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Introduction

In this paper, we construct some classes of higher dimensional knots, and
investigate geometrical and algebraic properties of the knots.

For classical knots, many concrete examples are known and studied. On
the other hand, for higher dimensional cases, not so many examples, or con-
structions, are known. One of reasons for this difference is seemed to be de-
rived from the existence of unknotting operations for classical knots to change
into the unknot, that is, any 1-knot is changed to the unknot by exchanging the
crossings suitably. In [5], F. Hosokawa and A. Kawauchi study an unknotting
operation for 2-knots, and recently Kawauchi argues this from more general
points of view in [11]. The author does not know whether there exist simple
unknotting operations for any n-knots.

In § 1, we first give modifications which change some knots to the unknot,
and we call such knots to be of type p, then we prove that any 2-knot is of type
2 in Theorem 1.2. Thus our defining ‘unknotting operation’ is valid for any
2-knots. We have a relationship between 7n-knots of type p and some disk pairs
in Theorem 1.10, and this is very useful in the later sections.

In § 2, we show that an n-knot of type p is also of type (n—p+-1), and this is
a geometrical description of the algebraic duality.

In §3, we first generalize the notions of semi-unknotted manifolds and
ribbon maps [24]. Then we argue relationships between bounding manifolds
of knots and immersed disks.

In § 4, we discuss knots of type p and the bounding manifolds. Combin-
ing results in §§ 3 and 4, we can conclude that any 2-knot is the boundary of an
immersed disk with only double points singularities (Corollary 4.2.2).

In §§ 5 and 6, we calculate the Alexander modules of knots, and introduce
some algebras to obtain an exact sequence containing a semi-group of knots.

0. Preliminaries

Throughout the paper, we shall work in the piecewise linear category, and
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we shall assume that all submanifolds in a manifold are locally flat. The results
in the paper remain valid in smooth category.

By an n-knot K", we mean that K" is an embedded n-sphere in an (n+2)-
sphere S"*?, and we may also denote an zn-knot by (S**?, K"). We define that
a submanifold W in a manifold M is proper if W NOM=0W. We say that
a proper n-disk D" in M is unknotted if there exists an n-disk D’ in 0M such
that 0D=0D" and DU D’ bounds an (n+1)-disk in M.

Let {f;} beafamily of disjoint embedding of S?x D? in a manifold M, and
A;=f(S*x D). Suppose that A;Cint M or A; is proper in M for each i.
Then we say that {f}, or {4}, is trivial in M, if there exists a family of
disjoint embeddings {f;} of B**'x D? in M such that

(1) filaB**'x Di=f, for each 7, where we identity §B**! with S?,

(2) f(B*'xD"cint M if A;Cint M, and f7Y(@M)=B**'x0D" if 4, is
proper in M.

For two manifold pairs (X, Y}) and (X,, Y;), we define that (X, Y;) and
(X3, Y,) are equivalent if there exists an orientation preserving homeomorphism
from X, onto X, which induces an orientation preserving homeomorphism from
Y, onto Y,.

Let f be a map from a subspace X, of X to Y, then X 9 Y is defined to be a

space obtained from the disjoint union of X and Y by identifying x and f(x)
for xe X,

Let /" be an r-handle on an m-manifold M, then we may identify " with
an embedding #": B"X D" "— M UK. For an r-handle #” on M, k' |0B" x D"~"
is said to be the attaching map of k', and denoted by a(#"). By a(k’), we denote
an attaching sphere of I, i.e., ¥ (0B" X %) for k& D™ ", For r-handles ki, -+, k]
on M, by M U |Jh; we denote the manifold M U |J {h7|1=<i =<}, if any con-
fusion does not occur.

We say that {f,} is an ambient isotopy on M if there exists an level preserv-
ing homeomorphism F: M x I—M X I such that f,(x)=F(x, t) for (x, )€ M X1,
and that f, is the identity map on M. For two maps g, & from X to M, we
define that g and % are ambient isotopic if there exists an ambient isotopy {f;}
on M such that fiog=h.

For subspaces P and Q in X, we denote the regular neighbourhood of P in
X mod Q by N(P;X mod Q), and by N(P; X) we denote the regular neighbour-
hood of P in X (see [9]).

For other terminologies, we refer the readers to [8], [19], [22] and [25].

1. Knots and disk pairs of type p

DeriniTION 1.1.  For a manifold M, a family {A!} of ¢g-handles on M is
trivial if the family of attaching maps {a(#%)} of g-handles is trivial in dM.
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Let p be an integer with 1< p=n, then an n-knot K" in S**2=9D"*3 is of
type p if there exist trivial (n—p-2)-handles {#7?*?} on D**? such that

(1) K"Nhi?**=¢ for each i,

(2) K" boundsan (n+1)-disk in 8(D**3U [ A}~**?), that is, K" is unknotted
in a manifold obtained from S"** by ‘trivial surgery’ along a trivial link consist-
ing of (n—p-1)-spheres in S*+2,

By K,(p), we denote the set of equivalence classes of n-knots of type p.
Then K, (p) naturally forms a commutative semi-group under the knot sum.

1.1.1. Examples (1) In general, a ribbon n-knot K" is obtained from a
trivial link of n-spheres S§, S1, :+, S» in S*** by connecting with m bands (for
example, see [1]). Choose m n-spheres 3; (=1, -+, m) very near to S} which is
parallel to S7. Let {A?*'} be trivial handles on D**3 with attaching spheres
{=;} such that /**N K"=@. Then K" is unknotted in 3(D*"**U (J#i*"). (See
Fig. 1.1. for m=1) This shows that every ribbon zn-knot is of type 1.

(2) We choose a simple closed curve 7 as in Fig. 1.1. Then ¥ is un-
knotted in .S**? and the band is deformed to be ‘straight’ in the manifold ob-
tained from S*** by performing trivial surgery along 7. Hence this ribbon
n-knot is of type #.

In the later, we will describe more general forms for ribbon knots.

Sk S7 >

SRS

a XK

C _

~_ < . \;_\_/
Fig. 1.1

(3) Any cable knots of an n-knots [10] of type p are also of type p.
Theorem 1.2. Any 2-knot is of type 2.

Proof. Let K?be a 2-knot in S*, then we can choose a presentation of the
knot group

7y (S*—K?) = <{xy, %y, +**, %, | {relations}>
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such that each x; is represented by a meridianal loop. Let {c;} be disjoint
simple closed curves in S*—K? such that ¢; with a path connecting to the base
point represents xox;! in 7z(S*—K?) for eachi. Let 0D°=.S* and {A?} trivial
2-handles on D’ with attaching spheres {c;} such that 4} is disjoint from K*
for each 7. Then it holds that

(1) Ik(K? ¢;)=0 for all 7, where Ik( , ) is a linking number,

(2) let V=D*U [Jh%, and M =0V, then M is simply connected and
m(M—K*=Z.
It follows from the above condition (1) that K? is homotopic to zero in M.
Thus we can apply T. Matumoto’s result [16] to assert that K? is unknotted in
M %(#S 2% S?) for some n. Hence this implies that K?* is of type 2.

We will investigate properties for handle decompositions with the follow-
ing condition:

1.3. Let {h?} be p-handles on an m-disk Dy, and {#?*'} (p+1)-handles
on V=DZU |J 4 such that

(1.3.1) k% and A?*' are complementary handles for each 7, i.e., an attaching
sphere a(h?*") of h2*! intersects a belt sphere of /% in one point,

(1.3.2) {A2URL""} are disjoint m-disks.
We remark that V' U |J#2*! is an m-disk, say D”.

The following is trivial by the definition, and we omit the proof:

Proposition 1.4. Let DU [JR2U U2 satisfy (1.3.1) and (1.3.2), then
{h%} are trivial p-handles on D7 .

Next we will show an analogy with Proposition 1.4 for (p-+1)-handles:

Theorem 1.5. Let V' U |JA%* and V U Jh?}' be handle decompositions of
D", both of which satisfies (1.3.1) and (1.3.2). Let a,, (resp. a;,) be the attaching
map of hig* (resp. h2iY). Let g=m—p—1. Then there exist an orientation preser-
ving homeomorphism f: V —V and a homeomorphism g;: B**' X D'—B**'x D? such
that foa,,=a; o(g;|0B?*' X DY) for each i, and that fy: w,(V)—>n,(V)is the identity
map.

Proof. From the conditions (1.3.1) and (1.3.2), we can first assume that
h2s'(B4 X D) = h%(B? x D%), and
h:Y (B4 x D) = W(B?*x DY),
where B, C9B?*' and D} C8D**! are regarded as inclusions of hemispheres, and
B! x D* is naturally identified with B?x D%. For proving the theorem, it suffices

to consider the case A%3'|B% x D*=h%|B? x D% for each i. Then n=(h%)""o
(W% | B4 x D% is a homeomorphism from B% X D* onto itself. As B**'xD? is
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homeomorphic to (BiXxD?)XxI, it is easily seen that 4, can be extended
to a homeomorphism from B?*'XD? onto itself, thus we can find a
homeomorphism g;: B**'x D'— B?*'x D such that +r;0(g;|B% X D) is the
identity map, hence it holds that k%{'o(g;|B5 X D*)=h?|B?xD%. We remark
that g; is not necessarily orientation preserving. Let B2=cl(dB**'—B%). By
our identification, 8B? X D**'{J B2 X D? can be identified with an (m—1)-disk, say
A""'. We can define an embedding ¢, of A" in D7 by ¢,,=(h?|0B? x D**') U
(W3 B. x D%). Similarly, we can define ¢, by ¢;=(h?|0B? x D**")U
(A?o(g;| B2 x D). Give an orientation to A"~ such that ¢,(A™"") and 8D§
have a compatible orientation, then ¢;(A™™!) has an orientation compatible with
that of dD§ from our construction. Then by well known fact, it is easily shown
that there exists an orientation preserving homeomorphism f’ of D onto itself
such that f'o¢,;=¢; for each 7. As f'o(h?|dB? X D**")=h?|0B? X D**!, f’ is
extended to an orientation preserving homeomorphism f of V=D§**U (JA? onto
itself, which is easily seen to be a required one.

DeriniTION 1.6. A handle decomposition Dg' U [J#2U |JA2** of D™ satisfy-
ing (1.3.1) and (1.3.2) is uniquely determined in the sense of Theorem 1.5.
We say that this handle decomposition is ¢rivial, or a trivial handle decomposition
of D**3, and that {a(h?*")} are standard p-spheres on V.

For (p+1)-handles {4/} on the above V, we say that {h/} are geometrical
cancelling handles for {hi} if there exists an ambient isotopy {f;}: V=V such
that {f,(a(h?))} are standard p-spheres on V.

DerinitioN 1.7. Let D3t U JA2U [JA2* be a handle decomposition of
D**3, and A a proper, unknotted (n+1)-disk in V=DgU |Jh?. Assume the
following are satisfied:

(1) E**NoA=@ for any 7, and

(2) {h%*'} are geometrically cancelling handles for {A%}.

In general, A is knotted in D**3 Regarding A as a proper disk in D"*3 we
denote B instead of A. Let ; be the attaching map of 2™ on V, and 9 a triple
(V, {a;}, A). Then we say that 9 is a p-decomposition of (D"*3, 8), and we call
that (D"*3, B) is a disk pair of type p, and we say that the dimension of a disk
pair (D**3, B) is n{-1. By B,(p), we denote the set of equivalence classes of
n-dimensional disk pairs of type p. Then B,(p) naturally forms a commutative
semigroup under the usual boundary connected sum for pairs.

DeFINITION 1.8. Let D=(V, {a(h?*")}, A) be a p-decomposition of a disk
pair (D**3, B). In the case of p=1, if 1k(8A, a(h?))=0 for each 7, then we say
that 9 is good. Let A be an (n+1)-disk in 8V such that 9A=0A. In the case
of p=2, if we can choose A such that each a(h%*') intersects A transversally and
that the intersection of a(h?*') and A consists of finitely many (p—1)-spheres,
then we say that 9 is good.
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Remark 1.8.1. (1) For a p-decomposition D=(V, {a;}), A), it trivially
holds that 1k(8A, a(ki*'))=0 if p=2.

(2) Under the notation of Definition 1.8, let 9 be a good 1-decomposition.
By moving A in general position with respect to {a(h?)}, ANa(h?) consists of
even many points, half of which have the sign 4, and the other half have the
sign —, where a point has the sign + if and only if a(k?) intersects A with
the intersection number +1 in a neighbourhood of the point.

Lemma 1.9. Assume that (D**3, 8) has a p-decomposition, and p=1, 2 or
3=p=<n—1. Then we can find a good p-decomposition of (D**3, B).

Proof. Let 9=(V,{a;}, A) be a p-decomposition of (D"*3, B), and A an
(n+1)-disk in 8V such that 0A=0A.

In the case of p=2, by moving A rel 9A in general position with respect to
{a(h?*™M}, ANa(hi*") consists of compact, closed 1-manifolds, hence finitely
many 1-spheres.

In the case of 3< p<n—1, we can prove Lemma 1.9 by the same argument
as D. Hacon’s result (Theorem 2.4 in §2 of [3]), except the algebraic duality in
(p. 442, line 14 in [3]). But the duality is easily checked to be valid if 1=i/<
p—2 under the notation in [3], and this restriction does not affect any argument
in the proof.

In the case of p=1, the assertion is proved in Lemma 2.2 of author’s pre-
vious paper [15].

We now state the main theorem in this section:

Theorem 1.10. Let K" be an n-knot in S***, and p an integer with 1< p=<
n. Then K" is of type p if and only if there exists a disk pair (D**3, B) of type p
such that (S**?, K")=0(D"*%, B).

Proof. First we will prove the necessity.

Suppose K" is an n-knot of type p in S"*?*=9D?*% and ¢g=n—p+2, then
there exist trivial g-handles {4} on D7*3 such that

(1) K"Nht=¢ for each

(2) K" bounds an (n+1)-disk A in 8(D3*3U [J A9).
By the triviality of {A!} and the contractness of A, there exist geometrically can-
celling handles {#{*'} for {h{} on Di*3U |JA? such that AP'NA =@ for allj.
Then DU JhIU JAIH is an (n+3)-disk, say B,. Therefore there exists an
(n+3)-handle D§*3 on B, to obtain a handle decomposition of S**3. Turning
this handle decomposition of S*** upside down, S**3 consists of one 0-handle
Di*3, p-handles {A*}, (p-+1)-handles {#;**'} and one (n-3)-handle D*3, where
h?=h%"! and b h=h! as setwise. Then DiH3U |Jh? U [J A+ gives a trivial
handle decomposition of an (n+1)-disk, say D**3. Let V=D;**U Jh?. By
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our construction, it holds that

(1) AcaV and (S***, K")=(0D"*?, 84),

(2) ANh?=0@ and 9A N k?*'=( for each 7.

We remark that AN Z;#*'= () in general. From the above (1), we obtain a proper
unknotted (n-+1)-disk A in ¥ such that 9A=0A. Then (V, {a(h?™)}, A) is a
p-decomposition of a required disk pair of type p.

Next we will prove the sufficiency, and the proof is similar to that for the
necessity.

Let (V, {a;}, A) be a p-decomposition of (D**3, ) with (aD**3, B)=
(S**?, K"), and Di*? be an (n+3)-handle on D*** to obtain a handle decomposi-
tion VU |JA2*1U Di*2 of S**2. By our assumptions, we can regard K" [JaD?+,
Identifying A?*! with a g-handle %, on D3, it is easy to see that {k,"} are trivial
handles on D?*3, and it holds K" N %,'= for each 7, since {#?*'} are geometrically
cancelling for {#%} on V. From the unknottedness of A in ¥, we can choose an
(n+1)-disk A in d(D7**U J &%) with 9A=K". Therefore K" is of type p.

The notion of a disk pair of type p is derived from [4], [6] ,[15] and [21].
A. Omae [18] argues a relationship between ribbon 2-knots and disk pairs ob-
tained in [6] and [21]. In [1], we prove that K" is a ribbon knot if and only
if there exists a ribbon disk pair (D**3, 8) such that (S**2, K™)=0(D**3, B).
We note that the notions of ribbon disk pairs and disk pairs of type 1 coincide.
Combining this result and Theorem 1.10, we have the following:

Corollary 1.10.1. Let K" be an n-knot, then K" is a ribbon n-knot if and
only if K" is of type 1.

Combining Lemma 1.9 and Theorem 1.10, we have the following:

Corollary 1.10.2. Let 1<p=<n, K" an n-knot, and (D**3, B) a disk pair
with 9(D**3, B)=(S**?, K"). Consider the following assertions (1)—(3):

(1) K™ is an n-knot of type p,

(2) (D3, B) is a disk pair of type p,

(3) (D™, B) is a disk pair of type p with a good p-decomposition.
Then (1)@(2)5?)(3). The converse of () holds if p=1, 2 or 3=p=n—1.

2. A relationship between n-knots of distinct types

In this section, we investigate a relationship between knots of different
types, which is a geometrical realization of the algebraic duality.
The following is well-known, but for the completeness we will give a proof.

Lemma 2.1. Let M be a (2m+2)-manifold, p an integer with 1< p=<m,
and L, and L, links consisting of p-spheres in int M. If L, and L, are homotopic
in M, then Ly and L, are ambient isotopic in M.
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Proof. Let 3 be a disjoint union of u p-spheres S%, -+, S%, and F: S X

I—M be a homotopy such that F(3X0)=L, and F(Zx1)=L,. Let S(F) be
the set of singular points of F, i.e.,

S(F) = cl{x&3 x I |#FF(x)=2}.

If 1< p<m, then S(F)=@ by moving F in general position, thus F is an
isotopy. By [7], we can extend F to an ambient isotopy of M.

Suppose p=m, then we can assume S(F) consists of finitely many points
by general position argument. Let S(F)={x,, -:-, y,, -**} such that F(x,)=F(y;)
for each 7. Then there exists a simple arc v; in S%X I, for each j, such that

(1) one end point of v; is in int S%X I, the other end point is in S2x0,
and int y;Cint S¥X I,

(2) «; passes all singular points x;’s in S%Xx I, but 7; does not pass any
singular points y;’s in S% X I.

Let B; be a regular neighbourhood of v; in S4Xx I mod S¥x0, X=[)B;U
J

N(EZx0; Zx1I), and X'=cl(Z x I—X), where we choose N(ZXx0; XX /) which
does not contain any singular points {y;}. Let 8X=L'U(ZX0), then 0X'=
L'U(Zx1). Therefore F|X is an embedding, and X is homeomorphic to
= % 1, thus f(3 x 0) is ambient isotopic to f(L') in M. In the same way, by the
embedding f| X', f(L') is ambient isotopic to f(Zx 1) in M. Therefore L, and
L, are ambient isotopic in M.

Theorem 2.2. If 2=2p=n, then it holds that K,(p)C K, (n—p+1), ie.,
an n-knot of type p is also of thpe (n—p+1).

Proof. Let K" be an n-knot of type p in S**2=9D"*3, D=(V, {a;}, A) a
p-decomposition of (D**3, B) such that 3(D"**3, B)=(S***, K"), and V'=Dj;**U
UK. From Lemma 1.9, we can assume that & is good in the case of p=1.
Let A be an (n+1)-disk in 81 such that 0A=0A. By the contractness of A,
there exist geometrically cancelling handles {h2*} for {h’} on V such that
RN A=( for all 7, hence it holds that dA N %2*'=¢ for all . We can choose
{h?*} so that{a(h;*")} and {a(h*)} are ambient isotopic on 9V. Let d,=
a(h#*). By the general position argument and 2p=<n, we may assume that

dim (@, N a(k?+) <2p—(n+2)<0

i.e., @ Na(lt*)=g@ for all 7 and j, thus we can assume that %,2*' N k2*'=¢ for all
iand j. Hence [Jd; is regarded as a link consisting of p-spheres in 8D"*—K".
From our choice, |4, is a trivial link in 8D"*3, hence {%;?*} are trivial handles
on D3,

For proving K" to be of type (n—p-+1), it suffices to show that K" is
unknotted in 8(D***U |J2*). By our construction, Di**U JA2U [JA#* is an
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(n+3)-disk, say Di*3. Then we can regard K" as an n-knot in 8D7*3. We
remark that K” is unknotted in D73, since A N %,2*'=¢@ for all i. If p=1, then
by the goodness of p-decomposition, we have 1k(K", a(h?*"))=0 in 8(D;*2U [J#?)
for each 7, which holds if p>1, by Remark 1.8.1. Hence a(A?*') is null homo-
topic in 8D — K", since K” is unknotted in 0D}*%. By Lemma 2.1, {a(k?*")}
is a trivial link in 9D7**—K". Therefore K"U (] {a(k?*")} is a trivial link in
oD;*®. Hence K" is unknotted in 9(D{*U (JA%*"). From the disjointness of
{h2*} and {B*} on D*2U |J A2 it follows that Dy U [JhH=D"3y | h2H.
Thus K" is unknotted in 8(D"**U |JA#*"). This completes the proof of Theo-
rem 2.2.

From Corollary 1.10.1 and the existence of non-ribbon 2-knots, the inverse
inclusion in Theorem 2.2 does not hold in general.

3. Bounding manifolds and immersed disks for knots

First, we will give some definitions used in this and the later sections.

DerFINITION 3.1. Let f;: 0B? X D" **'—int W be disjoint embeddings,
where W is anorientable m-manifold and 1< p=<m. Let g=m—p-+1. Assume
that the orientation of f;(0B? X D%) induced from B?x D? is compatible with that
of W. We denote f;|0B? xdD* by f;|9, then f;|9 is regarded as an embedding
of (0B?x8D%); in int W. Then we define X(W; {f;}) as the manifold

(W—) f(0B*x DY) U |J(B*xD"),

which is said to be obtained from W by performing surgeries, whose index is p.

If W is embedded in a manifold M, and each f; can be extended to an em-
bedding f;: B?* X D'— M such that f;(B?x D*)N W=f,(0B?x D"), then we say
X(M; {f.}) is obtained from W by performing ambient surgeries. In the case of
dim M=m+1, let D;=f,(B? X ) for *&int D%, then f;(B? X D) can be regarded
as a regular neighbourhood of D; in M mod W. In this case, we also denote
X(M; {D;}) instead of X(M;{f;}), if any confusion does not occur.

DeriniTION 3.2.  Let W be an orientable (z4-1)-manifold in $**2 such that
oW is homeomorphic to an n-sphere. Then we say that W is semi-unknotted
of type p if there exist disjoint embeddings »;: S*?*!1 X D?—int W such that

(1) X(W; {v;}) is an (n+1)-disk, and

(2) {jow;} is trivial in S**?, where j: W—>S*** is the inclusion map.

We say that {v;}, or simply {v,(S""?*'x )} for *<int D?, is a trivial system of
w.

DeriNiTION 3.3. (i) A map p: D*"'—>S"*? is a pseudo-ribbon map for an
n-knot K" if the following are satisfied:
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(1) plaD"* is an embedding, and p(dD**")=K",

(2) for each x&D"*', #p~'p(x)<2 and there exists neighbourhood V of «
in D**! such that p| V' is an embedding,

(3) for x;, x, with p(x,)=p(x;) and x,=x,, there exist neighbourhoods V;
of x; (=1, 2) such that p| ¥, and p| ¥, are embeddings and p(V,) intersects p(V?)
transversally.
(ii) A pseudo-ribbon map p: D**'— S*** is of type p if the following are sat-
isfied:

each component of {x|#p 'p(x)=2} is homeomorphic to S?~!x D"*~?* say
T, Ty, T3, TY, -+, which satisfy that

(1) p(TH)=p(T7) for each i,

(2) T is proper in D**', and T'7 Cint D**!,

(3) UT? is trivial in D**'— (] T';.

i J

Definitions 3.2 and 3.3 are generalizations of [2], [15] and [24]. In fact,
a semi-unknotted manifold in the sense of T. Yanagawa’s [24] is semi-unknotted
of type 1 in our definition.

It is easily seen that any embedded m#S 1% S"—int B**! in S*** are semi-

unknotted of type 7 if #>1. In Theorem 3 of [14], the author constructs in-
finitely many #-knots bounding semi-unknotted (z- 1)-manifolds of type p, and
also of type ¢, where 2= p=<gq and g=n—p—+1.

First we will argue relationships between bounding manifolds and pseudo-
ribbon maps for knots.

Theorem 3.4. Let p be a pseudo-ribbon map of type p for an n-knot K*,
then there exists a semi-unknottew (n+1)-manifold of type p bounding K" in S**2,

Proof. We use the notation in Definitions 3.2 and 3.3. Let ¢g=n—p+1.
By the triviality of (JT'}, there exist disjoint embeddings ¢;: B? X D*—
D**'— | T such that ¢,(0B?xD*)=T} and ¢7 (0D"*')=B?x9D* for each i.
Then po¢; are disjoint embeddings of B?x D* in S**2. There exist disjoint
embeddings ¢;: B? x D**'—S"+2 such that

(1) &;|B*x D*=pog¢;, where D’ Cint D+,

(2) there exists a regular neighbourhood V; of T'7 in D**! such that p(V)
is the intersection of ¢,(B? x D**') and p(D"*'— ¢,(B? x D%)),
thus ¢;(B?x D) is a regular neighbourhood of pog;(B?x D% in S**? mod
p(D*'—¢(B* X D). Let W=p(D"*'— (JV;)U |J $:(B? x8D**"), then W is an
orientable (n+1)-manifold with 8W=p(dD"**"). From our construction, it follows
that {(¢;| B? x 9D**")}, is a trivial system for W to be semi-unknotted of type p.

Lemma 3.5. Let W be a semi-unknotted (n-1)-manifold of type p with
trivial system {v;}, and L= )v,(S*?*'x ) for x€int D*. Then there exists a
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link L, consisting of (p—1)-spheres in int D*** such that cl(D"+*'—N(L,; D)) is
homeomorphic to l(W—N(L; W)).

Proof. From the definition, we can put
X(W; {vi}) = A(W=N(L; W) U U(@B***xaD?);,
{vi H

and there exists a homeomorphism f: X(W; {v;})—>D**'. Then L,=
f(U(xx0D?),) is a desired link for *&int B*#*1,

The following is well-known (for example, see Theorem 8.2, page 246 in
J.F.P. Hudson’s Book [8], but we remark that in his book [8] the assertion is
misprinted,):

Handle structure Theorem. Let (W;0_W, 0.W) be a cobordism, and
(W, 0_W) be r-connected for r<n—3 and n=5. Then W has a handle decomposi-
tion on 8_W consisting of handles of index greater than or equal to r+-1.

Lemma 3.6. Let L be a link consisting of p-spheres in int D* for 1< p=<
n—2. Then D" has a handle decomposition on N(L; D") consisting of handles
with index less than or equal to p+1.

Proof. Let W=cl(D"—N(L; D")), then it suffices to show our assertion
that W has a handle decomposition on dN(L; D") consisting of handles with
index less than or equal to p+1.

In the case of p=n—2, the assertion is trivial. If p=1 and n=4, then L is
a trivial link. Hence the assertion is easily seen to hold. Thus we assume
2=p=n—3. Let 0_W=08D" and 0, W=0N(L; D"), then (W; 0_W, 0, W) is a
connected cobordism. From the dimensional assumption, it follows that W and
(W, 8-W) is simply connected. It is easily checked that H, (W, 8_.W)=0 for
1=i<n—p—2. Therefore (W, 0_W) is (n—p—2)-connected. From Handle
Structure Theorem, W has a handle decomposition on 8_W consisting of handles
of index greater than or equla to n—p—1. Turning this handle decomposition
upside-down, we obtain a desired one.

Combining Lemmas 3.5 and 3.6, we directly have the following:

Lemma 3.7. Let W be a semi-unknotted (n+1)-manifold of type p with a
trivial system {v;}, and L= |)v(S* ?*'x*), *€int D?. Then W has a handle
decomposition on N(L; W) consisting of handles of index less than or equal to p.

We will show the converse of Theorem 3.4. For simplifying the proof, we
first give the following notation:

3.8. We put



770 Y. MaruMmoTO

]= [_1’ 1])
A=[—-1/2,1/2] and
X=J'%J?,

where g=n—p+2. We put
T = (]qxaA’)ﬂ(A”'IX]’) = ATIX9A?,

then T is homeomorphic to S?~'xD*~#*!,  Regarding 7' C J*XdA?, we denote
T~ instead of T, and we denote T by T'* if we regard T C A ' X J?. Then

T-Cint J?X0A?,
T* is proper in A" !X J? and
T* is unknotted in A?7'x J?.

The following is the converse of theorem 3.4:

Theorem 3.9. Let W be a semi-unknotted (n+1)-manifold of type p in
S"*2 then there exists a pseudo-ribbon map of type p for an n-knot W,

Proof. Let {v;} be a trivial system of W, and ¢g=n—p+2. Let j: W—
S”*? be the inclusion map. From the triviality of {jowv;}, there exist disjoint
embeddings ¢;: B?X D?—>S**? such that ¢;|0B? X D?=joy;, for each 7. First we
may assume that ¢;(B’X %) intersects W transversally for *&int D?, and that
¢(B' X D?)N W is homeomorphic to (¢;(B* X )N W)xD?. Let Wy=cl(W—
Uvi(0B*x D?)), then I/I/O(Ha) U(B*x8D?); is an (n+1)-disk, say D**!, where we

regard v;|0=v;| S X 0D? as an embedding of (0B*x9D?); in W. We define a
map p: D**'—S**2 by the following:

Cfiw) i xeW,
plx) = {¢i(x) if x=(B'x8D?;,

where we regard ¢; as an embedding from (B?X D?); in S**2. Then p is a
pseudo-ribbon map for K"=0W. Let 9, W=0W,—K", then from Lemma 3.7
it follows that

Wy = 0, WxIU {handles of index =< p}.

Let Bi=¢,;(B?x %) for x€int D?. For 1<j=<p—1, it holds that BN (cores of
j-handles)=@ by the general position argument, i.e., we can move W, ambient
isotopically keeping 8, WX I fixed so that B!N (j-handles)=@ for each 7. Thus
we can assume that ¢;(B*XD?)N (j-handles)=0 for each i. Then = =BIN
(cores of p-handles) consists of finitely many points. Let €3, then there
exists a regular neighbourhood V of 2 in S*** and a homeomorphism f,: V=X,
where X is defined in 3.8, such that
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(1) f(x)=(0,0, -, 0),

(2) fP(B*XD*)NV)=]*x J?, and f,((p-handle) N V)=A2"1 X J?.
Let T;=(f,op)™(T*) and T7=(f,cp™*)(T "), and repeat this construction for
each €3, Then {x|#p~'p(x)=2}={T;, T;|2€=}. From the argument in
3.8 it is easily concludeed that Definition 3.3-(ii) is satisfied. Hence p is a
pseudo-ribbon map of type p for K”. This completes the proof of Theorem 3.9.

4. Knots of type p and bounding manifolds

In this section, we will study a bounding manifold for a knot of type p.
We first prove the following:

Theorem 4.1. Let 1<p=<n. If an n-knot bounds a semi-unknotted (n-+1)-
manifold of type p in S***, then the n-knot is of type p.

Proof. Let W be a semi-unknotted (7-1)-manifold of type p in S**! with
0W=K", and g=n—p+2. We use the notation in Definition 3.2.

There exist disjoint embeddings 5;: S?7' X D?*'— S+ such that

(1) 5;|S'x D?=joy;, where D?*! is identified with D? x[—1, 1] and
D?*=D?x 0.

(2) 2SI DN W=jop, (S X D?),

(3) ©; gives a trivial framing for »;(S?7! X %) for *&int D?.
Identifying S*** with 8D**% add g-handles {A{} on D**® with attaching maps ;.
Then it is easily seen that K" N A¢=@ for each ¢, and that surgeries for W using
{v;} are realized as ambient surgeries in 8(D***U (JA¢). Hence K" is unknotted
in 8(D***U [JAY). Therefore K" is of type p.

Next we will consider the converse of the above:

Theorem 4.2. Assume p=1, 2 or 3<p=<n—1. Let K" be an n-knot of
type p in S**2. Then K" bounsd a semi-unknotted (n+1)-manifold of type p in
Sn+2.

Proof. By Lemma 1.9 and Theorem 1.10, there exists a good p-decomposi-
tion D= (V, {a;}, A) of (D**3, B) such that (S**?, K")=09(D"**3, B), where
V=D;**U |Jh2. We can choose an (n+1)-disk A in 9V such that AN {Ja(A?+)
consists of finitely many (p—1)-spheres, because of the goodness of 9. We
remark that O-spheres mean to be even many points mentioned in Remark 1.8.1.
Let ANa(h;*)={C;;|1=j=<pu.}, where C;; is a (p—1)-sphere, and C;; consists
of two points with different signs if p=1, as stated in Remark 1.8.1. There
exist p-disks d;;, 1=j=<p;, in a(hi*') such that 8d;;=C;; for j=1, -+, u;, and
C,;Ndy=0 if 1Sk<j=p,; ie., dy,++,d;u,; are innermostly arranged in this
order. Note that, if p=1, the intersection number of N(d;;; a(h}*")) and A is 0
for allZ,j. Hence we can perform an ambient surgery for A by using 4, to
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obtain W,. Then d, determines an ambient surgery for W, to obtain W,.
Repeating this procedure over all d;;, we finally obtain Wy in 8V, p=p,+ -+ +u,,
such that 9W,=0A and W,.N Ja(k*")=¢, i.e., there exist embeddings
fij: B®XD*— @V, where g=n—p+2, such that

(1) fi{B*x DN Ja(k)=f;(B? X ¥)=d,;, where x&int D,

3) fi;(B*XDY)N fim(B? X 3D")=¢ if j<m,

[ii{(B?X DY) N f(B* X D)= if i s,

3) Wy= A", W1=X(W,,; dy), W=X(Wy; dy), -+, WM:X(WI‘—I; d'"’r)’

where 7 is the number of p-handles of D5**U (] 4%. (See Fig. 4.1.)

i (0B < %)

",

a(hi*)

Fig. 4.1,

Hence W, is a bounding manifold of K" in S**2. Let »;;=f;;|0B?xD?. For
proving Theorem 4.2 it suffices to show that {v,;} is a trivial system of W=W,.
From our construction, {»;;} are disjoint embeddings into int Wy, and
X(Wu; {vi;}) is an (n+1)-disk. From the definition of p-decompositions,
there exist a homeomorphism g: V=V, an ¢-disk E? in 8D**, and disjoint
p-disks BY, «--, BS in int B? such that

(1) BYB?x*)C g(a(ht*h)), for x€int E”,

(2) go(fij| B*x3D")=h?| B2 X 0E*, where we naturally identify D with E*,
and B? with B?. (See Fig. 4.2)
Let E'=cl(0D**'—E®), and f/;=go(h?|BtX E’). Then f};: Bt X E'—
oV — U a(h*") are disjoint embeddings such that f/;|0B?X 8E'=w,;;|dB? x 0D".
This implies that {»;;} is a trivial system of W. This completes the proof of
Theorem 4.2.

Combining Theorems 3.4, 3.9, 4.1 and 4.2, we have

Corollary 4.2.1. If p=1, 2 or 3= p=n—1, then the following (1)—(3) are
equivalent :
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it n Jii(B* < 9D")
a(hi™) (B? x 3E") hy(B? X %)

Fig. 4.2.

(1) K" is an n-knot of type p.

(2) There exists a pseudo-ribbon map of type p for K".

(3) There exists a semi-unknotted manifold of type p bounding K".
If 1< p=<n, then (2) and (3) are equivalent, and (3) implies (1).

For any 1-knot K, it is well known that K* bounds an immersed disk with
clasp singularities. As an analogy for 2-knots, Theorems 1.3 and 4.2 imply
the following:

Corollary 4.2.2. For any 2-knot, there exists a pseudo-ribbon map for the
2-knot.

In [24], T. Yanagawa gives a characterization of ribbon knots by means of
ribbon maps, we here characterize ribbon knots by a weaker condition than
Yanagawa’s. We first define that:

A pseudo-ribbon map p: D"*'— S**? is separable if there exist disjoint (n+1)-
disks A; in int D**! such that

pl(D"'—{JA;) and p| [JA; are embeddings.

Theorem 4.3. An n-knot is a ribbon knot if and only if there exists a separable
pseudo-ribbon map for the knot.

Proof. First we will show the sufficiency. Let p be a separable pseudo-
ribbon map for K", and A; be disjoint (r+1)-disks in int D**! satisfying the
condition in the above definition.

Let &;=0A, for each 7, then we can add trivial (r+41)-handles A}*' on D**3
with attaching spheres &; such that 47" N p(N(A;; D"*"))=p(N(&;; D**")), where
S*** is identified with 0D"*3. We can easily deform p(D**') to get an (n-+1)-
disk in 8(D***U [JA¥*") bounding K", thus K" is an n-knot of type 1, hence
ribbon 7n-knot by Corollary 1.10.1.

Conversely let K" be a ribbon n-knot, hence an n-knot of type 1 by Corollary
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1.10.1. By Corollary 4.2.1, we can choose a pseudo-ribbon map p of type 1
for K. By the definitions, it is easily seen that p is separable. This completes
the proof of Theorem 4.3.

5. Alexander modules of knots

In this and the next secions, we may use the following notation 5.1 without
any specifications:

NotaTioN 5.1.  Let K" be an n-knot of type p. By Theorem 1.10, we can
find a disk pair (D"*3, B) with a p-decomposition P=(V, {a;}, A) such that
(S™*2, K")=0(D"*3, B), where «; is the attaching map of A?*’. Let » be the
number of (p+1)-handles {h?*} on V=D;**U |J#!. By Lemma 1.9, we can
assume 9 is good if p=1. Let W be an exterior of B in D"*3 ie., W=
cl(D"B—N(B; D**3)), and X an exterior of K" in S**2. We put g=n—p+2.
Let W be the infinite cyclic covering space of W associated with the Hurewicz
homomorphism 7,(W)—>H,(W ), then the covering transformation group of W is
isomorphic to Z, and we choose a generator ¢. Let A=Z[t, t7']. We now
introduce some notation:

Vo = c(V—N(A; 1)),

V, : thelift of V,in W,

{€}: standard p-spheres in 8 such that dA is unknotted in 9V — |J &,

T := cl(dN(B; D**3)Nint D**3),

T : theliftof Tin w,

X = d@EW-T1),

X, = d@V,—1),

X, = d(X,— Uau@B***x DY),
where we denote lifts of k2, a;, k2™, E; in W by A2y, @, k2™, E; respectively
such that @ =a(k4*). Let @,—da;(0B**'x*). We choose indices of &, £
etc. such that t@;,=@&;.,, tE;;=E;4, etc. Then X is an infinite cyclic covering
space of X associated with the Hurewicz homomorphism z,(X)—H(X). We
consider all homology groups for subspaces in W as A-modules, unless otherwise
stated.

DeFINITION 5.2. We can choose [E], -+, [Evo] as generators of H, (V).
Then we can represent

[@;] = .g i) [Ewl Ni(DEA,

as an element of A-module H,(V,). We note that a Laurent polynomial A;;()
surely exists, from Remark 1.8.1 and goodness of 9@ if p=1. We say that
M(t)=(\;(?)) is an attaching matrix of 9.

We remark that M(%) is a relation matrix of H,(W).
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ReMARk 5.2.1. In the above definition, the choice of an attaching matrix
has the following ambiguities:

(1) The choice of the indices and the orientations of £;, and lift £;:
this affects an attaching matrix as permuting rows, or multiplying some rows
by units of A.

(2) The choice of the indices and the orientations of a;, and lift @,: this
corresponds to the same modifications of columns for an attaching matrix as
the above case (1).

Thus we identify two attaching matrices which differ in the above ambiguities.

In the case of 2< p=<m, an attaching matrix is easily interpreted as the
following, since H,(Vy)=<n,(Vy):

5.2.2. Another description for attaching matrices in the case of 2= p=n.
Choose a base point e in 0V—0A. Let &, be a meridianal loop for 9A in 8V.
Let «; be a path in 8V —0A connecting &; and e for 0=<:=<v. Let &=7v5'U
E U, and E;=E; U, if 13=0. Then =,(V,) is generated by #=[&,], and z,(V)
is a free Zz,-module with basis [€], -+, [£)]. As = (V,) is isomorphic to Z, we
identify Zz, with A. Let v} be a path in 9V —0A connecting a;=a;(dB?*! X *)

and e, for *€int B, and @;=a; Uvyi. Then we can represent [a,-]:ﬁ () [E]
{01

as an element of Zz,-module 7,(V,), where \;;(#)EZr,, and an attaching matrix
of @ is (A;j(¢)). The ambiguities for the choice of 7; etc. correspond to Remark
5.2.1.

The above description of attaching matrices is not valid for the case of
p=1, because z,(V,) is a free group on »+1 generators. A similar descrip-
tion is possible in this case, but we omit it.

ReEmaRrk 5.2.3. Let M(¢) be an attaching matrix of a p-decomposition.
Then we may assume that g(1) is the identity matrix. Conversely, assume that
M(t) is a square matrix on A such that M(1) is the identity matrix. By the
similar construction to that in [21], we can easily construct a p-decomposition of
a disk apir with an attaching matrix M(z).

The following Lemmas 5.3.1-5.3.3 are easily obtained, and we omit the
proof:

Lemma 5.3.1.

AN i r=q,n42,
0 otherwise .

Hr(XO’ Xl) =

If r=gq, then generators are

[@io(* X DY), @;(x x8DY)], *=€8B™*,  for 1<i=v.
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Lemma 5.3.2. Assume p==q, then

A1) if r=0,
Hr(X‘O) =i A ’f r=p4qg,
L 0 otherwise .

If r=p, then generators are [Ey], -, [gw], If r=gq, then generators are
[%:4(% % 8D**Y)], for xint B? and 1<i <v.

Lemma 5.3.3.

A’ if r=p+1,n+2,

0 otherwise .

Hr(X’ ‘Yl.)g {
If r=p-+1, then generators are [RATY(B?**'x %), *h 4™ (8B x ¥)], for *E8D",
and 1<i=<v.

Lemma 5.4. If p==q—1, q, then the connecting homomorphism 0x: H, (X,
X)—H,(X,) is represented by an attaching matrix M(t) of 9.

Proof. Let jy: H,(X,)— H,(X,) be the homomorphism induced by the
inclusion map, then jy is an isomorphism by Lemma 5.3.1. Let u;=j3%([€,]),
then {u;} are generators of free A-module H,(X;). It holds that

0x ([ H(BP* x %), B (0B?* X %)]) = [ (OB X *)]
= j 5 ([@])
= 3 nal)u;,
where M(#)=(Nu(?)). This completes the proof of Lemma 5.4.

Lemma 5.5. If pq, then iyx: H(X))—> H X,, X)) is represented by the
transposed matrix of M(t™"), where iy is induced by the inclusion map, and M(t) is
an attaching matrix of 9.

Proof. Let 5= [k;3(*x8D**")], xSint B?, be generators of H,(X,), and
Eio= [@u(* X D), &;(*x 8D")], *<int 8B**!, be generators of H,(X,, X;). By
I(u, v) we denote the algebraic intersection number of # and v in X,, We
remark that I(¢"-£,, 7;)=1 if and only if s=j and r=0, thus we have

I(t" -Gy, ;) = s=21 I(t"Nor(2)*E0s )

= I(t"Nju(t)Ejor ;)
= the coeflicient of #” in A j(¢7Y),

Therefore it holds that
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ix(n;) = ,,2". I(t" - Gy, ﬂj)tmfko

I

é Nin(t)ho -

This completes the proof of Lemma 5.5, since H,(X,) and H(X,, X,) are free
A-modules by Lemmas 5.3.1 and 5.3.2.

Lemma 5.6. Let M(t) be an attaching matrix of a p-decomposition 4. Let
v EA, and x(t)=(7(2), -+, Vu(2))T, where ( )T is the transposed of (). If
M(t)-x(t)=0, then x(t)=0, where 0 is the zero vector.

Proof. From the definition of attaching matrices, it follows that M(1) is the
identity matrix E, of degree ». Then x(1)=0. Assume, for some j, v;(£)=0,
and put d=Min (Max{nEN |v;(t)%0, (¢—1)" is a factor of v;(¢)}). Thend is

a positive integer. Let (—1)%y(t)=x(t), then y(1)==0 and M(?)-y(t)=0. This
contradicts M(1)=E,. Therefore v;(t)=0 for all j, hence x(¢)=0.

Theorem 5.7. If 1<r=<n and r= p, q—1, then H(X)=0. If 2p=<n, then
an attaching matrix M(t) of a p-decomposition is a relation matrix of H,(X).

Proof. Suppose 1=<r=<n. From Lemma 5.3.1 and the Mayer-Vietoris
Theorem for (X,, X;), we have H,(X))=H/(X,) if r4¢—1, ¢. Using Lemma
5.3.3, we have H,(X)=~H/(X)) if r+p, p-+1. From these results and Lemma
5.3.2, it follows that H,(X)=0 if r&p, p+1, ¢g—1, q. From Lemmas 5.4, 5.5
and 5.6, it follows that 04 is monomorphism if p3=g—1, ¢, and that so is 7y if
p#q. Using these facts and the well-known duality [17], we have H,(X)=0 if
r#=q—1, p. This completes the proof of former assertion. The latter assertion
is trivially obtained from the exact sequence:

0
H,u(X, &) = Hy(X) — Hy(X)— 0,
since H,,,(X, X,) and H,(X,) are free A-modules.

Corollary 5.7.1. Let K" be an n-knot of type p, and X the infinite cyclic
cofering space of the exterior of K" in S**2. If 2< p<n—1, and H,(X)==0, then
K" is unknotted.

For a disk pair (D"*3, B) of type p, the same assertion as the above holds.

Proof. From our assumption, it follows that =,(X)=<Z, thus X is the
universal covering space. From the duality [17], we have H,_,(X)=<0. There-
fore X is a homotopy circle, and K" is unknotted by the unknotting theorem
of higher dimensional knots [12], [20] and [23].

For the disk pair (D**3, B), we can prove the assertion by the similar manner
to the above.
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Corollary 5.7.2. Let p and p’ be distinct integers with 2<<2p=<mn and 2<
2p'<n. Assume that K" is an n-knot of type p, and also of type p’, then K" is
unknotted.

Proof. Suppose p<p’, thus p<p'<n—p'+1<n—p+1. From our as-
sumption and Theorem 5.7, it follows that H,(X)=<0 for the infinite cyclic
covering space X of the exterior of K" in S**2. By Corollary 5.7.1, K" is
unknotted.

Corollary 5.7.3. For 1= p=n, K,(p) is infinitely generated as a commuta-
tive semigroup.

Proof. Let Mu(f)=pt—(p—1) for pEZ, and Myu(t) be a 1X1-matrix
(Mu(?)). Then we can find a disk pair (D**%, B) with a p-decomposition having
an attaching matrix Myu(¢) from Remark 5.2.3. Let (S**%, K")=0(D"**3, B),
then p-dimensional Alexander invariant [13] of K" is Au(£). It is trivial that the
sum of two knots induces the product of Alexander invariants. It is easily seen
that there are infinitely many g such that Au(f) is a prime polynomial. Thus
K,(p) is infinitely generated.

6. Disk pairs and attaching matrices

In this section, we will use the Notation 5.1 if necessary, without any speci-
fications.

DerinITION 6.1, Let Mat(A) be the set of a square matrices over A whose
determinant is 41 when substituting ¢=1. For M,, M,eMat(A), we define
M, P M, as the block sum of M, and M,, i.e., MIEBMZ———[]%1 ]?4] An equiva-

2
lence relation on Mat(A) is defined to be generated by the following operations:

(Ty) Permuting rows or permuting columns.

(T,) Multiplying a row or a column by a unit of A.

(T;) Adding a multiple of a row (resp. a column) by a unit of A to another
row (resp. column).

(T,) Replacing M by [](‘)4 (1)
Then we define (H,(A) the set of equivalence classes of matrices of Mat(A).
We remark that H,(A) forms a commutative semigroup with a binary operation
naturally induced from .

We define Hy(A) the set of equivalence classes of matrices of Mat(A), each

of which induces an epimorphism from A" onto itself for some v.

], or vice versa.

Lemma 6.2. Let P be a subspace in a manifold Y, and a, and o, embedd-
ings of P in a manifold M. Suppose that ay(P)=a,(P) and that a, and o, are
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ambient isotopic in M. Then there exists a homeomorphism g: Y —Y such that
oy = a;°(g|P).

Proof. Let {f;} be an ambient isotopy between &, and &, hence fioay=«;.
Let M=M U Y. By [7], we can extend {f,} in M, so that there exists an

ambient 1sotopy {f:} : My,— M, which satisfies (| ({(M)))oi=i o f, for each tE1,
where i: M —>M, is the inclusion map. We can find an embedding @,: Y —M,
such that @,|P=a, Let @=Ffoa,, then @, is an embedding of Y in M, It
holds that

a1|P=f1°d0|P = (ﬁlao(P))oioao = iof.loao = ioal .

By definition, M, is ‘separated’ into (M) and @y (Y) by ao(P). Thus a@(Y)=
a,(Y). Hence g=a, 'oa@, is a well-defined homeomorphism from Y onto itself,
and this is a required one.

Lemma 6.3. Let (D", 8,) and (D"**, B,) be disk pairs of type p which have
p-decompositions with the same attaching matrix. Assume 2<<2p=mn, then the two
disk pairs are equivalent.

Proof. Let 9; be a p-decomposition of (D"*3, B;), for j=0, 1, such that
9; has an attaching matrix M(¢) of degree ». Without loss of generality, we
can assume that 9;=(V, {a;;}, A) for j=0, 1, where V=D;**U [Jh?. Let v be
the number of p-handles in V.

From Theorem 1.5, there exists an orientation preserving homeomorphism
f: V=V and homeomorphisms g;: B**'xXD?— B?*'x D’ such that foa,,=
a;,0(g: 0B x D) and fy: m,(V)—>n,(V) is the identity. Let

ato = a;o(g;| 0B ' x D)™,

and Di=(V, {ate}, A). Then 9 is a p-decomposition of (D**3, B,) with an
attaching matrix MM(¢). We now show the following sublemma:

Sublemma. We can find a p-decomposition D,=(V, {a;s}, A) of (D**3, B,)
such that a;(0B?*' X D)= a;,(0B*** x D%, and {a;} and {a;} are ambient
isotopic in aV.

Proof of Sublemma. As f(A) is unknotted in V, there exists an ambient
isotopy {¢"}: V=V such that ¢{"f(A)=A. Put a,=¢Poal, and 9,=
(V, {ai}, A). Then 9, is a p-decomposition of (D**3, B;). We first show that
an attaching matrix of 9, is M(t). Let V be the wedge product, C=S'V
S2V -V 82, and C=B*V S?V -+ V.S, then there exist homotopy equivalences
Yo Vo—>C and ¥p: V—C such that ¥,| V=1, and +ry(E;)=S? for each 7.
Using the ambient isotopy {¢$"’}, we can construct an ambient isotopy {¢} :
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C— C such that ¢,or,=Vy0p" for each t&1. From our choice of f, it follows
that Jroof()==S? in C. Then Jop"f(£;) = bW f(8;)=,(S?)=S%in C. Thus
we can represent [Jrp{ f(E,)]=¢"-[S?] in #,(C) as Zm-module for some m;.
This means that an attaching matrix of 9), is obtained from M(#) by multiplying
some rows by units of Zz;=A. From 5.2.1, we can choose () as an attaching
matrix of 9, From 5.2.2, a;,(dB?*' X ) and «a;;(0B?*' X *) are homotopic in
0V —0A. By our dimensional assumption and Lemma 2.1, it is easily seen that
ap(0B** x %) and «;(0B?*'X %) are ambient isotopic in 9V —0A. Using the
uniqueness of regular neighbourhood, we can finally move a;,(0B?*' X D) ambient
isotopically to a;(0B?*'x D) in 9V —0A, i.e., there exists an ambient isotopy
{pP}: V-V such that ¢ |A is the identity map for all t&I, and that
dP oy (0B X D) =a,(dB*** x D). Let a;=¢Poaty, and Dy=(V, {ais}, A).
Then 9, is a p-decomposition of (D"*3, B)) such that a;(8B**'x D)=
a;(0B** x D). Combining ambient isotopies {¢{"} and {¢{’} we have an
ambient isotopy {¢,}: =V such that ¢,oa;;=a;;. This completes the proof
of Sublemma.

By Lemma 6.2, there exist homeomorphisms g?: B**1x D*—RB**'x D? such
that @, =a;,0(g1|0B?**' x D). Letj: V—V be the identity map, then we have
joa,=a;ogi|0B?*' x D*. This means that j is extended to a homeomorphism

7: VU U@*% D%, — VU (B % DY,
{®ig) {®1)
such that j|V=j. Thus j is an orientation preserving homeomorphism from
D**3 onto itself such that j(3,)=20,.

DEerFINITION 6.4. In Definition 1.7, if we change the condition (2) by the
following condition (2)’, then we say that (V, {a;}, A) is a weak p-decomposition
of (D"*3, B):

(2)" {h?} are trivial p-handles on Dj*3.

For a weak p-decomposition 9, we can define an attaching matrix of 9 by the
same manner as that in Definition 5.2. We note that the arguments in 5.2.1
and 5.2.1 are valid for weak p-decompositions.

By Proposition 1.4, a p-decomposition is a weak p-decomposition. We
remark that an attaching matrix M(¢) of a weak p-decomposition satisfies

|det M(1)| =1.

Lemma 6.5. Let M(t) be an attaching matrix of a weak p-decomposition
9D. If 2<2p=n and M(1) is a diagonal matrix such that each diagonal element
is +1, then 9 is a p-decomposition of the disk pair.

Proof. Let 9=(V, {a;}, A). The assumption on M(1) means that at-
taching spheres {a;} of (p-+1)-handles are homotopic to standard spheres on 9V
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by 5.2.2. Hence {a;} are ambient isotopic to standard p-spheres in 9V by
Lemma 2.1, thus 9 is a p-decomposition.

Lemma 6.6. Suppose 2<<2p=<n. Let 9 be a weak p-decomposition of a
disk pair (D"*, B) with an attaching matrix M(t), and M'(t) be obtained from
M(t) by one of the modifications (T,)—(T,) in Definition 6.1. Then we can find
a weak p-decomposition D' of (D**3, B) with an attaching matrix M'(t).

Proof. In the case of (T}), let @’ be obtained from 9 by renumbering
p-handles and (p+1)-handles, corresponding to the modification for M(2).
Then 9’ is a weak p-decomposition of (D**3, @) with an attaching matrix M’ ().

In the case of (73), this case corresponds to the prescribed ambiguities for
the choice of attaching matrices remarked in 6.2.1. Thus we choose 9 as 9'.

In the case of (7;), we can trade a handle of 9 corresponding to the
modification for M(¢), to obtain &’ which is easily seen to be a weak p-de-
composition of (D"*3, B) with an attaching matrix M'(¢).

Suppose M'(t)=M(t)@(1). Let k2, and A}] be a pair of complementary
handles on ¥V suh such that the (4 3)-disk A2,, U A2}] is disjoint from 9A in 9V
Let ay,=a(hlil), and D'=(V Uk, {a;} Uadyy,, A), then 9’ is a weak p-de-
composition of (D**3, B) with an attaching matrix M'(z).

Suppose M(t)=M'(t)P(1). Let a;=a(h4*") be an attaching sphere for
each 7. Without loss of generality, we may assume that [@,]=[£,], under the
notation of Definition 5.2.2. Thus the attaching sphere a, of A2*! is homotopic
to a standard p-sphere £, in 9V —0A keeping {a;} <, fixed. By Lemma 2.1,
a, is ambient isotopic to &, in 9V —0A keeping {a;};<, fixed. Thus @’'=
(VURM, {a;} i<y, A) gives a weak p-decomposition of (D**3, B) with an attahc-
ing matrix M’(t). 'This completes the proof of Lemma 6.6.

Lemma 6.7. Let 9, be a p-decomposition of a disk pair (D**3, B;) with an
attaching matrix M(t) for i=0, 1. Assume 2<2p=n and M(t) is equivalent to
M,(¢), then (D"*3, B,) is equivalent to (D**3, 3,).

Proof. Without loss of generalitie, we can assume that M,(1) is the identity
matrix, from Remark 5.2.3. By applying Lemma 6.6 repeatedly, we can find a
weak p-decomposition g of (D**3, By) with an attaching matrix M,(f). By
Lemma 6.5, we conclude that 9 is a p-decomposition of (D**3, B). Hence by
Lemma 6.3, the given two disk pairs are equivalent.

Theorem 6.8. If 2<2p=mn, there exists an exact sequence of commutative
semigroups:

HoA) > H(A) D> By ()~ 11},

where i is the inclusion map, and j is a homomorphism naturally defined by that
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J([M(2)]) is a disk pair of type p which has a p-decomposition with an attaching
matrix M(t).

Proof. By Remark 5.2.3, Lemmas 6.3 and 6.7, j is a well-defined epimor-
phism. Let M(¢) be a square matrix of degree » which induces an epimor-
phism from A" onto itself. We can choose a p-decomposition 9 of a disk
pair (D**, B) with an attaching matrix M(t) by Remark 5.2.3. Let W be the
infinite cyclic covering space of an exterior of 8 in D**3. From the fact that
M(2) is a relation matrix for H,(W), it follows that H,(W)=<0. By Corollary
5.7.1, B is unknotted in D**3. Hence ImiCKerj. The reverse inclusion is
easily proved. This completes the proof of Theorem 6.8.

By the smae argument as in the proof of Theorem 6.8, we have the follow-
ing.

Corollary 6.8.1. The same assertion holds in Theorem 6.8 for K, (p) instead
of B,(p). Thatis, if 2<2p=mn,

TH(A) > T(8) > K(p) — {1}

is an exadct sequence as commutative semigroups, where i is the inclusion map, and
j is a homomorphism naturally defined by that j([M(t)]) is an n-knot of type p such
that there exists a disk pair with a p-decomposition having an attaching matrix
M(2).
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