = Eug, Eoy = Egy
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