Title: Solidification Crack Susceptibility in Weld Metals of Fully Austenitic Stainless Steels (Report I): Fundamental Investigation on Solidification Behavior of Fully Austenitic and Duplex Microstructures and Effect of Ferrite on Microsegregation

Author(s): Arata, Yoshiaki; Matsuda, Fukuhisa; Katayama, Seiji

Citation: Transactions of JWRI. 5(2) P.135-P.151

Issue Date: 1976-12

Text Version: publisher

URL: http://hdl.handle.net/11094/7813

DOI: None

rights: 本文データはCiNiiから複製したものである

Note: None

Osaka University Knowledge Archive: OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/
Solidification Crack Susceptibility in Weld Metals of Fully Austenitic Stainless Steels (Report 1)†

—Fundamental Investigation on Solidification Behavior of Fully Austenitic and Duplex Microstructures and Effect of Ferrite on Microsegregation—

Yoshiaki ARATA*, Fukushima MATSUDA* and Seiji KATAYAMA**

Abstract

It has been well known that weld metals of fully austenitic stainless steels exhibit greater susceptibility to hot cracking and austenitic weld metals containing a small amount (in the order of 5%) of delta (δ) ferrite are much more resistant during welding. However, it has not been clarified completely why the presence of some δ-ferrite prevents hot cracking in Cr-Ni weld metals. Therefore, the authors have investigated the structural change during solidification from a metallographic standpoint for the both weld metals of fully austenitic stainless steel AISI 310S [25Cr-20Ni; Japanese Industrial Standard: SUS 310S] and austenitic stainless steel AISI 304 (18Cr-8Ni; JIS: SUS 304) containing a small amount of δ-ferrite to which sulphur and phosphorus were added as harmful impurities. Each specimen was rapidly quenched in water during TIG arc bead-on-plate welding, so that each bead showed the instantaneous structures from solidification front to room temperature along welding direction. Solidification behaviors of the fully austenitic and the duplex microstructures, microsegregation (especially S and P) during solidification and distribution of alloying elements between δ- and γ-phases at high temperature were investigated.

1. Introduction

Since austenitic stainless steels have good mechanical properties in elevated and low temperature services in addition to an excellent corrosion resistance, they are widely used as various equipment materials of chemical plants, power stations and reactors1,2. Austenitic stainless steels are generally regarded as readily weldable materials, however, the weld metals of fully austenitic stainless steels are susceptible to hot cracking (solidification and ductility-dip cracking). The susceptibility to hot cracking can generally be avoided by using manual or consumable electrodes which contain a small amount of δ-ferrite in weld deposits. However, the ferrite may promote rapid transformation to the brittle sigma phase in service at elevated temperature and lead to preferential attack in certain corrosive environments3,4. Moreover, recently electron beam welding process has been investigated to employ as a welding process of thick stainless steel plates.

In such a welding process solidification cracking is a great important problem in welding fully austenitic stainless steels because electrodes are not usually used. Therefore the fully austenitic weld metals which are resistant to solidification cracking are strongly required hereafter5-12.

Concerning why the presence of δ-ferrite helps to prevent hot cracking, there are several explanations so far7-12, that is:

(1) Ferrite has a greater solubility than austenite for certain harmful elements and impurities as S, P, Si, etc. The segregation of these elements at the grain boundary and the amount of liquid films can thereby decrease during solidification, and then the boundary does not crack.

(2) The total amount of grain boundaries enlarges.

(3) In a two-phase alloy containing ferrite the γ-grain size would be refined.

(4) The compositions forming some ferrite have a smaller

† Received on Sep. 24, 1976
* Professor
** Graduate Student, Osaka University

-35-
solidification range than fully austenitic compositions.
(5) The shrinkage stress is reduced because of a smaller
coefficient of thermal expansion of the b.c.c. ferrite.
(6) Liquid films are dispersed by the existence of ferrite,
and ferrite strengthens the grain boundary or prevents
the formation or propagation of cracks.
(7) Ferrite suppresses polygonization process.
Most of explanations on the effect of δ-ferrite are given
by the category (1). However, for the authors these were
not satisfactorily explained from the metallurgical point
of view. The present work, therefore, was undertaken to
examine whether the phenomenon explained in (1)
actually takes place during solidification. It is generally
regarded that the austenitic stainless steel weld metal of
AISI 304 (JIS: SUS 304) containing a small amount of
δ-ferrite is more resistant to hot cracking than the fully
austenitic stainless steel weld metal of AISI 310S (JIS:
SUS 310S)\(^{13}\), therefore commercial SUS 304 and 310S
and these modified steels to which S and P were
deliberately added were used in this investigation, as S
and P are regarded as the most detrimental impurities to
promote cracking\(^5,14^-18\).

Each of these specimens of about 20 mm in thickness
on which TIG arc bead-on-plate welding was being done
without any filler electrodes was rapidly quenched in water
to reveal the instantaneous structures during solidification\(^{19}\). Then using these weld metals, the comparisons of
the structural change during solidification and the segrega-
tion between primary \(\alpha\)-and \(\gamma\)-phases were investigated
and particular attention was paid to the effect of the ele-
ments S and P on microsegregation in order to investigate
the effect of \(\delta\)-ferrite on segregation and solidification
behavior.

2. Experimental Procedure

2-1 Materials used

Chemical compositions of materials used are shown in
Table 1. SUS 304 (18\%Cr-8\%Ni) and SUS 310S (25\%Cr-
20\%Ni) were chosen as representative of austenitic alloys
containing \(\delta\)-ferrite and as a typical fully austenitic
composition, respectively. Moreover sulphur and phos-
phorus elements which promote the susceptibility to
hot cracking in general were deliberately increased to
commercial SUS 304 and 310S steels so that their effects
could be better observed in the investigation of the
microstructure and microsegregation. These materials are
designated as 304S, 304P, 310S and 310P in Table 1. The
specimens welded were disk plates of about 20 mm
in thickness and about 110 mm in diameter taken from all
material ingots.

2-2 Experimental Procedure

Hot cracks of solidification and ductility-dip cracks in
weld metals are considered to occur near the solidus
temperature and the recrystallization temperature respec-
tively\(^{20}^-^{23}\). Solidification behavior which is important
in understanding hot cracking was investigated by quench-
ing each specimen in water during TIG arc bead-on-plate
welding without filler metal. TIG arc (DCSP) welding
conditions are shown in Table 2. The \(\delta\)-ferrite content
remaining at room temperature, and sulphide and phos-
phide contents in weld metals during solidification were
measured by a point counting method (magnification;
x400 or x1000, number of field of vision; 30-100).
Electron microprobe analyser (EPMA) and scanning

<table>
<thead>
<tr>
<th>Materials (SUS)</th>
<th>Composition (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td>304</td>
<td>0.05</td>
</tr>
<tr>
<td>304 S-1</td>
<td>0.06</td>
</tr>
<tr>
<td>304 S-2</td>
<td>0.06</td>
</tr>
<tr>
<td>304 S-3</td>
<td>0.05</td>
</tr>
<tr>
<td>304 P-1</td>
<td>0.05</td>
</tr>
<tr>
<td>304 P-2</td>
<td>0.06</td>
</tr>
<tr>
<td>304 P-3</td>
<td>0.06</td>
</tr>
<tr>
<td>310 S</td>
<td>0.07</td>
</tr>
<tr>
<td>310 S-1</td>
<td>0.07</td>
</tr>
<tr>
<td>310 S-2</td>
<td>0.07</td>
</tr>
<tr>
<td>310 S-3</td>
<td>0.06</td>
</tr>
<tr>
<td>310 P-1</td>
<td>0.06</td>
</tr>
<tr>
<td>310 P-2</td>
<td>0.06</td>
</tr>
<tr>
<td>310 P-3</td>
<td>0.06</td>
</tr>
</tbody>
</table>
electron microscope (SEM) with the energy-dispersive x-ray spectrometer were used to examine the microsegregation of the elements.

3. Results and Discussion

3-1 Morphology of Solidification Structure

3-1-1 Comparison of Solidification Structure between Commercial SUS 304 and 310S

SUS 304 and 310S plates (20 mm, 110 mm) taken from ingots were welded under the condition of high weld heat input (E=20V, I=350A and v=20 (mm/min)) to examine the microstructure and the microsegregation by EPMA. Photo. 1 gives an example of a weld bead of SUS 310S obtained by quenching during welding under the above condition. It indicates that a molten pool is almost completely excluded and it gives positions of microstructures shown in Photos. 2 and 3 which show the typical structures near solidification front of SUS 304 and 310S weld metals respectively. The upper part of Photos. 2(a), 2(b), 3(a) and 3(b) shown in low magnification (x100) indicates that this area was completely liquid in the molten pool at the moment of quenching, and the lower part shows the region of lower temperature. Photos. 2(c) to 2(h) and 3(c) to 3(f) show the instantaneous microstructures quenched rapidly from temperatures from solidification front to room temperature or to about 1150°C in higher magnification (x400).

In case of SUS 304 weld metal etched in Kalling's reagent or aqua regia (nitric-hydrochloric acid) reagent, δ-ferrite appears dark or black and γ-phase has a brighter or white appearance. It can be known from the dark impression of Photo. 2(a) and (b) that the structure from SUS 304 weld metal is roughly characteristic of the mode of cellular dendritic growth. Photo.2(e) shows the structure of the tips of dendrite stems close to the solidification front and indicates that cellular dendrite stems were formed as δ-ferrite in the initial stages of solidification. Furthermore, in quenching the primary δ-ferrite was transformed to Widmanstätten phase by rapid cooling and the remaining liquid was solidified as the eutectic δ- and γ-phases or chiefly as γ-phase. The microstructure close to the last stages of solidification is shown in Photo. 2(d). It indicates that a large amount of primary δ-ferrite was formed in the dendrite stems and subsequently the eutectic δ-and γ-phases began to be formed in the interdendritic liquid. However, the ferrite was transformed to Widmanstätten austenite during quenching. Photo.2(e) probably shows the region where the ferrite was a little transformed to the austenite near the cellular dendritic boundary soon after the completion of the solidification, and indicates that part of the dendrite arms of the ferrite connected hand in hand due to the presence of the primary and the eutectic ferrite and dendrite stems of the ferrite were transformed to Widmanstätten austenite during quenching. The microstructure in Photo. 2(f) at a little lower temperature during cooling than Photo. 2(d) indicates that the ferrite was transformed further to the austenite. Photo. 2(g) shows the region at a distance of about 5 mm behind the solidification front and the temperature is about 1200°C from the result measured with a calibrated W-5%Re-W-26%Re thermocouples immersed in the weld pool. It reveals that most of the ferrite was transformed to the austenite. Photo.2(h) shows the structure at room temperature. The ferrite remained in an interlocked or
Photo 2 Microstructures from solidification interface to room temperature of SUS 304 weld metal. (a), (b) in low magnification (x100); (c) to (h) in high magnification (x400).
Photo. 3 Microstructures near solidification interface of SUS 310S weld metal. (a), (b) in low magnification (x100); (c) to (f) in high magnification (x400).
island-like form. This structure is quite ordinarily seen in the weld metals containing the ferrite. As a result of the above observation the microstructures suggest the solidification process of SUS 304 in the following way. During the initial stages of solidification the advancing cellular dendrites grow in the liquid and form as δ-ferrite. In the last stages of the solidification the eutectic δ- and γ-phases are formed in the cellular dendritic boundary. As soon as solidification completes the γ-phase grows into the primary δ-ferrite as a result of the transformation of ferrite to austenite. Moreover, during subsequent cooling the primary and the eutectic ferrite is largely transformed to the austenite, which results in a small content of the residual δ-ferrite measured at room temperature.

The structure from SUS 310S weld metal etched in aqua regia reagent is also cellular dendritic mode as shown in Photo. 3(a) and (b). The structure near the solidification front is shown in Photo. 3(c). It indicates that the tips of dendrite stems of the austenite were advancing in the liquid and still a large proportion of liquid was remaining in the cellular dendritic boundary and was solidified during quenching. Photo. 3(d) also shows that film-like liquid was remaining in the cellular dendritic boundary. Photo. 3(e) shows the region at about 1 mm behind the solidification front where small lakes of liquid were enclosed in the solid. Photo. 3(f) shows the region at about 1150°C at about 7 mm behind the solidification front where the migrated boundary is observed. As above results the solidification process of SUS 310S weld metal is suggested as follows. The austenite is formed as a cellular dendritic mode from the initial to the last stages of solidification, and in the last stages film-like liquid and small lakes of liquid appear to be formed along cellular dendritic and grain boundaries. During the subsequent cooling the grain boundaries begin to migrate in the solid. The ferrite does not appear at any temperature during welding.

Concentration distribution of Cr and Ni elements in the dendritic cells in the final stages of the solidification at the moment of quenching was transversely analyzed by EPMA (the beam diameter: about 2 to 5μ). It is shown in Fig. 1 (a) and (b) which correspond to SUS 304 and 310S weld metals respectively. In case of SUS 304 the composition of cellular dendrite stem consists of 19.5% Cr and 7.2% Ni, and consequently that of the boundary shows a low level of Cr and a high level of Ni. In case of SUS 310S the composition of cellular dendrite stem consists of 23.4% Cr and 19.3% Ni and that of the boundary shows 27% Cr and 20.4% Ni. The segregation ratio (C_{Max}/C_{Min}) of Cr is about 1.15 and that of Ni is 1.06 in the primary austenite of SUS 310S. Moreover, the concentration at the center of dendrite stem and the grain boundary is drawn in Fig. 2 which shows the solidus surface of the Cr-Ni-Fe system. It will give evidence as follows as well as the above explanation. In case of SUS 304 dendrite stems were solidified as the primary phase of the ferrite which has low Ni content, and the austenite was formed in the final stages of solidification. Moreover, in case of SUS 310S the primary phase of austenite was formed.
3-1-2 Change of δ-Ferrite

It is very difficult to understand the solidification structure from the structure of the weld of austenitic stainless steel containing δ-ferrite because of complicated morphology of δ-ferrite at room temperature. Therefore it seems valuable to observe the change of the ferrite phase dependent on temperature from the final stages of solidification to room temperature. An example is shown in Photo. 4, which was welded under the welding condition of I = 350A, E = 20V and v = 7mm/min. It will be enough to have explained in the 3-1-1 concerning the solidification process. During solidification the primary δ-ferrite occurred to a degree of about 80% in area. However, during cooling after solidification the content of δ-ferrite decreased drastically at high temperature of around 1300°C and later did not vary largely. At room temperature the ferrite remains in a lacy, interlocked dendritic or fine needle-to-disk form. The morphology of the ferrite, i.e., its shape, size and distribution is affected by weld heat input. Photo. 5 shows the structures of weld heat input from 1 to 600 (KJ/cm). The ferrite is becoming finer with an increase in a freezing rate at low weld heat input. The result of SUS 304 weld metal indicates that the redial δ-ferrite content at room temperature was not largely varied within 1% in difference in area to area at constant weld heat input. Moreover, the relationship between the weld heat input and the residual δ-ferrite content was investigated for SUS 304 weld metal in Fig. 4. As the weld heat input increased from 1 to 600 KJ/cm, the residual ferrite content showed a tendency to increase from about 3.6 to about 6%. Furthermore, the primary ferrite content also showed a similar tendency to increase from 75 to 80%. Therefore, from this result we should actually pay attention to such a large amount of the primary δ-ferrite during solidification which disappears during cooling, in case of austenitic stainless steel weld metal containing δ-ferrite. We should also pay attention that the large amount of the primary δ-ferrite affects strongly the
Photo. 5 Comparison of microstructures near the solidus (upper) and at room temperature (lower) dependent on variation of weld heat input.

Fig. 4 Effect of weld heat input on primary ferrite content in area during solidification and residual ferrite content at room temperature. Susceptibility to hot cracking. Therefore the effect of the amount of the ferrite at room temperature on hot cracking susceptibility of austenitic stainless steel weld metal should be primarily investigated by replacing with the amount of the primary δ-ferrite during solidification.

3-2 Microsegregation during Solidification

3-2-1 Equilibrium Distribution of Alloying Elements between δ-and γ-phases.

Photo. 6 Microstructure of SUS 304 weld shows large δ-ferrite in HAZ quenched form high temperature.

SUS 304 welded at the high weld heat input. Since this area (within 1 mm from bond) was maintained at high temperature near the melting point for a relatively long time, δ-ferrite grew large enough. Therefore the equilibrium distribution of alloying elements at high temperature is expected between δ-and γ-phases. Thus this kind of large ferrite and the austenitic matrix were analyzed by EPMA to investigate their distribution. The results are summarized in Fig. 5. The compositions of Fe, Cr, Ni, Mn, Si elements are given at calculated value (wt%) according to EPMA diagram to correct and C, S and P elements are shown at the number of count per second. Fe, Ni, Mn, and C were more soluble in the γ-phase, and Cr, S and P were more soluble in the ferrite. Si was not detected in a definite difference in this investigation. These results indi-
cate that austenitizers (austenite-forming elements) in iron such as Ni, Mn and C are more soluble in the γ-phase and ferritizers (ferrite-forming elements) such as Cr are more soluble in the ferrite. Moreover, a little larger quantities of S and P were contained in the ferrite. That is probably because the ferrite has a large capacity for dissolving S and P according to the equilibrium diagram. The above-mentioned results show the same tendency as the general explanations since the earlier literature.

3-2-2 Microsegregation during Solidification

Distribution or segregation of each element is one of the most important factors relative to hot cracking. Therefore, EPMA line analyses were carried out transversely to dendrite stems in the final stages of solidification of SUS 304 and 310S weld metals of the high weld heat input. Fig. 6(a) and (b) show examples of the distribution of each element in the final stages of solidification for SUS 304 and 310S weld metals respectively. The compositions in cellular dendrite core and at the boundary in the final

![Fig. 5 EPMA analyses of Fe, Cr, Ni, Mn, Si, C, S and P between δ- and γ-phases in HAZ of SUS 304 weld quenched form high temperature.](image)

![Fig. 6 Concentration distribution of each alloying element in final stages of solidification in SUS 304 (a) and 310S(b) weld metals.](image)
The stages of solidification are summarized in Fig. 7 for SUS 304 and 310S weld metals.

In SUS 304 weld metal Fe and Cr were rich and Ni was poor in the cellular dendrite stem of the ferrite. Consequently Ni segregated in the cellular dendritic boundary of the austenite. In SUS 310S weld metal Cr and Ni were poor in cellular dendrite stem and segregated in the boundary. S, P, Si, and Mn segregated in the boundaries in both SUS 304 and 310S weld metals. The segregation of C in the boundary could not be detected because C could probably diffuse into the solid during solidification due to the higher diffusivity into the solid. Si, S, and P segregated in the boundary even in SUS 304 weld metal. This differs in the tendency for the distribution between δ- and γ-phases in the heat affected zone (HAZ) of SUS 304 weld, mentioned in the 3.2.1. This means that the segregation of each element is determined by its distribution coefficient during solidification. There is an obvious feature between SUS 304 and 310S weld metals that the segregation of P and Si was more noticeable in SUS 310S than SUS 304. This suggests that SUS 310S weld is more susceptible to hot cracking.

3-2-3 Microconstituents in SUS 304 and 310S Weld Metals

By using the energy-dispersive x-ray spectrometer of the SEM, efforts were made to find out inclusions which may be related to solidification cracking. In case of SUS 304 weld metal, in consequence of the SEM spot analyses two kinds of inclusions were found out as shown in Fig. 8(a) and (b). Some inclusions enriched in P are phosphides as shown in (a) and the other enriched in Al, Mn, Si and others are perhaps oxides as shown in (b). The SEM microstructure near the solidification front of SUS 304 weld metal is shown in high magnification (×2000) in Photo.7. In it δ-ferrite etched deeply is hollow and two inclusions are seen in the matrix of the austenite which would correspond to the cellular dendritic boundary during solidification. A few phosphides were observed only in the region near the solidification front. They were formed predominantly in the boundaries because a large amount of interdendritic liquid close to the front would be solidified due to the quench. More oxides were observed in the granular or globular form in any areas. In case of SUS 310S weld metal the SEM results of the inclusions detected are shown in Fig. 9, and Fig. 9(a), (b), (c) and (d) indicate evidence of phosphate, sulphide, oxide and silicide respectively. Phosphides are enriched in P and Cr with respect to the matrix, sulphides are enriched in S and Mn and contained Cr and Fe, oxides are enriched in Al, Si, Mn, and others, and silicides consist of Si, Fe, Cr and Ni. Moreover, the SEM microstructures near the solidifica-
tion front and at region below the solidus temperature are shown in Photo. 8(a) and (b). It is clearly shown from Photo, 8(a) near the front that a lot of inclusions were formed in the cellular dendritic boundaries. Most of them were phosphides and oxides. These phosphides were enriched in P and Cr and sometimes contained S and Si together because the interdendritic liquid would have solidified by quenching. In regions below the solidus the inclusions such as phosphide, sulphide, oxide and silicate as shown in Photo. 8(b) were observed predominantly in the cellular dendritic and grain boundaries.

3-3 Effect of Sulphur or Phosphorus added on Microsegregation during Solidification

3-3-1 Effect of Sulphur on Microsegregation

Photo. 9 shows the quenched structure near the solidification interface (a) and at about 1100°C during cooling (b) of SUS 304 S-3 weld metal containing 0.22%S welded at the high weld heat input in high magnification to observe sulphides. δ-ferrite in Photo. 9(a) is dark and in a fine needle form due to the Widmanstätten precipitation during quenching and the ferrite in Photo. 9(b) is dendritic mode due to the transformation of the ferrite to the austenite, and the austenite is brighter matrix. The inclusions are in black (actually dark red) granular form and their size is about 0.2 to 2.0μ. They are in fact sulphides from the results analyzed by EPMA and SEM.
The latter result shown in Fig. 10 indicates that sulphides are enriched in S and Mn and depleted in Fe and Ni with respect to the matrix. Sulphides may become in granular or rod-like form due to the effect of Mn. It is observed that almost all sulphides were formed in the cellular dendritic and columnar grain boundaries during solidification as shown in Photo. 9. Moreover, as shown in Photo. 9(b) sulphides in the structures at any temperatures after the completion of solidification were mainly formed in the matrix of the austenite, which seems to correspond to the cellular dendritic boundaries in the last stages of solidification.

The microstructures of SUS 310S-3 weld metal containing about 0.2%S are shown in Photo. 10. The area of Photo. 10(a) and (b) was quenched from the condition in the existence of residual liquid in the boundary Photo. 10(c) shows the structure at about 1200°C. A string of sulphides was formed in the granular or rod-like form in each cellular dendritic boundary. In Photo. 10(c) the migrated boundary is pinned by sulphides. The size was from 0.2 to 3.0μ.

The analytical result of SEM of sulphides is shown in Fig. 11. The sulphides were enriched in Mn, Cr and S and depleted in Fe and Ni with respect to the matrix. There-
Photo. 10 Microstructures of 310 S-3 weld metal containing 0.2% S near solidification interface (a), in high magnification (b), and at about 1200°C (c).

Fig. 11 SEM result of sulphide in 310 S-3 weld metal shows enrichment of S, Cr and Mn.

Therefore they are thought to be M(Mn, Cr, Fe, Ni, etc.) S type and the cracking tendency will be reduced by the fact that S combines chiefly with Mn and consequently the shape of sulphides becomes granular.

In area in the final stages of solidification in SUS 304 and 310S weld metals containing from 0.004 to 0.22% S, the S content in the cellular dendrite core was analyzed by EPMA and subsequently the amount of sulphides predominantly at the cellular dendritic boundary was measured by a point counting method. The results are shown in Fig. 12. It was impossible to detect a clear difference in the S solubility at the dendrite core between SUS 304 (δ-phase) and SUS 310S (γ-phase) even if the S content added is high. However, although the amount of sulphides increases proportionally with an increase in the S content added, there was a relatively large difference in the amount of sulphides between SUS 304 and 310S weld metals. Take 0.05% S for example, the amount of sulphides was 0.05% in SUS 304 weld metal and 0.2% in SUS 310S weld metal. This suggests that S segregates more easily along the cellular dendritic and columnar grain boundaries in SUS 310S weld metal which solidifies primarily as γ-phase than in SUS 304 weld metal which solidifies primarily as δ-phase.

3-3-2 Effect of Phosphorus on Microsegregation

The structures of SUS 304 P-3 weld metal containing about 0.25% P are shown in Photo. 11. The weld metal was quenched during welding under the condition of 350A, 20V and 20mm/min. Photo. 11(a) and (b) show the structures near the solidification interface in low and high magnification, respectively. Photo. 11(c) shows the structure a little away from the interface. The microstructure and the analytical result of the SEM of phosphide are shown in Fig. 13. It was found that the phosphide was enriched in Cr and P and depleted in Ni with respect to the matrix, so that it would consist of the eutectic of (Fe, Cr, Ni) - (Fe, Cr, Ni, etc.) 3P. A few phosphides were formed in the granular form in the cellular dendritic boundary of the austenite as shown in Photo. 11(b). These reveal small lakes of liquid which were enclosed in the solid during the solidification process and led to phosphides due to the quench. In the area as shown in Photo. 11(c) the ferrite was transformed to the austenite and phosphides disappeared. It is supposed that P dissolved in the matrix during cooling slowly after solidification. It was very difficult to find out phosphides through the optical microscope as the weld heat input decreased, even if SUS 304 weld metal contained about 0.25% P.

Concerning SUS 310P-3 weld metal containing about 0.24% P, the structures are shown in Photo. 12. Photo. 12(a) and (b) show the structures near the solidification interface and at about 2.4mm behind the interface, and Photo. 12(c) and (d) show the areas at about 1250°C and 1100°C respectively. The analytical result of the SEM of phosphide is shown in Fig. 14. It indicates that the phosphide is enriched in Cr and P and depleted in Fe and Ni with respect to the matrix. In the areas near the solidifi-
Fig. 13 SEM result of phosphide in 304 P-3 weld metal shows a phosphide in austenite (a) and enrichment of P, Cr and Fe(b).

Fig. 14 SEM result of phosphide in 310 P-3 weld metal shows enrichment of P and Cr.

upper of Photo. 12(b). This means that the film-like liquid remained in the boundaries because of a low solidification temperature and was solidified due to the quench. In case of the high weld heat input the phosphides were mainly formed in a rod-like form at the cellular dendritic boundary and in a film-like form at the grain boundary as shown in Photo. 12(d). However, in case of the weld metal containing 0.24%P and low weld heat input or rapid cooling rate the phosphides tended to be formed in the film-like form both at the cellular dendritic boundary and at the grain boundary.

Fig. 15 shows the comparison of the P solubility in the cellular dendrite core and consequently the amount of phosphides at the boundaries in the final stages of solidification between SUS 304 and 310S weld metals, which contained from 0.02 to 0.25%P. The P solubility analyzed

Photo 11 Microstructures of 304 P-3 weld metal, near solidification interface in low (a) and high (b) magnification and a little away from the interface (c) showing ferrite after transformation.
by EPMA was shown by the counts per second (c.p.s.) in the lower part and the amount of phosphides measured by the point counting method is shown by the proportion-in-area (%). Take the weld metals containing 0.1%P for example, the P solubility is 24 c.p.s. in SUS 304 and 16 s.p.c. in SUS 310S, and consequently the amount of phosphides is less than 0.01% in SUS 304 and about 0.2% in SUS 310S. Except for small amounts of phosphides formed by quenching from liquid lakes enclosed in the solid in case of SUS 304 weld metal containing 0.02 to 0.25%P, phosphides were not found out through the optical microscope. On the other hand, in case of SUS 310S weld metal containing 0.05 to 0.2%P, larger amounts of phosphides formed in the film-like form at the boundary. Moreover, small quantities of phosphides were detected through the SEM even in SUS 310S weld metal containing about 0.02%P. The result in Fig. 14 clearly indicates that there is a little difference in the P solubility in the cellular dendrite core between the primary solidification of δ-ferrite in SUS 304 and the primary solidification of the austenite in SUS 310S and consequently P surely segregated to a higher degree at the boundary in SUS 310S than in SUS 304. This suggests that since the primary solidification of the austenite has a stronger tendency to segregate at the
boundary than the primary solidification of the ferrite, the P element may promote the susceptibility to hot cracking especially in case of the primary solidification of the austenite.

4. Conclusions

The following conclusions are drawn from the fundamental investigations on the solidification structures, the microsegregation during solidification of SUS 304 and 310S weld metals and the effect of S and P on the microsegregation;

1) Both 304 and 310S weld metals show the features of the cellular dendritic growth mode but make a difference in the solidification process.

2) In a 304 weld metal the δ-ferrite is primarily formed to a larger extent and subsequently the residual liquid is solidified as the eutectic δ-and γ-phases at the boundary. During subsequent cooling the primary and the eutectic ferrite is drastically transformed to the austenite and a small proportion of the ferrite remains at room temperature, the appearance of which is often observed as if it has been formed at the cellular dendritic boundary. Therefore, we must pay attention to that there is a great difference in the shape and the quantity between the primary and the residual ferrite. The former was formed at a level of about 75 to 80% in area and the content of the latter was about 3.6 to 6% in this investigation. The both contents increased with an increase in the weld heat input.

3) As regards the equilibrium distribution of alloying elements between δ-and γ-phases at high temperature, austenitizers such as Ni, Mn and C were more soluble in γ-phase and ferritizers such as Cr were more soluble in δ-ferrite.

4) During solidification, in the 304 weld metal Ni, Mn, Si, S, and P segregated at the cellular dendritic boundaries and in the 310S weld metal Cr, Ni, Mn, Si, S and P segregated. It was particularly noted that in the 310S weld metal P and Si segregated to a higher level.

5) In 304 and 310S weld metals the increase in the solubility of S in the dendrite core could not be detected by the addition of S deliberately increased. However, in spite of the result that there was no distinct difference in the solubility between the both weld metals, the larger contents of sulphides were formed in 310S than in 304 because S segregates more easily in the primary solidification of the austenite. The addition of S content caused a corresponding increase in the amount of sulphides at the boundary. Sulphides are enriched in S, Mn and Cr in a granular or rod-like form.

6) The addition of P content showed a little increase in the solubility of P in the cellular dendrite core of the ferrite in 304 weld metal but hardly did in the dendrite core of the austenite in 310S weld metal. The 310S weld metal had a stronger tendency to form phosphides than the 304. The phosphides could be detected even in 310S weld metal containing about 0.02%P, and it almost corresponds to 304 weld metal containing about 0.2%P. In case of 310S weld metal phosphides were predominantly formed in a film-like form along grain boundaries.

Acknowledgements

The authors wish to thank Mr. S. Saruwatari working for Nippon Steel Corporation for his supplying materials and acknowledge the work of Professor I. Okamoto of JWRI for the co-operation of EPMA.

References

