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Abstract

The fiber-sum construction gives us many interesting exaspf Lefschetz fibra-
tions. Which Lefschetz fibrations can be decomposed as dinmis? Stipsicz obtained
some results on the fiber-sum decomposition, which statetabe relationship be-
tween the minimality and the fiber-sum decomposability ofscketz fibrations. He
proved that every Lefschetz fibration with section of setersection number1 can-
not be decomposed as any nontrivial fiber-sum. In this papeshow that the reverse
of this theorem does not hold and we characterize genus<hgmusable Lefschetz fi-

brations withb] = 1.

1. Introduction

A Lefschetz fibrations a smooth mapf: X — X, where X is a closed connected
oriented smooth 4-manifold anB is a closed connected oriented surface, such that
has finitely many critical point€ = {ps, p2,..., pm} and around eaclp; and f(p;)
there are complex local coordinate neighborhoods conlpatilith the orientations of
X and £ on which f is of the form f(z, z) = Z2 + z5. The genusof f is defined
to be the genus of a generic fiber éf The singular fibers of a Lefschetz fibration
are obtained from the nearby generic fibers by collapsingrplsi closed curve, called
the vanishing cycleto a point. A singular fiber is calleceducible or irreducible ac-
cording to whether the corresponding vanishing cycle sgparor dose not separate in
the generic fiber. A Lefschetz fibratioh is relatively minimalif there is no fiber con-
taining a smooth sphere of self-intersection numbér We will always assume that a
Lefschetz fibrationf is injective on its critical points se€ = {ps, p2, ..., pm} and f
is relatively minimal. Moreover, in this paper, we will asseirthat a base space is a
2-sphere. For the definitions and more details on Lefschietations, see [4] and [15].

Lefschetz fibrations have been known as important strustare4-manifolds ever
since Donaldson [2] showed that, after blow-ups, everyedosymplectic 4-manifolds
admits Lefschetz fibrations and Gompf [4] showed that cl@gsetanifolds with Lefschetz
fibrations admit symplectic structures. So, we can studyttp®logy of symplectic
4-manifolds through Lefschetz fibrations.

2000 Mathematics Subject Classification. Primary 57R17pSeary 32Q65.
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Many examples of Lefschetz fibrations are given by projectivenplex surfaces.
In particular, they are often constructed from double bihaaccoverings of surface bun-
dles like the Hirzebruch surfaces. On the other hand, siheeigomorphism class of
a genusy Lefschetz fibrationX — S? is determined by its global monodromy, genus-
g Lefschetz fibrations oveB? can be also constructed from positive relations in the
mapping class group'y of genusg corresponding to their global monodromies. Here,
a positive relationis the relation obtained from a factorization of the identita posi-
tive Dehn twists on a surfac&y of genusg. Moreover, we can construct Lefschetz
fibrations from given fibrations via the fiber-sum, which i® ttnost topological tech-
nigue using the “cut-and-paste” method.

It is an important problem whether a Lefschetz fibration isateposable into fiber-
sum. Since the fiber-sum decomposability of a Lefschetztfdmaf : X — S? implies
that the corresponding positive relatian= 1 can be written as the produetw, = 1
of nontrivial positive relationsv; = 1 andw, = 1 up to elementary transformations and
conjugations, the fiber-sum decomposability problem isartgnt from the viewpoint of
the mapping class group as well. For more details on pogi@ilaions, see [3] and [4].

QUESTION 1.1. Which Lefschetz fibration ove®® can be decomposed as the
fiber-sum of nontrivial Lefschetz fibrations ov&f?

Stipsicz proved the following result on the fiber-sum decosifion, which starts
studying the relationship between the minimality and therfdum decomposition of
Lefschetz fibrations.

Theorem 1.1 (Stipsicz [19], Smith [17]). If a Lefschetz fibration f X — S
admits a section with self-intersection numbet, then it cannot be decomposed as
any nontrivial fiber-sum.

Under this theorem, Stipsicz proposed the following qoestn [19].

QUESTION 1.2. For a Lefschetz fibratiorf : X — S* with nontrivial fiber-sum
decomposition, isX minimal?

For this question, Stipsicz conjectured that any nontrifilser-sum X; g X5 is
minimal, and Usher proved this conjecture in [23]. Questio® was solved affirma-
tively. On the other hand, Theorem 1.1 naturally raises tiewing question:

QUESTION 1.3 (Conjecture 2.4 [19]). Does the converse of Theorem blii?h
Namely, does every Lefschetz fibration ov&f without nontrivial fiber-sum decom-
position admit a section with self-intersection numbet?

In this paper, we deal with Question 1.3 and Question 1.1 &arug-2 Lefschetz
fibrations withb] = 1, and we will prove the following:
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Theorem 1.2. Question 1.3has a counterexample. There is a Lefschetz fibration
f: X — S such that
(1) f cannot be decomposed as any nontrivial fiber-sum
(2) f admits no section with self-intersection numbet.

Theorem 1.3. Let f: X — S? be a genuf Lefschetz fibration with HX) =1
If f: X — S?is decomposed as the nontrivial fiber-sum=XX; ¢ X,, then we have
the following
(1) X is not a rational surface nor a ruled surface.
(2) Each % (i = 1, 2)is diffeomorphic to 3x T2#3CP2 or & x T2 #4CP2.

The organization of this paper is as follows: In 83, we introel a genus-2
Lefschetz fibration ove&? constructed by Auroux [1] and we prove that it provides a
counterexample to Question 1.3. In 84, we consider decoatpegenus-2 Lefschetz
fibrations withb; = 1 and prove Theorem 1.3.

The author would like to thank the referee for his commentghos paper.

2. Preliminaries

Let fi: X; — S (i = 1, 2) be a genug- Lefschetz fibration. Removing regular
neighborhoodsN(F;), N(F2) of generic fibersF;, F, in each, we glue these open re-
mainders along their boundaries by using a fiber-preserdifigomorphismeg: 9(X; —
INtN(F1)) — a(Xa—IntN(F,)) with foop = f1 on a(X1—IntN(Fy)). We denote the re-
sultant 4-manifold byX1 i X, that is, X1 g Xo = (X —IntN(F1)) U, (X2 — Int N(F)).
Then Xy fir X, admits a genug- Lefschetz fibrationX, fir X, — S? associated tof;
and f,. We call the genugr Lefschetz fibrationX; g X, — S the fiber-sumof f;
and f,. The diffeomorphism type oK, fr X, might depend on the choice of the glu-
ing diffeomorphisme. Indeed, in [14] Ozbagci and Stipsicz construct infinitelanmpy
Lefschetz fibrations as the fiber-sums from the same builtiogks by using various
gluing diffeomorphisms. For the sake of brevity, we do natorel those dependencies.

We begin with the following formulas for classical invariarof the fiber-sums.

Lemma 2.1. Let f: X; - S? (i =1, 2) be a genus-g Lefschetz fibration. Then
for a fiber-sum Xt X, - S of f; and , we have the followingwhere we denote
the Euler characteristic of X by(&):

(1) e(X1tr X2) = e(X1) + &(Xp) +4(g — 1),
(2) by (X1tr X2) —bi(Xa #F X2) = 29 — 1 — (by(X1) + b1(X2)) 4 (b3 (X1) + b3 (X2)),
(3) c(X1tE X2) = c&(X1) + C2(X2) + 8(g — 1).

Proof. (1) LetN(F) be the tubular neighborhood of a generic fibdgr of f;
(i =1,2). Then, Xy Xo = (X3 —IntN(F1)) U, (X2 — It N(F2)), whereg: aN(F;) —
dN(F,) is the gluing diffeomorphism. Hence, we can get the formacalculating
the Euler characteristic straightly.
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(2) Sincee(X;) =2 2by(X;) + bf (Xi) + b, (X;) and o(X) = by (X;) — b, (X;),
we gete(Xi) + o (X;) = 2 — 2by(Xi) + 2bJ (Xi). Hence, by the Novikov additivity of
signatures, we have that

2 — 20y (X1 i X2) 4+ 2b5 (X1 #F X2)

= (X1 fiF X2) + o(X1 8 X2)

= e(X1) + &(X2) + 4(g — 1) + o (X1) + 0 (X2)

= (e(X1) + 0(X1)) + (e(X2) + 0(X2)) + 4(g — 1)
= 4g — 2(b1(X1) + b1(X2)) + 2(b5 (X1) + by (X2)).

(3) By the Hirzebruch’s signature theorem, we have that

C2(X1 tE X2) = 30(X1 tF X2) + 26(Xq i X2)
= 3(7()(1) + 3U(X2) + 2e(X1) + 2(X2) + 8(9 — 1)
= C2(X1) + c3(X2) + 8(g — 1). O

REMARK 2.1. Letf: X — S be a genug (> 2) Lefschetz fibration.
(1) SinceX admits a symplectic structure, we havg(X) > 1. Every nontrivial genus-
g Lefschetz fibrationX — S? has irreducible singular fibers and so has nonseparating
vanishing cycles [18]. Hence, we habe(X) < 2g. If we choose the identity map as
the gluing mapg for the self fiber-sumX g X, then we haveby (X g X) = by(X).
Thus, because df; (X) > 1 andby(X) < 2g, it follows from Lemma 2.1 that we have
by (X e X) > 1 for the self fiber-sumX ¢ X with the identity map as the gluing
map ¢.
(2) Since the self fiber-sunX g X is a minimal symplectic 4-manifold with; (X ¢
X) > 1 by Theorem 1.5 in [18] or the Stipsicz conjecture [23], itldars from [22]
that we havec?(X tr X) = 0. Hence, by Lemma 2.1 we haveZpX) + 8(g — 1) =
cA(X g X) =0, i.e. ci(X) = 4(1—g).

3. An indecomposable Lefschetz fibration which cannot admitsections with
self-intersection number —1

We consider fiber-sums of genus-2 Lefschetz fibrations is $leiction and 84. Let
f: X — S be a non-minimal genus-2 Lefschetz fibration. The total epa@dmits a
symplectic structure such that fibers are symplectic sulfioids. Then, by the{1)-curve
theorem [22,9, 15] we may assume that smooth 2-sphenésiiith self-intersection num-
ber—1 are pseudo-holomorphie-()-curves in the symplectic manifold. By using the
(—1)-curve theorem and the theory of pseudo-holomorphicesueffectively, the author
proved the following theorem. See also [7] and [8].
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Table 1. Possible pairs1(s) as geography

by Possible pairsry, s) Ex
(16, 2), (30, 0) Type (1, 1)
bf > 1 [ (28, 1), (40, 0) Type (1)
(14, 3), (28, 1) Type (2)
by =1|n+2s=20,n>0,5s>0
n+2s=10,n>0,s>0

Theorem 3.1 ([15]). Let f: X — S be a non-minimal genu2-Lefschetz fibra-
tion. Suppose that X is not rational nor ruled. Thesmooth2-spheres in X with
self-intersection number1 are Z-homologous to pseudo-holomorphiel)-curves by
changing orientations of spheres if necessary. Moredee€x be the set of all classes
represented by pseudo-holomorpliiel)-curves in X. ThenEx consists of at most two
classes ancEy is one of the following three
Type(l, 1): Ex = {El, Ez}, Ei.-F=E,-F=1
Type(1): E&x ={E}, E-F =1
Type(2): Ex ={E}, E-F =2

In the first and the second cases, spheres represefitirage sections off : X —
. Note thatE; - E; = 0 for E; and E, in the case of Type (1, 1), which follows
from the proof of Corollary 3 in [7]. If a spher& with self-intersection number1
is of Type (2), that is,E intersects any generic fiber in two points, then we @lha
double section

The Stipsicz conjecture, which was proved by Usher [23, IBplies that non-
minimal Lefschetz fibrations ove®? are indecomposable into fiber-sum, namely, irredu-
cible. In [15], the author proved the following theorem oe tieography of non-minimal
genus-2 Lefschetz fibrations ovef:

Theorem 3.2 ([15]). Only finitely many pairgn, s) can be realized as the pairs
of the numbers of singular fibers in non-minimal ge@usefschetz fibrations over?S
Here n and s are the numbers of irreducible and reducible singtilaers respectively.
Furthermore we have the table of possible pairs of the numbers of sindfitb@rs in
non-minimal genug- Lefschetz fibrations over’SSeeTable 1

In fact, there is a non-minimal genus-2 Lefschetz fibrati#eroS? of Type (2)
realizing €, s) = (28, 1) in Table 1, which is constructed by Auroux [1]. We atduce
this fibration and prove that it is a counterexample to Quoesti.3: Consider a curve
C of degree 7 inCP? with two triple points p; and p,. Then, we may assume that
the three branches o€ through p; intersect each other transversely. et be the
line through p; and p,. Since ] -[Lo] = 7, the lineLg intersectsC transversely in
another pointp. Next blow upCP? at p and let B be the proper transform o in
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the Hirzebruch surfac&®; = CP2¢ CP2. Let L be a line inCP2, F a fiber of the
CPl-bundleF; — CP! and E the exceptional curve of the blow-up. We have that
[E] =[L]—[F] and [B] = [C]—[E] = 6[L] + [F]. The proper transfornt, of Lg is
the fiber ofF; through two triple pointsp; and p,. The exceptional curvé& intersects
the curvesB and Fq in one point each transversely.

Next blow upF; at p; and p, and let P be the resultant complex surface. We
denote the proper transforms Bf and Fo in P by B and Fy, respectively. See Fig. 1.

If we let E; and E; be the exceptional curves of the two blow-ups, then we have
the relations B] = [B] — 3[E4] — 3[E2] = 6[L] + [F] —3[E1] — 3[E2] and [Fg] = [F] —
[E1] —[Ea]. Since B] +[Fo] = 2(3[L] +[F] —2[E1] — 2[E;]) is divisible by 2, we can
consider the double cover: Y — P branched alondd U Fy. Because of ] -[E;] =
[F]-[Es] =0, we have Fog]2 = —2 and so f1(Fo)]2 = —2/2 = —1. Hence,r*(Fo)
is a rational curve with self-intersection numbet. Let f: Y — CP? be the fibration
obtained by composing the double cover Y — P with the projectionP — CP?
induced from the bundle projectiof, — CP!. Because of @] + [Fo]) -[F] =6, a
fiber of f is a closed surface of genus 2 obtained as the double cov@Pédfbranched
at 6 points. Namelyf is a genus-2 fibration. Then, the fiber 6fcorresponding td
is 7~ (FoUE1UEy) = n~Y(Fo) Un~Y(E1) Un~L(E,). Here, the preimages—(E;) and
7~Y(E,) are elliptic curves with self-intersection numbeR, for these are obtained as
the double covers of spherés and E, branched at 4 points each.

By blowing downnfl(lfo) in Y, we obtain a holomorphic genus-2 fibratidn Y —
CP! induced from the genus-2 fibratioh: Y — CPL. This fibration f has one re-
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ducible singular fiber consisting of two elliptic curves kvielf-intersection number1.
See Fig. 2. Then, Auroux proved in [1] that the complex s@fd@dmits a holomorphic
genus-2 Lefschetz fibratiof: Y — CP* with (n, s) = (28, 1).

Let E” be the resultant curve ilY obtained from the exceptional cuni in F;
via these blow-ups/down. See Fig. 2. By chasing the exasgitiourve E through the
blow-ups/down, we can show th&” is a rational curve inY with self-intersection
number—1. For more details, see [15].

The exceptional curvé&e” passes through the singular point of the reducible sin-
gular fiber which is the intersection between two elliptiovas induced fromr —%(E;)
and 7~ (E,), and E” comes from a section of the Hirzebruch surfae Hence, the
intersection numberH"] - [F] of E” with a generic fiberF in Y is 2.

Therefore, the holomorphic genus-2 Lefschetz fibrationY — CP! admits a
double sectiorE” with self-intersection number1, that is, f representsr(,s) = (28, 1)
of Type (2) in Table 1.

We need the following proposition in order to prove that thardux’s genus-2
Lefschetz fibrationf is indecomposable into fiber-sum.

Proposition 3.1. If a genus-g(> 2) Lefschetz fibration f X — S?* admits a double
section with self-intersection numbed, then it cannot be decomposed as any nontrivial
fiber-sum.

Proof. LetE be a double section of with self-intersection number1. Suppose
that f: X — S is decomposed as a nontrivial fiber-suh= X; i X,. Note that
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X1 Xo = (X1 — Int N(Fp)) Uy (X5 = Int N(F2)), whereg: aN(F;) — aN(F,) is the
gluing diffeomorphism. Herd~ is a generic fiber of the Lefschetz fibratidi: X; —
S and N(F;) is the tubular neighborhood df (i = 1, 2). We may assume that the
intersectionE N a(X; — Int N(F;)) consists of two circles by taking a sufficiently small
disk D; = fi(N(F)) c S if necessary.

Since a sphere is separated into an annulus and two disks dyitales, one of
E N (Xy—IntN(Fp)) and E N (X; —Int N(F,)) is an annulus and the other consists of
two disks. We assume that & N (X; — Int N(F1)) consists of two disks. We consider
the fiber-sumX; #i¢ X; of two copies ofX; (i = 1, 2). Leto; be the homology class
in Xi tg X; coming from the double sectioB. Since E N (X; —Int N(F,)) consists of
two disks,«; is represented by two spher€s, C, in X; i X1, which are sections of
X1tF X1. On the other hand, sinde N (X, —IntN(F)) is an annulusg; is represented
by a torusT in X; g X,. Then, we can see tha1§ < 0. Remark 2.1 (1) shows that
by (Xi tr Xi) > 1 (i =1, 2). By applying the adjunction inequality [5, 12] & #r X»
with bj (X2 g Xz) > 1, we have that G= 29(T) — 2 > [(K, a)| + a2 > a2. Here,
K denotes the canonical class of the symplectic manif¢jcie X,. Hence,a§ <0.
Moreover, sincen? + a3 = 2[E]> = —2 and botha? and o3 are even, we have that
aZ >0 ora? =-2.

The case of¢? > 0: SinceC;NC, = @ ande? = [C1]?+[C;]%, we have that¢,]?
or [C,]? is non-negative. Hence, it follows from the vanishing tieeorof Seiberg—
Witten invariants [4] that the Seiberg—Witten invarig®W, ;. x, of X1 g Xy is trivial.
However, X1 g X; is a symplectic manifold and so it follows from Taubes’ theor
[21] that the Seiberg—Witten invarial8W,;.x, iS nontrivial. This is a contradiction.

The case ofx? = —2: By the above argument, it does not come about that either
of the self-intersection numbers of two sphef@sand C, in X;#f X; is non-negative.
Thus, we get that@,;]? = [C,]?> = —1. Then, the nontrivial fiber-sunX; fr X; —
S? has a section with self-intersection numbet, and so this is in contradiction to
Theorem 1.1.

Hence, the fact that a nontrivial fiber-su¥ g X has a double section with self-
intersection number-1 contradicts itself. This completes the proof. ]

Therefore, we have the following theorem:

Theorem 3.3. There exists a holomorphic gen@skefschetz fibration f X —
CP?! such that
(1) f cannot be decomposed as any nontrivial fiber-sum
(2) f cannot admit any section with self-intersection numbdr,
(3) X is not minimal and f admits only one double section with-isgdfrsection num-
ber —1, which intersects any generic fiber in two points.

We can consider the Auroux’s genus-2 Lefschetz fibration asemple of fibra-
tions in Theorem 3.3.
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4. fiber-sums with b} =1

Suppose that a genus-2 Lefschetz fibrationX — S? hasn irreducible singular
fibers ands reducible singular fibers. Since the abelianizaﬂtg‘i of the mapping class
group I'y is isomorphic toZ/10Z, we haven + 2s = 0 (mod 10) [11]. Since every
singular fiber contributes 1 to the Euler characteris{ix), we havee(X) =n+s—4.
Moreover, for the signature (X), we haveo(X) = —3n/5 — s/5 by the Matsumoto’s
local signature formula [11].

Ozbagci proved in [13] that the minimal number of singularfhin a genus-2
Lefschetz fibration ovelS? is 7 or 8. Then, we can characterize a genus-2 Lefschetz
fibration with seven or eight singular fibers.

Proposition 4.1. Let f: X — S? be a genus Lefschetz fibration.
(1) If f: X — S has seven singular fiberthen X is diffeomorphic to % T2#3C P2.
(2) If f: X — S has eight singular fiberghen X is diffeomorphic to % T2 44C P2,

Proof. Letf: X — S be a genus-2 Lefschetz fibration withirreducible singular
fibers ands reducible singular fibers.

(1) Suppose thah 4+ s = 7. Because ofh + 2s =0 (mod 10), we haven( s) =
(4, 3). Since eaclX satisfies than + 2s = 10, we obtain that

2~ 2by(X) + 265 (X) = &(X) + 0 (X) = (N+S—4) + (—gn _ és)

_ 2(n+2s)

4=0
5

and so
by (X) = b;(X) + 1.

Let H be the subspace dfi;(2,; R) generated by vanishing cycles of. Here,
¥, denotes the reference fiber of genus 2. Since a Lefschetzidibraver S> must
have a nonseparating vanishing cycle [18], we have ldirr 1. Since Hy(X;R) =
Hi(Z2;R)/H, we obtain thab;(X) = 4—dimH < 3. Thus, we have that & b; (X) =
bi(X) — 1 < 2, therefore, Ity , by, b)) = (1, 4, 2) or (2, 5, 3).

Suppose thathj, by, by) = (2, 5, 3). Sinceo(X) = —3 ande(X) = 3, we have
KZ = 30(X) + 2¢(X) = —3 < 0. Hence, it follows from Theorem 0.2 in [22] that
is not minimal, that is,f: X — S? is a non-minimal genus-2 Lefschetz fibration with
(n,s) = (4, 3). However, by the table, Table 1, of the geography of-mimimal genus-

2 Lefschetz fibrations ove®?, there is not any non-minimal genus-2 Lefschetz fibration
over $? with (n, s) = (4, 3). Therefore, a genus-2 Lefschetz fibratibn X — S? with
n+ s =7 satisfies thatty, b,, b;) = (1, 4, 2).

Next we shall prove thaX is a ruled surface. Suppose thdtis not a ruled sur-

face. LetX be the minimal model ofX. Sinceb; (X) = 1 andby(X) = 2, we have



958 Y. SATO

Fig. 3.

that c2(X) = 3o(X) + 2e(X) = 5b] (X) — by (X) — 4by(X) + 4 = 1 — b, (X). More-
over, sinceX is a minimal symplectic 4-manifold with; = 1 and X is not rational
nor ruled, it follows from [10] thatX satisfiesc?(X) > 0. Hence, we havé, (X) < 1.
Since X is not rational nor ruled anX admits a genus-2 Lefschetz fibration o\& it
follows from Theorem 3.1 thaX contains at most two 2-spheres with self-intersection
number—1 essentially. Therefore, we have that(X) < 3. This is in contradiction
with b3 (X) = 4. Thus, X is a ruled surface. It follows from Corollary 4.1 in [20] that
X is the blow-up of a ruled surface over the torti$, and soX is diffeomorphic to
S x T243CP2.

(2) Suppose thah + s = 8. Because oh + 2s =0 (mod 10), we haven( s) =
(6, 2). In the same manner as above, we haje b, , b1) = (1, 5, 2) or (2, 6, 3). The
case of b5, by, b)) = (2, 6, 3) is a contradiction by a Taubes’ theorem [22] and the
geography of non-minimal genus-2 Lefschetz fibrations &8&f15]. Thus, a genus-2
Lefschetz fibrationf: X — S? with n+ s = 8 satisfies thatl{, b,, b;) = (1, 5, 2). In
the same manner as above, it follows tbais the blow-up of a ruled surface over the
torus T2, and soX is diffeomorphic toS? x T2 ¢ 4C P2. O

REMARK 4.1. Matsumoto showed in [11] th& x T2 # 4C P2 admits a genus-2
Lefschetz fibration overS? with six irreducible singular fibers and two reducible sin-
gular fibers and its global monodromy i8;( o - 12 - n3)?, wherens, 12, n3 ando are
positive Dehn twists along curves indicated on Fig. 3.

However, the author does not know whett@rx T2 4 3CP2 admits a Lefschetz
fibration overS? with seven singular fibers or not.

Lemma 4.1. Let f: X — S? be a genus2 Lefschetz fibration with n irreducible
singular fibers and s reducible singular fibers. If (X) = 1, then we have either
(i) N+ 2s =10, by(X) =2 or (ii) n+ 2s = 20, by(X) = 0.
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Proof. SinceX is a symplectic 4-manifold witi] (X) = 1, X is either the blow-
up of a ruled surface o, (X) € {0, 2} [20]. Moreover, we have that

3 1

and
3—2b1(X) + by (X) =n+s—4,

and so we obtain that + 2s = 20— 5by(X). If X is the blow-up of a ruled surface
over the surfacex; of genush, then the genus-2 Lefschetz fibration must satisfy
that 0< 2h < 2 [20]. Moreover, because df = 0, 1, we obtain thab;(X) = 0, 2.
Thus, we see thd, (X) € {0, 2} anyway. Ifb;(X) = 0, then the above relations imply
that n + 2s = 20. Whenb;(X) = 2, n + 2s = 10. []

Since the mapping class grouify is a infinite group, we might construct infinitely
many distinct Lefschetz fibrations from given two Lefschiitzations via the fiber-sum
operation. Hence, it is difficult to decide which Lefschetarditions are decomposable
into fiber-sum. Thus, we restrict the problem to the casdjof= 1. Then, we have
the following theorem:

Theorem 4.1. Let f: X — S be a genu Lefschetz fibration with (X) = 1.
If f: X - S?is decomposed as the nontrivial fiber-sum=XX; ¢ X,, then we have
the following
(1) X is not a rational surface nor a ruled surface.
(2) Each X (i =1, 2)is diffeomorphic to 3x T2 3CP2 or & x T2 4CP2.

Before giving the proof of Theorem 4.1, we note that one catainba lower
bound for the numbes of reducible singular fibers in genus-2 Lefschetz fibratiofsr
example, we have that> 2 for genus-2 Lefschetz fibrations ov&f with n4 2s = 10,
becausec?(X) = —4 by Remark 2.1 (2) and?(X) = 30(X) + 2&(X) = s—6.

Proof of Theorem 4.1. Leh ands be the numbers of irreducible and reducible
singular fibers off: X — S, respectively. By Lemma 4.1, we have+ 2s = 10 or
n + 2s = 20. Suppose that each factdf — S* hasn; irreducible ands reducible
singular fibersi(= 1,2). Sincen =n; + Ny, s=s + S, N +25 = 0 (mod 10)
andn; >0 (i =1, 2), the case ofh + 2s = 10 does not occur. Hence, we obtain that
n+2s=20,n +25 =10 ( = 1, 2) and sob;(X) = 0. Since a genus-2 Lefschetz
fibration has at least 7 singular fibers [13, 6], we have thats > 7 andn; +§ > 7
i=1,2).

Since eachX; satisfies thal;, + 25 = 10, we have thaby(X;) = by (X;) + 1
(i =1,2). On the other hand, sindg (X;) > 1 and b (Xi) < 3, we get that 2<
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1+ by (Xi) = bi(Xi) < 3. Hence, we obtain that for each

b1(Xi) = 2, b1 (Xi) =3,
41 {b;(xi) =1 ¢ {b;(xi) =2

Let H and H; be subspaces dfl;(2,; R) generated by vanishing cycles #f and
Xj, respectively. Then, we have thet = ¢, H; + Hy, whereg is the gluing map of the
fiber-sum. SinceH;(X; R) = Hi(Z2; R)/H and Hi(Xi; R) = Hi(Z2; R)/H; (i =1, 2),
we obtain thatb;(X) = 4 — dimH and by(Xj) = 4 —dimH; (i = 1, 2). Thus, we
have that 4= dim H = dim(p. H; + H,) = dim H; + dim H, — dim(¢, H; N Hy) and so
dim Hy + dim H, = 4 + dim(p, Hy N Hy) > 4. Hence, we have that

(4.2) bi(X1) + bi(X2) = 8 — (dim Hy + dim Hy) < 4.

Therefore, it follows from (4.1) and (4.2) that(X;1) = bi(X2) = 2 and bj (X;) =
by (X2) = 1. Because ofy + 25 = 10, we have thag > 2. Hence, the pairn{, s)
satisfying thatn; +25 = 10, n;+5 > 7 ands > 2 is (nj,5) = (6,2) or fy,s) = (4, 3).
Therefore, it follows from Proposition 4.1 that eagh is diffeomorphic toS? x T? ¢
3CP2 or S? x T2 4CP2.

Next we shall prove thaiX is not rational nor ruled. By Remark 2.1 (2), we
have c2(X;) = —4. Hence, it follows from Lemma 2.1 that we hae§(X) = c(X1) +
c2(Xz) + 8 = 0. Suppose thaX is a rational surface. Because af (s) = (6, 2) or
(ni,s)=(4,3), we haves =, +5, € {4,5, 6§ and soc?(X) = s—4 € {0, 1, 3. Hence,

X is not diffeomorphic toS? x S2. Thus we seX = CP?#kC P2. Sincec?(X) = 9—k,
we get thatk < 9. By [9], note thatX admits a unique symplectic structuse essen-
tially. Let Kx be the canonical class ok and let F be the class represented by a
generic fiber. SinceX is rational andKZ = c2(X) > 0, we have thaKy - @ < 0. On
the other hand, a generic fiber istasymplectic submanifold and sb - w > 0. Since
(-Kx) @ >0,KZ >0, F-w>0andF? =0, the classes-Kx and F belong to the
closure of the forward coné+ = {8 € H3(X;R) | 2> 0,8 # 0, 8- > 0}. Hence, by
the light cone lemma [9], we obtain thatKx)-F > 0, that is,Kx - F < 0. However,
by applying a generic fiber to the adjunction formula, we obthat

2=2genusfF)—2=Ky-F+ F?=Kyx-F

and this is a contradiction. Therefor¥, is not a rational surface. Suppose thétis
a ruled surface. Because bf(X) = 0, X is also a rational surface. Henck, is not
ruled neither. O

REMARK 4.2. When we construct a Lefschetz fibration o®rwith bj = 1 by
using fiber-sum construction, we can not choose any self-§ibers X i X — S with
the identity map as the gluing map because of Remark 2.1 (h).th® other hand,
we can choose the gluing mapof a self fiber-sumX ¢ X — S such thatb] (X #¢
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Fig. 4.

X) = 1. We will construct such an example from the Matsumoto’s gehuefschetz
fibration & x T244CP2 — S2.

Let & andb; (i = 1, 2) be the curves indicated on Fig. 4. Then, we can write
[m] = [ba] + [b2], [n2] = [&1] + [@2], [ns] = [&u] + [@2] + [l1] + [b2] @and [o] =0 in
homology, where each; denotes the curve indicated on Fig. 3.

For the positive Dehn twists,, and t,, along the curvesy, and b;, we take the
diffeomorphismh = 1, 075,: ¥2 — X5. The effect of a positive Dehn twist df;(X2; Z)
is known asthe Picard—Lefschetz formulend we have that

Tcx(a) = a — (o - C)[C]
for the positive Dehn twistc alongC. In the case ofr,, and r,, we have

Tax([a1]) = [a1],  7tax([@2]) =[32],  Tau([n]) = [b1],  Tap([b2]) = [a2] + [P2],
to([@]) = [a] = [b1],  wy«([@2]) = [a2], oy« ([b1]) = [ba], oy ([b2]) = [b2].

Hence, it follows thath.([n1]) = [a] + [ba] + [b2], h.([n2]) = [ad] + [a] — [bd],

h.([na]) = [a] + 2[a2] + [bz] and h.([o]) = 0. Let X = (S*x T2 4CP?) e (S x T2z

4CP?2) be the fiber-sum of two copies of the Matsumoto’s genus-2dtefte fibration
S x T2#4CP2 —  with the gluing mapg: =, x St — =, x St associated tdh.

If we let H be the subgroup oH;(X,; Z) generated byifi], [n2] and [3], then the
first homology groupH;(X; Z) is given by H;(X; Z) =~ Hy(22;Z)/(H + h,H), and so
we have

H1(X; Z) = [[&l, [&2], [ba], [b2] | [n1] = [n2] = [ns] = 0 and
. ([ma]) = hu([n2]) = h.([ns]) = O]

=0.

Therefore, we havé; (X) = 1 by Lemma 2.1 (2).
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