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Abstract
The fiber-sum construction gives us many interesting examples of Lefschetz fibra-

tions. Which Lefschetz fibrations can be decomposed as fiber-sums? Stipsicz obtained
some results on the fiber-sum decomposition, which state about the relationship be-
tween the minimality and the fiber-sum decomposability of Lefschetz fibrations. He
proved that every Lefschetz fibration with section of self-intersection number�1 can-
not be decomposed as any nontrivial fiber-sum. In this paper,we show that the reverse
of this theorem does not hold and we characterize genus-2 decomposable Lefschetz fi-
brations withbC2 D 1.

1. Introduction

A Lefschetz fibrationis a smooth mapf W X! 6, where X is a closed connected
oriented smooth 4-manifold and6 is a closed connected oriented surface, such thatf
has finitely many critical pointsC D fp1, p2, : : : , pmg and around eachpi and f (pi )
there are complex local coordinate neighborhoods compatible with the orientations of
X and6 on which f is of the form f (z1, z2) D z2

1 C z2
2. The genusof f is defined

to be the genus of a generic fiber off . The singular fibers of a Lefschetz fibration
are obtained from the nearby generic fibers by collapsing a simple closed curve, called
the vanishing cycle, to a point. A singular fiber is calledreducible or irreducible ac-
cording to whether the corresponding vanishing cycle separates or dose not separate in
the generic fiber. A Lefschetz fibrationf is relatively minimalif there is no fiber con-
taining a smooth sphere of self-intersection number�1. We will always assume that a
Lefschetz fibrationf is injective on its critical points setC D fp1, p2, : : : , pmg and f
is relatively minimal. Moreover, in this paper, we will assume that a base space6 is a
2-sphere. For the definitions and more details on Lefschetz fibrations, see [4] and [15].

Lefschetz fibrations have been known as important structures on 4-manifolds ever
since Donaldson [2] showed that, after blow-ups, every closed symplectic 4-manifolds
admits Lefschetz fibrations and Gompf [4] showed that closed4-manifolds with Lefschetz
fibrations admit symplectic structures. So, we can study thetopology of symplectic
4-manifolds through Lefschetz fibrations.

2000 Mathematics Subject Classification. Primary 57R17; Secondary 32Q65.
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Many examples of Lefschetz fibrations are given by projectivecomplex surfaces.
In particular, they are often constructed from double branched coverings of surface bun-
dles like the Hirzebruch surfaces. On the other hand, since the isomorphism class of
a genus-g Lefschetz fibrationX ! S2 is determined by its global monodromy, genus-
g Lefschetz fibrations overS2 can be also constructed from positive relations in the
mapping class group0g of genusg corresponding to their global monodromies. Here,
a positive relationis the relation obtained from a factorization of the identity via posi-
tive Dehn twists on a surface6g of genusg. Moreover, we can construct Lefschetz
fibrations from given fibrations via the fiber-sum, which is the most topological tech-
nique using the “cut-and-paste” method.

It is an important problem whether a Lefschetz fibration is decomposable into fiber-
sum. Since the fiber-sum decomposability of a Lefschetz fibration f W X ! S2 implies
that the corresponding positive relationw D 1 can be written as the productw1w2 D 1
of nontrivial positive relationsw1 D 1 andw2 D 1 up to elementary transformations and
conjugations, the fiber-sum decomposability problem is important from the viewpoint of
the mapping class group as well. For more details on positiverelations, see [3] and [4].

QUESTION 1.1. Which Lefschetz fibration overS2 can be decomposed as the
fiber-sum of nontrivial Lefschetz fibrations overS2?

Stipsicz proved the following result on the fiber-sum decomposition, which starts
studying the relationship between the minimality and the fiber-sum decomposition of
Lefschetz fibrations.

Theorem 1.1 (Stipsicz [19], Smith [17]). If a Lefschetz fibration fW X ! S2

admits a section with self-intersection number�1, then it cannot be decomposed as
any nontrivial fiber-sum.

Under this theorem, Stipsicz proposed the following question in [19].

QUESTION 1.2. For a Lefschetz fibrationf W X ! S2 with nontrivial fiber-sum
decomposition, isX minimal?

For this question, Stipsicz conjectured that any nontrivial fiber-sum X1 ℄F X2 is
minimal, and Usher proved this conjecture in [23]. Question1.2 was solved affirma-
tively. On the other hand, Theorem 1.1 naturally raises the following question:

QUESTION 1.3 (Conjecture 2.4 [19]). Does the converse of Theorem 1.1 hold?
Namely, does every Lefschetz fibration overS2 without nontrivial fiber-sum decom-
position admit a section with self-intersection number�1?

In this paper, we deal with Question 1.3 and Question 1.1 for genus-2 Lefschetz
fibrations withbC2 D 1, and we will prove the following:
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Theorem 1.2. Question 1.3has a counterexample. There is a Lefschetz fibration
f W X ! S2 such that
(1) f cannot be decomposed as any nontrivial fiber-sum;
(2) f admits no section with self-intersection number�1.

Theorem 1.3. Let f W X ! S2 be a genus-2 Lefschetz fibration with bC2 (X) D 1.
If f W X ! S2 is decomposed as the nontrivial fiber-sum XD X1 ℄F X2, then we have
the following:
(1) X is not a rational surface nor a ruled surface.

(2) Each Xi (i D 1, 2) is diffeomorphic to S2 � T2 ℄ 3CP2 or S2 � T2 ℄ 4CP2.

The organization of this paper is as follows: In §3, we introduce a genus-2
Lefschetz fibration overS2 constructed by Auroux [1] and we prove that it provides a
counterexample to Question 1.3. In §4, we consider decomposable genus-2 Lefschetz
fibrations withbC2 D 1 and prove Theorem 1.3.

The author would like to thank the referee for his comments onthis paper.

2. Preliminaries

Let fi W Xi ! S2 (i D 1, 2) be a genus-g Lefschetz fibration. Removing regular
neighborhoodsN(F1), N(F2) of generic fibersF1, F2 in each, we glue these open re-
mainders along their boundaries by using a fiber-preservingdiffeomorphism' W �(X1�
Int N(F1))! �(X2�Int N(F2)) with f2Æ' D f1 on �(X1�Int N(F1)). We denote the re-
sultant 4-manifold byX1℄F X2, that is, X1℄F X2 D (X1� Int N(F1))[' (X2� Int N(F2)).
Then X1 ℄F X2 admits a genus-g Lefschetz fibrationX1 ℄F X2 ! S2 associated tof1

and f2. We call the genus-g Lefschetz fibrationX1 ℄F X2 ! S2 the fiber-sumof f1

and f2. The diffeomorphism type ofX1 ℄F X2 might depend on the choice of the glu-
ing diffeomorphism'. Indeed, in [14] Ozbagci and Stipsicz construct infinitely many
Lefschetz fibrations as the fiber-sums from the same buildingblocks by using various
gluing diffeomorphisms. For the sake of brevity, we do not record those dependencies.

We begin with the following formulas for classical invariants of the fiber-sums.

Lemma 2.1. Let fi W Xi ! S2 (i D 1, 2) be a genus-g Lefschetz fibration. Then,
for a fiber-sum X1 ℄F X2! S2 of f1 and f2, we have the following, where we denote
the Euler characteristic of X by e(X):
(1) e(X1 ℄F X2) D e(X1)C e(X2)C 4(g� 1),
(2) bC2 (X1 ℄F X2) � b1(X1 ℄F X2) D 2g� 1� (b1(X1)C b1(X2))C (bC2 (X1)C bC2 (X2)),
(3) c2

1(X1 ℄F X2) D c2
1(X1)C c2

1(X2)C 8(g� 1).

Proof. (1) Let N(Fi ) be the tubular neighborhood of a generic fiberFi of fi
(i D 1, 2). Then,X1 ℄F X2 D (X1� Int N(F1))[' (X2� Int N(F2)), where' W �N(F1)!�N(F2) is the gluing diffeomorphism. Hence, we can get the formulaby calculating
the Euler characteristic straightly.
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(2) Sincee(Xi ) D 2� 2b1(Xi )C bC2 (Xi )C b�2 (Xi ) and � (Xi ) D bC2 (Xi )� b�2 (Xi ),
we get e(Xi )C � (Xi ) D 2� 2b1(Xi )C 2bC2 (Xi ). Hence, by the Novikov additivity of
signatures, we have that

2� 2b1(X1 ℄F X2)C 2bC2 (X1 ℄F X2)

D e(X1 ℄F X2)C � (X1 ℄F X2)

D e(X1)C e(X2)C 4(g� 1)C � (X1)C � (X2)

D (e(X1)C � (X1))C (e(X2)C � (X2))C 4(g� 1)

D 4g� 2(b1(X1)C b1(X2))C 2(bC2 (X1)C bC2 (X2)).

(3) By the Hirzebruch’s signature theorem, we have that

c2
1(X1 ℄F X2) D 3� (X1 ℄F X2)C 2e(X1 ℄F X2)

D 3� (X1)C 3� (X2)C 2e(X1)C 2(X2)C 8(g� 1)

D c2
1(X1)C c2

1(X2)C 8(g� 1).

REMARK 2.1. Let f W X ! S2 be a genus-g (� 2) Lefschetz fibration.
(1) SinceX admits a symplectic structure, we havebC2 (X) � 1. Every nontrivial genus-
g Lefschetz fibrationX ! S2 has irreducible singular fibers and so has nonseparating
vanishing cycles [18]. Hence, we haveb1(X) < 2g. If we choose the identity map as
the gluing map' for the self fiber-sumX ℄F X, then we haveb1(X ℄F X) D b1(X).
Thus, because ofbC2 (X) � 1 andb1(X) < 2g, it follows from Lemma 2.1 that we have
bC2 (X ℄F X) > 1 for the self fiber-sumX ℄F X with the identity map as the gluing
map'.
(2) Since the self fiber-sumX ℄F X is a minimal symplectic 4-manifold withbC2 (X ℄F

X) > 1 by Theorem 1.5 in [18] or the Stipsicz conjecture [23], it follows from [22]
that we havec2

1(X ℄F X) � 0. Hence, by Lemma 2.1 we have 2c2
1(X) C 8(g � 1) D

c2
1(X ℄F X) � 0, i.e. c2

1(X) � 4(1� g).

3. An indecomposable Lefschetz fibration which cannot admitsections with
self-intersection number�1

We consider fiber-sums of genus-2 Lefschetz fibrations in this section and §4. Let
f W X ! S2 be a non-minimal genus-2 Lefschetz fibration. The total space X admits a
symplectic structure such that fibers are symplectic submanifolds. Then, by the (�1)-curve
theorem [22,9,15] we may assume that smooth 2-spheres inX with self-intersection num-
ber�1 are pseudo-holomorphic (�1)-curves in the symplectic manifoldX. By using the
(�1)-curve theorem and the theory of pseudo-holomorphic curves effectively, the author
proved the following theorem. See also [7] and [8].
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Table 1. Possible pairs (n, s) as geography

bC2 Possible pairs (n, s) EX

(16, 2), (30, 0) Type (1, 1)
bC2 > 1 (28, 1), (40, 0) Type (1)

(14, 3), (28, 1) Type (2)
bC2 D 1 nC 2sD 20, n > 0, s � 0

nC 2sD 10, n > 0, s � 0

Theorem 3.1 ([15]). Let f W X ! S2 be a non-minimal genus-2 Lefschetz fibra-
tion. Suppose that X is not rational nor ruled. Then, smooth2-spheres in X with
self-intersection number�1 are Z-homologous to pseudo-holomorphic(�1)-curves by
changing orientations of spheres if necessary. Moreover, let EX be the set of all classes
represented by pseudo-holomorphic(�1)-curves in X. Then, EX consists of at most two
classes andEX is one of the following three:
Type (1, 1): EX D fE1, E2g, E1 � F D E2 � F D 1.
Type (1): EX D fEg, E � F D 1.
Type (2): EX D fEg, E � F D 2.

In the first and the second cases, spheres representingEX are sections off W X !
S2. Note that E1 � E2 D 0 for E1 and E2 in the case of Type (1, 1), which follows
from the proof of Corollary 3 in [7]. If a sphereE with self-intersection number�1
is of Type (2), that is,E intersects any generic fiber in two points, then we callE a
double section.

The Stipsicz conjecture, which was proved by Usher [23, 16],implies that non-
minimal Lefschetz fibrations overS2 are indecomposable into fiber-sum, namely, irredu-
cible. In [15], the author proved the following theorem on the geography of non-minimal
genus-2 Lefschetz fibrations overS2:

Theorem 3.2 ([15]). Only finitely many pairs(n, s) can be realized as the pairs
of the numbers of singular fibers in non-minimal genus-2 Lefschetz fibrations over S2.
Here, n and s are the numbers of irreducible and reducible singularfibers, respectively.
Furthermore, we have the table of possible pairs of the numbers of singularfibers in
non-minimal genus-2 Lefschetz fibrations over S2. SeeTable 1.

In fact, there is a non-minimal genus-2 Lefschetz fibration over S2 of Type (2)
realizing (n, s) D (28, 1) in Table 1, which is constructed by Auroux [1]. We introduce
this fibration and prove that it is a counterexample to Question 1.3: Consider a curve
C of degree 7 inCP2 with two triple points p1 and p2. Then, we may assume that
the three branches ofC through pi intersect each other transversely. LetL0 be the
line through p1 and p2. Since [C] � [L0] D 7, the line L0 intersectsC transversely in
another pointp. Next blow upCP2 at p and let B be the proper transform ofC in
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Fig. 1.

the Hirzebruch surfaceF1 D CP2 ℄ CP2. Let L be a line inCP2, F a fiber of theCP1-bundle F1 ! CP1 and E the exceptional curve of the blow-up. We have that
[E] D [L] � [F ] and [B] D [C] � [E] D 6[L]C [F ]. The proper transformF0 of L0 is
the fiber ofF1 through two triple pointsp1 and p2. The exceptional curveE intersects
the curvesB and F0 in one point each transversely.

Next blow up F1 at p1 and p2 and let P be the resultant complex surface. We
denote the proper transforms ofB and F0 in P by OB and OF0, respectively. See Fig. 1.

If we let E1 and E2 be the exceptional curves of the two blow-ups, then we have
the relations [OB] D [B]�3[E1]�3[E2] D 6[L]C [F ]�3[E1]�3[E2] and [ OF0] D [F ]�
[E1]� [E2]. Since [OB]C [ OF0] D 2(3[L]C [F ]�2[E1]�2[E2]) is divisible by 2, we can
consider the double cover� W OY! P branched alongOB[ OF0. Because of [F ] � [E1] D
[F ] � [E2] D 0, we have [OF0]2 D �2 and so [��1( OF0)]2 D �2=2D �1. Hence,��1( OF0)
is a rational curve with self-intersection number�1. Let Of W OY! CP1 be the fibration
obtained by composing the double cover� W OY ! P with the projectionP ! CP1

induced from the bundle projectionF1 ! CP1. Because of ([OB] C [ OF0]) � [F ] D 6, a
fiber of Of is a closed surface of genus 2 obtained as the double cover ofCP1 branched
at 6 points. Namely,Of is a genus-2 fibration. Then, the fiber ofOf corresponding toF0

is ��1( OF0[E1[E2)D ��1( OF0)[��1(E1)[��1(E2). Here, the preimages��1(E1) and��1(E2) are elliptic curves with self-intersection number�2, for these are obtained as
the double covers of spheresE1 and E2 branched at 4 points each.

By blowing down��1( OF0) in OY, we obtain a holomorphic genus-2 fibrationf W Y!CP1 induced from the genus-2 fibrationOf W OY ! CP1. This fibration f has one re-
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Fig. 2.

ducible singular fiber consisting of two elliptic curves with self-intersection number�1.
See Fig. 2. Then, Auroux proved in [1] that the complex surface Y admits a holomorphic
genus-2 Lefschetz fibrationf W Y! CP1 with (n, s) D (28, 1).

Let E00 be the resultant curve inY obtained from the exceptional curveE in F1

via these blow-ups/down. See Fig. 2. By chasing the exceptional curve E through the
blow-ups/down, we can show thatE00 is a rational curve inY with self-intersection
number�1. For more details, see [15].

The exceptional curveE00 passes through the singular point of the reducible sin-
gular fiber which is the intersection between two elliptic curves induced from��1(E1)
and ��1(E2), and E00 comes from a section of the Hirzebruch surfaceF1. Hence, the
intersection number [E00] � [F ] of E00 with a generic fiberF in Y is 2.

Therefore, the holomorphic genus-2 Lefschetz fibrationf W Y ! CP1 admits a
double sectionE00 with self-intersection number�1, that is, f represents (n,s)D (28, 1)
of Type (2) in Table 1.

We need the following proposition in order to prove that the Auroux’s genus-2
Lefschetz fibrationf is indecomposable into fiber-sum.

Proposition 3.1. If a genus-g(� 2) Lefschetz fibration fW X! S2 admits a double
section with self-intersection number�1, then it cannot be decomposed as any nontrivial
fiber-sum.

Proof. Let E be a double section off with self-intersection number�1. Suppose
that f W X ! S2 is decomposed as a nontrivial fiber-sumX D X1 ℄F X2. Note that
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X1 ℄F X2 D (X1 � Int N(F1)) [' (X2 � Int N(F2)), where' W �N(F1)! �N(F2) is the
gluing diffeomorphism. HereFi is a generic fiber of the Lefschetz fibrationfi W Xi !
S2 and N(Fi ) is the tubular neighborhood ofFi (i D 1, 2). We may assume that the
intersectionE\ �(Xi � Int N(Fi )) consists of two circles by taking a sufficiently small
disk Di D fi (N(Fi )) � S2 if necessary.

Since a sphere is separated into an annulus and two disks by two circles, one of
E \ (X1� Int N(F1)) and E \ (X2� Int N(F2)) is an annulus and the other consists of
two disks. We assume that ofE\ (X1� Int N(F1)) consists of two disks. We consider
the fiber-sumXi ℄F Xi of two copies ofXi (i D 1, 2). Let �i be the homology class
in Xi ℄F Xi coming from the double sectionE. Since E\ (X1� Int N(F1)) consists of
two disks,�1 is represented by two spheresC1, C2 in X1 ℄F X1, which are sections of
X1℄F X1. On the other hand, sinceE\(X2� Int N(F2)) is an annulus,�2 is represented
by a torusT in X2 ℄F X2. Then, we can see that�2

2 � 0. Remark 2.1 (1) shows that
bC2 (Xi ℄F Xi ) > 1 (i D 1, 2). By applying the adjunction inequality [5, 12] toX2 ℄F X2

with bC2 (X2 ℄F X2) > 1, we have that 0D 2g(T) � 2 � jhK , �2ij C �2
2 � �2

2. Here,
K denotes the canonical class of the symplectic manifoldX2 ℄F X2. Hence,�2

2 � 0.
Moreover, since�2

1 C �2
2 D 2[E]2 D �2 and both�2

1 and �2
2 are even, we have that�2

1 � 0 or �2
1 D �2.

The case of�2
1 � 0: SinceC1\C2D ; and�2

1 D [C1]2C [C2]2, we have that [C1]2

or [C2]2 is non-negative. Hence, it follows from the vanishing theorem of Seiberg–
Witten invariants [4] that the Seiberg–Witten invariantSWX1℄F X1 of X1 ℄F X1 is trivial.
However, X1 ℄F X1 is a symplectic manifold and so it follows from Taubes’ theorem
[21] that the Seiberg–Witten invariantSWX1℄F X1 is nontrivial. This is a contradiction.

The case of�2
1 D �2: By the above argument, it does not come about that either

of the self-intersection numbers of two spheresC1 and C2 in X1 ℄F X1 is non-negative.
Thus, we get that [C1]2 D [C2]2 D �1. Then, the nontrivial fiber-sumX1 ℄F X1 !
S2 has a section with self-intersection number�1, and so this is in contradiction to
Theorem 1.1.

Hence, the fact that a nontrivial fiber-sumX1 ℄F X2 has a double section with self-
intersection number�1 contradicts itself. This completes the proof.

Therefore, we have the following theorem:

Theorem 3.3. There exists a holomorphic genus-2 Lefschetz fibration fW X !CP1 such that
(1) f cannot be decomposed as any nontrivial fiber-sum;
(2) f cannot admit any section with self-intersection number�1;
(3) X is not minimal and f admits only one double section with self-intersection num-
ber �1, which intersects any generic fiber in two points.

We can consider the Auroux’s genus-2 Lefschetz fibration as aexample of fibra-
tions in Theorem 3.3.
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4. fiber-sums with bC2 D 1

Suppose that a genus-2 Lefschetz fibrationf W X ! S2 has n irreducible singular
fibers ands reducible singular fibers. Since the abelianization0ab

2 of the mapping class
group 02 is isomorphic toZ=10Z, we haven C 2s � 0 (mod 10) [11]. Since every
singular fiber contributes 1 to the Euler characteristice(X), we havee(X) D nC s� 4.
Moreover, for the signature� (X), we have� (X) D �3n=5� s=5 by the Matsumoto’s
local signature formula [11].

Ozbagci proved in [13] that the minimal number of singular fibers in a genus-2
Lefschetz fibration overS2 is 7 or 8. Then, we can characterize a genus-2 Lefschetz
fibration with seven or eight singular fibers.

Proposition 4.1. Let f W X ! S2 be a genus-2 Lefschetz fibration.

(1) If f W X! S2 has seven singular fibers, then X is diffeomorphic to S2�T2℄3CP2.

(2) If f W X! S2 has eight singular fibers, then X is diffeomorphic to S2�T2 ℄4CP2.

Proof. Let f W X! S2 be a genus-2 Lefschetz fibration withn irreducible singular
fibers ands reducible singular fibers.

(1) Suppose thatnC sD 7. Because ofnC 2s� 0 (mod 10), we have (n, s) D
(4, 3). Since eachX satisfies thatnC 2sD 10, we obtain that

2� 2b1(X)C 2bC2 (X) D e(X)C � (X) D (nC s� 4)C ��3

5
n� 1

5
s

�

D 2(nC 2s)

5
� 4D 0

and so

b1(X) D bC2 (X)C 1.

Let H be the subspace ofH1(62I R) generated by vanishing cycles ofX. Here,62 denotes the reference fiber of genus 2. Since a Lefschetz fibration over S2 must
have a nonseparating vanishing cycle [18], we have dimH � 1. Since H1(XI R) D
H1(62IR)=H , we obtain thatb1(X)D 4�dim H � 3. Thus, we have that 1� bC2 (X)D
b1(X) � 1� 2, therefore, (bC2 , b�2 , b1) D (1, 4, 2) or (2, 5, 3).

Suppose that (bC2 , b�2 , b1) D (2, 5, 3). Since� (X) D �3 and e(X) D 3, we have
K 2

X D 3� (X)C 2e(X) D �3 < 0. Hence, it follows from Theorem 0.2 in [22] thatX
is not minimal, that is,f W X ! S2 is a non-minimal genus-2 Lefschetz fibration with
(n, s)D (4, 3). However, by the table, Table 1, of the geography of non-minimal genus-
2 Lefschetz fibrations overS2, there is not any non-minimal genus-2 Lefschetz fibration
over S2 with (n, s) D (4, 3). Therefore, a genus-2 Lefschetz fibrationf W X ! S2 with
nC sD 7 satisfies that (bC2 , b�2 , b1) D (1, 4, 2).

Next we shall prove thatX is a ruled surface. Suppose thatX is not a ruled sur-
face. Let QX be the minimal model ofX. SincebC2 ( QX) D 1 and b1( QX) D 2, we have
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Fig. 3.

that c2
1( QX) D 3� ( QX) C 2e( QX) D 5bC2 ( QX) � b�2 ( QX) � 4b1( QX) C 4 D 1 � b�2 ( QX). More-

over, since QX is a minimal symplectic 4-manifold withbC2 D 1 and QX is not rational

nor ruled, it follows from [10] that QX satisfiesc2
1( QX) � 0. Hence, we haveb�2 ( QX) � 1.

SinceX is not rational nor ruled andX admits a genus-2 Lefschetz fibration overS2, it
follows from Theorem 3.1 thatX contains at most two 2-spheres with self-intersection
number�1 essentially. Therefore, we have thatb�2 (X) � 3. This is in contradiction
with b�2 (X) D 4. Thus,X is a ruled surface. It follows from Corollary 4.1 in [20] that
X is the blow-up of a ruled surface over the torusT2, and soX is diffeomorphic to

S2 � T2 ℄ 3CP2.
(2) Suppose thatnC sD 8. Because ofnC 2s� 0 (mod 10), we have (n, s) D

(6, 2). In the same manner as above, we have (bC2 , b�2 , b1) D (1, 5, 2) or (2, 6, 3). The
case of (bC2 , b�2 , b1) D (2, 6, 3) is a contradiction by a Taubes’ theorem [22] and the
geography of non-minimal genus-2 Lefschetz fibrations overS2 [15]. Thus, a genus-2
Lefschetz fibrationf W X! S2 with nC sD 8 satisfies that (bC2 , b�2 , b1) D (1, 5, 2). In
the same manner as above, it follows thatX is the blow-up of a ruled surface over the

torus T2, and soX is diffeomorphic toS2 � T2 ℄ 4CP2.

REMARK 4.1. Matsumoto showed in [11] thatS2 � T2 ℄ 4CP2 admits a genus-2
Lefschetz fibration overS2 with six irreducible singular fibers and two reducible sin-
gular fibers and its global monodromy is (�1 � � � �2 � �3)2, where�1, �2, �3 and � are
positive Dehn twists along curves indicated on Fig. 3.

However, the author does not know whetherS2 � T2 ℄ 3CP2 admits a Lefschetz
fibration overS2 with seven singular fibers or not.

Lemma 4.1. Let f W X ! S2 be a genus-2 Lefschetz fibration with n irreducible
singular fibers and s reducible singular fibers. If bC

2 (X) D 1, then we have either
(i) nC 2sD 10, b1(X) D 2 or (ii) nC 2sD 20, b1(X) D 0.



THE NECESSARY CONDITION ON THE FIBER-SUM 959

Proof. SinceX is a symplectic 4-manifold withbC2 (X)D 1, X is either the blow-
up of a ruled surface orb1(X) 2 f0, 2g [20]. Moreover, we have that

1� b�2 (X) D �3

5
n� 1

5
s

and

3� 2b1(X)C b�2 (X) D nC s� 4,

and so we obtain thatnC 2s D 20� 5b1(X). If X is the blow-up of a ruled surface
over the surface6h of genush, then the genus-2 Lefschetz fibrationf must satisfy
that 0� 2h � 2 [20]. Moreover, because ofh D 0, 1, we obtain thatb1(X) D 0, 2.
Thus, we see thatb1(X) 2 f0, 2g anyway. If b1(X) D 0, then the above relations imply
that nC 2sD 20. Whenb1(X) D 2, nC 2sD 10.

Since the mapping class group0g is a infinite group, we might construct infinitely
many distinct Lefschetz fibrations from given two Lefschetzfibrations via the fiber-sum
operation. Hence, it is difficult to decide which Lefschetz fibrations are decomposable
into fiber-sum. Thus, we restrict the problem to the case ofbC2 D 1. Then, we have
the following theorem:

Theorem 4.1. Let f W X ! S2 be a genus-2 Lefschetz fibration with bC2 (X) D 1.
If f W X ! S2 is decomposed as the nontrivial fiber-sum XD X1 ℄F X2, then we have
the following:
(1) X is not a rational surface nor a ruled surface.

(2) Each Xi (i D 1, 2) is diffeomorphic to S2 � T2 ℄ 3CP2 or S2 � T2 ℄ 4CP2.

Before giving the proof of Theorem 4.1, we note that one can obtain a lower
bound for the numbers of reducible singular fibers in genus-2 Lefschetz fibrations. For
example, we have thats� 2 for genus-2 Lefschetz fibrations overS2 with nC2sD 10,
becausec2

1(X) � �4 by Remark 2.1 (2) andc2
1(X) D 3� (X)C 2e(X) D s� 6.

Proof of Theorem 4.1. Letn and s be the numbers of irreducible and reducible
singular fibers of f W X ! S2, respectively. By Lemma 4.1, we havenC 2s D 10 or
n C 2s D 20. Suppose that each factorXi ! S2 has ni irreducible andsi reducible
singular fibers (i D 1, 2). Sincen D n1 C n2, s D s1 C s2, ni C 2si � 0 (mod 10)
and ni > 0 (i D 1, 2), the case ofnC 2sD 10 does not occur. Hence, we obtain that
n C 2s D 20, ni C 2si D 10 (i D 1, 2) and sob1(X) D 0. Since a genus-2 Lefschetz
fibration has at least 7 singular fibers [13, 6], we have thatnC s � 7 andni C si � 7
(i D 1, 2).

Since eachXi satisfies thatni C 2si D 10, we have thatb1(Xi ) D bC2 (Xi ) C 1
(i D 1, 2). On the other hand, sincebC2 (Xi ) � 1 and b1(Xi ) � 3, we get that 2�
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1C bC2 (Xi ) D b1(Xi ) � 3. Hence, we obtain that for eachi ,�
b1(Xi ) D 2,
bC2 (Xi ) D 1

or

�
b1(Xi ) D 3,
bC2 (Xi ) D 2.

(4.1)

Let H and Hi be subspaces ofH1(62IR) generated by vanishing cycles ofX and
Xi , respectively. Then, we have thatH D '�H1CH2, where' is the gluing map of the
fiber-sum. SinceH1(XIR) D H1(62IR)=H and H1(Xi IR) D H1(62IR)=Hi (i D 1, 2),
we obtain thatb1(X) D 4 � dim H and b1(Xi ) D 4 � dim Hi (i D 1, 2). Thus, we
have that 4D dim H D dim('�H1C H2) D dim H1C dim H2� dim('�H1\ H2) and so
dim H1C dim H2 D 4C dim('�H1 \ H2) � 4. Hence, we have that

b1(X1)C b1(X2) D 8� (dim H1C dim H2) � 4.(4.2)

Therefore, it follows from (4.1) and (4.2) thatb1(X1) D b1(X2) D 2 and bC2 (X1) D
bC2 (X2) D 1. Because ofni C 2si D 10, we have thatsi � 2. Hence, the pair (ni , si )
satisfying thatni C2si D 10, ni Csi � 7 andsi � 2 is (ni , si )D (6, 2) or (ni , si )D (4, 3).
Therefore, it follows from Proposition 4.1 that eachXi is diffeomorphic toS2 � T2 ℄
3CP2 or S2 � T2 ℄ 4CP2.

Next we shall prove thatX is not rational nor ruled. By Remark 2.1 (2), we
havec2

1(Xi ) � �4. Hence, it follows from Lemma 2.1 that we havec2
1(X) D c2

1(X1)C
c2

1(X2) C 8 � 0. Suppose thatX is a rational surface. Because of (ni , si ) D (6, 2) or
(ni , si ) D (4, 3), we havesD s1Cs2 2 f4, 5, 6g and soc2

1(X) D s�4 2 f0, 1, 2g. Hence,

X is not diffeomorphic toS2�S2. Thus we setX D CP2℄kCP2. Sincec2
1(X)D 9�k,

we get thatk � 9. By [9], note thatX admits a unique symplectic structure! essen-
tially. Let KX be the canonical class ofX and let F be the class represented by a
generic fiber. SinceX is rational andK 2

X D c2
1(X) � 0, we have thatKX � ! < 0. On

the other hand, a generic fiber is a!-symplectic submanifold and soF � ! > 0. Since
(�KX) � ! > 0, K 2

X � 0, F � ! > 0 and F2 D 0, the classes�KX and F belong to the

closure of the forward coneCC D f� 2 H2(XIR) j �2 � 0,� ¤ 0,� �! � 0g. Hence, by
the light cone lemma [9], we obtain that (�KX) � F � 0, that is,KX � F � 0. However,
by applying a generic fiber to the adjunction formula, we obtain that

2D 2genus(F) � 2D KX � F C F2 D KX � F
and this is a contradiction. Therefore,X is not a rational surface. Suppose thatX is
a ruled surface. Because ofb1(X) D 0, X is also a rational surface. Hence,X is not
ruled neither.

REMARK 4.2. When we construct a Lefschetz fibration overS2 with bC2 D 1 by
using fiber-sum construction, we can not choose any self fiber-sumsX ℄F X! S2 with
the identity map as the gluing map because of Remark 2.1 (1). On the other hand,
we can choose the gluing map' of a self fiber-sumX ℄F X ! S2 such thatbC2 (X ℄F
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Fig. 4.

X) D 1. We will construct such an example from the Matsumoto’s genus-2 Lefschetz

fibration S2 � T2 ℄ 4CP2! S2.
Let ai and bi (i D 1, 2) be the curves indicated on Fig. 4. Then, we can write

[�1] D [b1] C [b2], [�2] D [a1] C [a2], [�3] D [a1] C [a2] C [b1] C [b2] and [� ] D 0 in
homology, where each�i denotes the curve indicated on Fig. 3.

For the positive Dehn twists�a2 and �b1 along the curvesa2 and b1, we take the
diffeomorphismhD �b1Æ�a2W 62! 62. The effect of a positive Dehn twist onH1(62IZ)
is known asthe Picard–Lefschetz formulaand we have that

�C�(�) D � � (� � C)[C]

for the positive Dehn twist�C along C. In the case of�a2 and �b1, we have

�a2�([a1]) D [a1], �a2�([a2]) D [a2], �a2�([b1]) D [b1], �a2�([b2]) D [a2] C [b2],

�b1�([a1]) D [a1] � [b1], �b1�([a2]) D [a2], �b1�([b1]) D [b1], �b1�([b2]) D [b2].

Hence, it follows thath�([�1]) D [a2] C [b1] C [b2], h�([�2]) D [a1] C [a2] � [b1],
h�([�3]) D [a1]C2[a2]C [b2] and h�([� ]) D 0. Let X D (S2� T2 ℄4CP2) ℄F (S2� T2 ℄
4CP2) be the fiber-sum of two copies of the Matsumoto’s genus-2 Lefschetz fibration

S2 � T2 ℄ 4CP2 ! S2 with the gluing map' W 62 � S1 ! 62 � S1 associated toh.
If we let H be the subgroup ofH1(62I Z) generated by [�1], [�2] and [�3], then the
first homology groupH1(XIZ) is given by H1(XIZ) � H1(62IZ)=(H C h�H ), and so
we have

H1(XI Z) D [[a1], [a2], [b1], [b2] j [�1] D [�2] D [�3] D 0 and

h�([�1]) D h�([�2]) D h�([�3]) D 0]

D 0.

Therefore, we havebC2 (X) D 1 by Lemma 2.1 (2).
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