
Title Identifying Compiler and Optimization Options
from Binary Code using Deep Learning Approaches

Author(s) Pizzolotto, Davide; Inoue, Katsuro

Citation
Proceedings - 2020 IEEE International Conference
on Software Maintenance and Evolution, ICSME
2020. 2020, p. 232-242

Version Type AM

URL https://hdl.handle.net/11094/78263

rights

© 2020 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Identifying Compiler and Optimization Options
from Binary Code using Deep Learning Approaches

Davide Pizzolotto
Osaka University

Osaka, Japan
davidepi@ist.osaka-u.ac.jp

Katsuro Inoue
Osaka University

Osaka, Japan
inoue@ist.osaka-u.ac.jp

Abstract—When compiling a source file, several flags can be
passed to the compiler. These flags, however, can vary between
debug and release compilation. In the release compilation, in
fact, smaller or faster executables are usually preferred, whereas
for a debug one, ease-of-debug is preferred over speed and no
optimization is involved. After the compilation, however, most of
the flags used cannot be inferred from the compiled file. These
flags could be useful in case we want to classify if an older
build was made for release or debug purposes, or to check if
the file was compiled with flags that could expose vulnerabilities.
In this paper we present a deep learning network capable of
automatically detecting, with function granularity, the compiler
used and the presence of optimization with 99% accuracy. We
also analyze the change in accuracy when submitting increasingly
shorter amounts of data, from 2048 up to a single byte, obtaining
competitive results with less than 100 bytes. We also present our
process in the huge dataset creation and manipulation, along with
a comparison with other less successful networks using functions
of varying size.

Index Terms—Static Analysis, Binary Analysis, Deep Learning,
Compilers

I. INTRODUCTION

During the software development life-cycle of a natively
compiled application, the process of converting source code
to binary code performed by a compiler happens quite often.
While performing this transformation, several flags are given
to the compiler, signaling the developer’s intention to keep or
drop some information or to modify the original code in a
more optimized version. These flags can be used to optimize
towards faster executables, smaller size or lower energy con-
sumption [1]. However, they are not explicitly recorded in the
binary file itself as they are completely unnecessary by the
machine in order to execute the binary code.

Moreover, also the compiler itself is not easy to identify.
There is no standard way to record this information, and
although some compilers write a comment in the binary itself,
this is easily patchable and not guaranteed to be parsable. In
fact, for example, if a file compiled with the clang compiler
is linked with a library compiled with gcc, the comment will
contain both signatures.

These information, however, are extremely valuable in sev-
eral applications ranging from categorizing an older build,
finding vulnerabilities [2], finding similarities in binaries [3],
or providing more accurate bug reports in case the compilation
environment can’t be controlled [4]. An easy example of the

latter case could be a library that exhibit incompatibilities only
with a specific compiler, in a product published by a different
vendor than the library developer.

Although several works exist in detecting the compiler [4]
and toolchain used [5], these methods do not rely on automated
learning approaches. Because of this, a notable effort is
required to detect the aforementioned information in different
architectures, as the new architecture must be studied and
understood, in order to check if and how the information can
be retrieved. With a machine learning based approach, instead,
to detect a new compiler or flag, it is sufficient to provide new
data and re-run training.

In this paper we present our approach at recognizing both
the compiler and the presence of optimizations using a Long-
Short Term Memory network [6] and a Convolutional Neural
Network [7]. We analyzed O0 and O2 flags on Linux x86 64,
compiled by gcc or clang. Despite not being the first to
approach this problem [8], the novelty of our research can
be summarized as follow:

• The creation of a huge dataset, with more than 7700
files, compiled with gcc and clang in controlled environ-
ments. These environments are compiled from scratch for
each compiler-optimization combination. Each generated
binary in every environment is used as training data,
totaling more than 49GB among all classes.

• The implementation and tuning of a neural network struc-
ture that outperforms existing work in flag detection, and
is, to our knowledge, the only tool capable of recognizing
both optimization flags and compiler.

• An analysis investigating the minimum possible number
of raw bytes required in order to get accurate predictions.

Our paper is structured as follows. Section II covers re-
lated works in the field of binary file analysis with machine
learning. Section III presents the problem and our approach
and Section IV its empirical evaluation. Section V compares
our choices with another similar work in the field and in
Section VI we discuss them in relation to the results obtained.
Section VIII, finally, closes the paper. In addition, we put a
small Section IX, with pointers to download the replication kit
and source code, in order to replicate the evaluation and get
the same results.

II. PREVIOUS WORKS

The analysis of binary files is common in the security
field. In this field, recently, machine learning techniques have
also been used to aid the detection of malware. Pascanu et
al. used Recurrent Neural Networks (RNN) [9] to extract
malicious features from a binary in an unsupervised way,
a work extended by Athiwaratkun et al. with Convolutional
Neural Networks [10].

Related works regarding compilers flags, instead, is mostly
focused in the effect of these flags rather than their detection.
Work performed by Triantafyllis et al. is focused on the
exploration of optimal compiler flags [11], as well as the
work performed by Hoste et al. [1]. In recent years, on
this topic, several machine learning oriented techniques have
been developed [12] [13]. Older techniques focused on the
usage of machine learning to reduce the number of iterative
compilation necessary to get a good set of flags [14] and
to help approximate NP-hard problem efficiently, like phase
ordering [15]. More recent techniques, instead, uses deep
learning to recognize function boundaries, a work done by
Bao et al. [16] and then extended by Shin et al. [17]. Chua et
al. instead recognized function types using RNNs [18], while
He et al. tried to recover the debug symbols from a stripped
binary [19].

To our knowledge, the only work trying to detect flags in
an existing binary, instead of optimizing them, is the one of
Chen et al. [8]. The main differences between theirs and our
work are the following:

• We investigate the detection of not only flags but also
compilers, in binaries coming from different compilers
mixed altogether.

• Our analysis aims at not only maximizing the accuracy,
but also minimizing the required input.

• We use a much deeper CNN compared to their studies.
Additional differences and similarities will be discussed after
showing the results of our approach, in Section V.

III. APPROACH

The problem we are trying to solve, consists of discerning
the optimization level and possibly the original compiler
used for the compilation from source code to binary code,
given only a portion of the binary code. Specifically, given
a sequence of bytes v coming from a binary, we want to
train a classifying functionM parameterized by θM such that
MθM (v) = y where y is the output prediction. In the first
part of the analysis we try to determine only if the binary
is optimized or not, thus expecting a value of y in the form
y ∈ {0, 1}. We refer to this part as the binary classification
one. In the second part of the analysis we also try to determine
the compiler used, thus our expected value is a number
indexing a possible combination compiler-optimization. This
second part is referred as the multiclass classification.

It is our goal not only to maximize the accuracy, but also to
keep the vector v as small as possible, and as such we dedicate
Section III-B to the explanation of how the binary code is

transformed into v, the input expected by our learning network.
To compare the various performance we train three networks
using different models: a Feed-forward Convolutional Neu-
ral Network MCNN

θM
, a Long-Short Term Memory Network

MLSTM
θM

and a Dense fully-connected networkMDense
θM

, each one
with different θM parameters. These networks are trained in
several different Datasets, explained in detail in Section III-A,
and their prediction results compared. More details about the
network models can be found in Section III-D.

A. Dataset

In order to train our networks, we need to first collect
the data. Our networks perform supervised learning, so it is
necessary to have the binary code divided by optimization
level and compiler used. Additionally, we want our data to be
as much diverse as possible, coming from various computer
science topics, projects and written by different people. These
requirements allow our networks to not fit only on a particular
set of programs but to be applied to a wider range of
applications.

Although this task could seem trivial, as plenty of open
source software ready to be compiled with the desired flags
is available, during the manual compilation several precau-
tions are needed during the linking phase. In fact, despite
being capable of deciding both the optimization level and the
compilers, we have no guarantees on the environment that
will perform the compilation. Several libraries are available
to be statically linked, and we don’t know anything about the
compilation settings that were used for these libraries.

Recall that when a library is statically linked, its binary code
is copied inside the final executable during the linking phase.
As such, in most build systems, pre-existing libraries could
be linked to our fresh controlled build. For this reason, these
library could irreversibly contaminate our build given that we
lack the information about their generation.

Possible options for solving this problem would be:
1) Use as data only object files prior to linking.
2) Edit the build settings for the generated executable to

exclude linking.
3) Build a system from scratch with the desired config-

uration for every library. Then use this system as the
controlled build system.

For the listed options, number 1 would not give us a
realistic case study, as several optimizations can be performed
also at link-time [20]. Number 2, instead, is ”too risky“ as
it involves checking manually various compilations settings
written in different languages and styles in order to ensure
dynamic linking and has an high risk of error. For example
in our experiments we found that some build scripts use
hardcoded parameters, others use environment variables and
others recursively integrates files. Checking, understanding
and modifying all these build script correctly is definitely not
impossible but has a high chance of error.

For this reason we opt for option number 3. Given the huge
amount of time required to build an entire system from scratch
and the number of possible compiler-flag combinations, we

limit our analysis to optimization groups provided by the
compilers. These groups are a collection of optimization flags
often used together and in our analysis we target levels O0 and
O2. These two levels correspond to unoptimized and optimized
respectively. During dataset creation we determined that these
are the most common configurations, as every open-source
software we are using is shipped with one of these two options
in the build script. Note that this may not always be the case,
as discussed in Section VII

As compilers we use gcc version 9.2.0 and clang version
10.0.0, two commonly used compilers in Linux environments.
We target x86 64 as our only architecture. We follow the Linux
From Scratch book1, version 9.1-systemd, published on March
1st, 2020 in order to build the controlled systems. This book
is followed because it grants us control on the built system,
where each library and binary is ultimately compiled by us
with the required compiler and optimization level, without
relying on pre-built software.

The particular steps we employ in order to obtain the
binaries are the following:

1) We build a toolchain with the required compiler and
flags from a host machine, following Chapter 5 of Linux
From Scratch.

2) We use the toolchain in a chrooted environment to build
a clean Linux system, containing software specified in
Chapter 6 of Linux From Scratch.

3) We use the binaries and libraries composing the system
of the previous step as training, validation or testing data.

The first two steps are employed in order to avoid contami-
nating the build with the host system libraries, and results in
the controlled build system. The third step, instead, reflects
the fact that the controlled build system can itself be used as
dataset.

We repeat these steps for the following systems: gcc-O0,
gcc-O2, clang-O0 and clang-O2.

It is worth noting that the GNU C library, glibc, fails to
compile with anything but optimized gcc, for this reason, we
remove every static library built while compiling glibc to
force the usage of dynamic libraries in that case.

B. Encoding
Possessing the binary files is not sufficient for the analysis,

as, in order to submit them to the learning network, it is
necessary to convert them into a vector of features v first. We
are naturally interested in having a function-grained analysis,
as this is the finest grain possible with different compilation
options we can expect to encounter in a real case. We propose
and compare two approaches: one requiring disassembly and
precise function bounds and one using a stream of bytes
without prior knowledge about the encoded instructions. The
effectiveness of these two approaches is analyzed in Sec-
tion IV-A.

In the first encoding, the one requiring disassembly,
radare22 is used to extract every function from the executable.

1http://www.linuxfromscratch.org/lfs/index.html
2https://rada.re/

4889442418 mov qword [var_18h], rax
31c0 xor eax, eax
4885ff test rdi, rdi
7423 je 0xd03c
488b4208 mov rax, qword [rdx + 0x8]
48893424 mov qword [rsp], rsi
4889e6 mov rsi, rsp
4889442408 mov qword [rsp + 0x8], rax
488b02 mov rax, qword [rdx]
4889442410 mov qword [rsp + 0x10], rax
e85a0e0000 call fcn.0000de90
4885c0 test rax, rax
0f95c0 setne al

Fig. 1. Portion of a disassembled function

The result can be seen in Figure 1. In the Figure, the left
column represents the raw bytes written in the binary and the
right column their translation in Intel Assembly syntax.

Given that we are working with the x86 64 architecture, we
can see a lot of bytes specifying that the registers to be used
should be of 64-bit length, represented by the bytes 0x48 in
the Figure, preceding every instruction involving rax, rsi,
rsp registers. This is a problem, as real functions can be of
arbitrary length, but our networks support fixed length vectors
as input: we expect these extra bytes add almost nothing to the
information and thus decide to strip them and keep only the
byte(s) representing the operations to be performed, without
any parameter. Unlike the previous research, we do not encode
parameters in our representation, in order to save more space
and fit even more “valuable” instructions inside the limited
length vector [8].

We are thus encoding our functions as time series, where
each point in time is actually an opcode of the CPU archi-
tecture. For example, the first four instructions of the above
image would have this vector: [0x89,0x31,0x85,0x74].
In case of multibyte instructions, the multiple bytes are inter-
preted as multiple values, for example the last two instruction
of Figure 1 are composed by the opcodes 0x85 and 0x0F95
but would have this vector: [0x85, 0x0F, 0x95]. We
choose a-priori 2048 bytes as the maximum length of the input
vector v. Extra data is pre-truncated, as we expect the most
useful operations to be at the end of a function and not at the
beginning which contains initialization, whereas insufficiently
long functions are pre-padded with zeroes, as this has been
proved to be better for LSTMs [21].

This representation, will be called opcode-based from now
on.

The second encoding, is more naive and already proved
successful in previous research aimed at learning functions
boundaries [16].

In order to generate this second representation, we use
readelf to dump the .text section of the executable and
split it into chunks of fixed size. We again choose a-priori
2048 bytes as length of v, however, we evaluate the precision
of the networks in recognizing the compilation settings for
these chunks varying their size, in order to simulate a real

f0 25 14 de af 8c 85 c3 00 f0 25 14 de af 8c 85
85 bf 5b cf e0 f2 63 0b 00 00 00 00 85 bf 5b cf
92 af 97 0b 06 84 1d 5d 00 00 00 92 af 97 0b 06
e3 14 bc ac a8 de 21 e7 00 00 00 00 00 00 e3 14
73 11 27 9a ff 4f d9 73 00 00 00 00 00 73 11 27
03 d6 ce de 8b 0d af 46 00 00 03 d6 ce de 8b 0d
74 37 35 f2 49 c3 e5 69 00 00 00 74 37 35 f2 49
8c 47 4a 57 d2 cf 7e 46 00 8c 47 4a 57 d2 cf 7e

Fig. 2. Truncation of input sequences on the left and subsequent padding on
the right

case where functions can have different length.
A drawback of this second representation is that we are

completely unaware if the raw data represent instructions or
stack data. On the other hand, disassembly is not required, a
step that usually requires several minutes and is necessary for
the first representation presented and the previous research [8].

C. Padding

For the first encoding presented in Section III-B, the input
vector length is the same as the function length. This makes the
previously described padding necessary, as the function length
is always different. On the other hand, the second approach,
requires only a fixed amount of sequential data from the binary,
thus needing no padding.

However, we determined that by providing always chunks
in a fixed size, both CNN and LSTM are unable to deal
with padding during evaluation. Experimental data shows that
when training with fixed size chunks, the inference of a chunk
padded with zeroes by more than 60% of its length results
in an unacceptable drop below 80% accuracy. This can be
detrimental in a real case, as it would require training different
models for different input sizes in case we want to infer
smaller amount of data or just a portion of the executable.

To fix this problem, we truncate the chunk to a random
length in the interval [32, input length]. Then we pre-pad its
length in the same manner as the first approach described in
Section III-B. The value 32 has been chosen in order for the
chunk to be still classifiable: padding too much could leave
us with chunks where the classification is impossible due to
lack of enough information.

An example of this can be seen in Figure 2: each line
represents an input sequence before padding on the left block
and after padding on the right block. The red part is the
amount of input data that will be truncated. The length of this
part is decided randomly within interval bounds mentioned
previously in the section. On the right block we can see that
the same amount is replaced by prepending zeroes.

Training the networks with chunks modified in this way
allow to infer, with more than 90% accuracy, sequences
composed up to 99.5% by zeroes. A more in-depth evaluation
of this padding is provided in Section IV-D.

D. Networks

For our analysis we use three different networks modeled
as follows: a Fully Connected Dense Network, a Long-Short

Embeddings

LSTM

Dense

out=128

n=256

n=#classes

[0x89, 0x31, 0x85, 0x74, ...]
[0x89, 0xE8, 0x89, 0x89, ...]
...

[0.96, 0.0, 0.04, 0.0]

Softmax

Tanh

Fig. 3. LSTM model structure

Term Memory (LSTM) [6] and a Feed Forward Convolu-
tional Neural Network (CNN) [7]. The last two networks
have been chosen due to their successful applications in
Natural Language Processing or Image Recognition. We are
thus modeling our problem of optimization detection into a
pattern recognition problem: a particular optimization can be
recognized by a network as a pattern in the input vector. Small
perturbations have been applied to the original layers structure
to determine the best configuration for our problem.

The first network, Dense, is not presented in detail as it
is use merely as a comparison to show its inefficiency. It is
composed of three fully connected dense layers of respectively
2048, 1024 and 512 units. The last layer, responsible of the
prediction is made of 1 unit for the binary case and 4 units
for the multiclass. After each layer ReLU is used as activation
function and right after, a Dropout of 20%. The optimizer used
is Adam with learning rate 10−3 and the activation function of
the final layer is a Sigmoid for the binary case and a Softmax
with four classes for the multiclass one.

The second model is depicted in Figure 3. This model
implements a simple LSTM, given that we encoded our
sequence of bytes as a time series and the ability of LSTMs
to perform well in that kind of problems. LSTMs in fact
have special “memory” cells, that can be used to memorize
a particular input or pattern even in long sequences [6].
Our core idea resides in training this kind of model into
memorizing a particular pattern, representing the compiler or
the optimization level, over a long sequence of bytes belonging
to the binary.

As we can see from the picture the model is pretty straight-
forward, composed firstly by an embedding layer with 256
as vocabulary size (as we are using bytes in range 0x0 to
0xFF) and 128 as dimension for the dense embedding. This
layer encodes positive integers into a dense vector of fixed
size, understandable by the LSTM. Then the LSTM layer with

256 units is used for the actual learning. This layer uses an
hyperbolic tangent (tanh) as activation function. The kernel is
initialized by drawing samples from an uniform distribution in
[−64− 1

2 , 64−
1
2]. The last part of the network is a Dense with 1

output and Sigmoid activation for the binary case, Dense with
4 outputs and Softmax for the multiclass case. The optimizer
used is again Adam with learning rate 10−3.

The last model, comes from the trend in the Image recog-
nition and categorization [22] and is based on a Convolutional
Neural Network. The idea is that a set of convolutions is used
to extract highly dimensional information from the sequence
of raw bytes passed as input. We can see the structure in
Figure 4.

The first layer is identical to the one in the LSTM version,
as its utility is the same. Then three blocks of convolution,
convolution, pooling are used, with increasing number of
filters. In the Figure the label k3n32s1 for a convolution layer
indicates: kernel size 3, number of filters 32, strides 1. In
these blocks the convolutions are used to extract features from
the sequence of bytes, and the pooling is used to make these
features independent of their position in the sequence.

The Leaky ReLU [23] is used in place of the ReLU [24] as
the latter suffer from the vanishing gradient problem. In fact
while the ReLU function returns 0 for values less than 0, the
leaky variant returns an ε, in our case 0.01, in order to keep
the neuron still alive. Given that, as explained in Section III-B,
we are using highly padded sequences, we use the leaky
version to avoid the gradient vanishing and remaining at zero
for the rest of the training. Before the output, one last fully
connected layer composed of 1024 neurons is used, followed
by a ReLU activation and the canonical Dense and Sigmoid
for binary classification or Dense and Softmax for multiclass
classification. Also in this case the optimizer is Adam with
learning rate 10−3.

All the models use Binary Cross-entropy as loss function
for the binary classification and Categorical Cross-entropy for
the multiclass classification [25].

The presented hyperparameters of both LSTM and CNN
have been estimated using the Hyperband algorithm [26]. We
used power of two as space search in the interval [32, 1024]
for most features, except kernel size and strides. For the kernel
size the space search was the set {3, 5, 7}. The space search
for the stride value was instead the set {1, 2}.

IV. EVALUATION

We performed experiments using an Nvidia Quadro
RTX5000 on the data presented in Section III-A after the
preprocessing explained in Section III-B. However, given the
high amount of binary data, we obtained a number of input
vector in the order of millions. We could thus safely split data
into disjoint set, while keeping a high number of samples for
each set. These sets are training, validation and testing with a
split ratio of 50%, 25% and 25% respectively.

No augmentation has been performed and no overlapping
sequences were collected, thus every sample was absolutely
unique between training validation and testing. Moreover,

duplicated samples (for example system calls) were removed
from each set. No functions have been removed in case
they were too small. Each class has then been balanced by
randomly removing data not only in the training, but also in the
validation and testing set. After this preprocessing operation,
the number of samples used can be seen in Table I

TABLE I
NUMBER OF SAMPLES FOR EACH CONFIGURATION

Dataset Training Validation Testing

Dfunc 44876 22438 22438
Dgcc 46378 23190 23188
Dclang 388372 194186 194186
Dmixed 92746 46374 46374
Dmulti 92756 46380 46376

In the Table the dataset names are the following:
Dfunc

Dataset composed by extracted opcodes as described
in Section III-B. It is composed by programs com-
posing the Linux From Scratch build, coming from
gcc-O0 and gcc-O2. Binary classification.

Dgcc
Dataset composed by raw values from programs
composing the Linux From Scratch build, coming
from gcc-O0 and gcc-O2. Binary classification.

Dclang
Dataset composed by raw values from programs
composing the Linux From Scratch build, coming
from clang-O0 and clang-O2. Binary classifi-
cation.

Dmixed
Dataset composed by raw values from programs
coming from all built Linux From Scratch images.
gcc-O0 and clang-O0 are merged into a single
class, as well as gcc-O2 and clang-O2. In this
case also the various samples coming from gcc and
clang has been balanced inside the O0 and O2
classes. Binary classification.

Dmulti
Dataset composed by raw values from programs
coming from all the configurations. Unlike Dmixed,
every class is independent. Multiclass classification.

Training has been performed for 40 epochs using batch sizes
of 256 samples. An early stopper was employed, stopping the
learning after three epochs without at least an improvement of
10−3 in the loss function on the validation dataset. Additional
info about the training process are provided in the replication
kit in Section IX. Table II shows the time required for each
sample during training and inference.

In this section we want to answer the following research
questions:

• RQfunc: Is it better to use the opcodes encoding or just
feed raw bytes?

• RQbinary: How the various models perform while detect-
ing the optimization level?

n=128 n=#classes

[0x89, 0x31, 0x85, 0x74, ...]
[0x89, 0xE8, 0x89, 0x89, ...]
...

[0.96,
 0.0,
 0.04,
 0.0]

k3n32s1

M
ax

Po
ol

1D

C
on

v1
D

C
on

v1
D

Em
be

dd
in

gs

De
ns

e

De
ns

e

So
ftm

ax

k5n32s2
n=1024

Le
ak

y
Re

LU

k3n64s1

M
ax

Po
ol

1D

C
on

v1
D

C
on

v1
D

k5n64s2

Le
ak

y
Re

LU

k3n128s1

M
ax

Po
ol

1D

C
on

v1
D

C
on

v1
D

k5n128s2

Le
ak

y
Re

LU

Re
LU

Fig. 4. CNN model structure

TABLE II
TIME REQUIRED TO PROCESS EACH SAMPLE IN MICROSECONDS

Model Training (µs) Inference (µs)

Dense 65 20
LSTM 9000 2000
CNN 850 230

• RQmixed: How the various models perform while de-
tecting the optimization level if multiple compilers are
mixed?

• RQmulticlass: How the various models perform while
detecting both the optimization level and the compiler
used?

• RQpad: Does padding during training improve the per-
formance of the networks?

In order to answer these questions we perform the evaluation
for increasingly padded values of v. This means that we
evaluate the performance of the model when submitting only
inputs composed by 1 bytes, 2 byte, and so on until the 2048
bytes used as limit for the input vector. In this way we can
get an insight on how the model would perform in case less
than 2048 bytes are available.

To better compare the obtained results with the average
case, we present the decompilation results of three files, a
small, medium and huge sized, coming from the clang-O0
compilation in Table III.

TABLE III
STATISTICS ABOUT A SMALL, MEDIUM AND HUGE FILE, WITH MINIMUM,

MAXIMUM AND AVERAGE FUNCTION LENGTH IN BYTES

Filename Size (bytes) Functions Min Max Average

dirname 9.4 · 103 13 6 492 55.07
ninja 4.5 · 106 4039 1 4747 82.78
clang-10 1.48 · 109 722849 1 53705 133.16

A. Encoding

In order to answer RQfunc, we train an LSTM over two dif-
ferent datasets: one on Dfunc and one on Dgcc. As previously
explained, the first of these datasets contains only the opcode
composing the functions, where the second contains raw bytes
of data. We perform the evaluation by classifying the various

Accuracy of Opcode-based and raw bytes encoding

Input Length (log scale)

Ac
cu

ra
cy

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1 5 10 50 100 500 1000

Opcode-based
Raw bytes

Fig. 5. Accuracy of the opcode encoding compared to raw encoding

samples in the testing set with progressively increasing bytes.
The plot in Figure 5 shows the results.

We can see that the opcode based encoding has better
accuracy for very short sequences of bytes, then the raw
bytes encoding matches and eventually performs better than
the opcode based for longer sequences of more than 300
bytes. Despite the opcode-based being superior in matter of
information carried per single byte, note that for each opcode
we usually have more than one raw byte. This can be easily
seen in Figure 1, where the first four instructions are converted
into four bytes with this encoding, but their raw equivalent
would be a total of 12 bytes. Unfortunately, given the varying
nature of each instruction in x86 64 it is not possible to
plot a precise comparison of information available, rather than
information carried. The idea of the opcode-based encoding,
as explained in Section III-B was to squeeze as much high-
valued information as possible into the input vector v in
case of longer function, however, results show that for longer
sequences the raw bytes encoding performs better. For very
short sequences of instruction, although the function based
encoding performing better on a per-byte basis usually the
amount of raw bytes is much higher thus still allowing a more

Models metrics on the GCC dataset

Input Length (log scale)

Ac
cu

ra
cy

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1 5 10 50 100 500 1000

Dense
LSTM
CNN

Fig. 6. Accuracy of the various model in the Dgcc dataset.

accurate prediction. We can thus answer RQfunc as follow:

The opcode-based encoding grants a much higher ac-
curacy per-byte. However, usually, the availability of
raw bytes is numerically superior, allowing for better
comparisons

Given these results, following experiments are performed
and reported only with the raw bytes encoding.

B. Binary classification performance

In order to decide which model performs better between
the Dense, LSTM and CNN ones, answering RQbinary, we
perform the comparison by training each of them in two
different datasets. The first dataset is Dgcc, containing data
obtained by binaries compiled with gcc and split into O0 and
O2 classes. Figure 6 shows the results.

In the Figure we can easily note the inability of the Dense
network at recognizing the optimizations, however, regarding
the LSTM and CNN, their performance is essentially identical,
with the latter being slightly better. A similar situation can be
seen in Figure 7 where the same training has been performed
but with Dclang, the dataset containing data obtained from
binaries compiled with clang.

Interestingly enough, in this plot the Dense network per-
forms much better: despite the results being not even compa-
rable with the LSTM and CNN ones, a dataset almost ten times
bigger shows the Dense network ability to learn something. To
conclude, we also present precision, recall and F1-score of the
models in the Dgcc dataset, with the Dclang providing similar
results for these two models. These can be found in Figure 8.

Table IV instead presents the metric values for the Dgcc
dataset with a v length of 2048.

Recall, however, that despite the similar performance be-
tween LSTM and CNN, the former requires much more

Models metrics on the Clang dataset

Input Length (log scale)

Ac
cu

ra
cy

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1 5 10 50 100 500 1000

Dense
LSTM
CNN

Fig. 7. Accuracy of the various model in the Dclang dataset.

Models metrics on the GCC dataset

Input Length (log scale)

Sc
or

e

0.
2

0.
4

0.
6

0.
8

1.
0

1 5 10 50 100 500 1000

Precision LSTM
Recall LSTM
F1 LSTM
Precision CNN
Recall CNN
F1 CNN

Fig. 8. Precision, Recall and F1 of the various model in the Dgcc dataset.

training and inference time, as shown in Table II. We can
thus answer RQbinary as follow:

TABLE IV
METRICS OBTAINED IN THE GCC DATASET WITH THE LONGEST INPUTS

Model Accuracy Precision Recall F1

LSTM 98.48% 97.28% 99.67% 98.46%
CNN 98.55% 97.29% 99.80% 98.53%

Models metrics on the Mixed dataset

Input Length (log scale)

Ac
cu

ra
cy

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1 5 10 50 100 500 1000

Dense
LSTM
CNN

Fig. 9. Accuracy of the various model in the Dmixed dataset.

Both LSTM and CNN have an almost identical perfor-
mance related to accuracy, precision, recall and F1-
score. The LSTM however is almost ten times slower at
training and at inference time. The Dense model instead
is not able to reach an acceptable accuracy in any case.

These results proves that both the LSTM and CNN models
can recognize if a portion of binary is optimized or not,
however, they require to be trained in the specific compiler
they were designed to recognize. This implies that before
recognizing the optimization is necessary to recognize the
compiler in order to choose the correct inference network.

For this reason, wanting to avoid this, we perform the
evaluation of RQmixed by mixing altogether samples taken
from Dgcc with samples taken from Dclang, while keeping
them separated by optimization level. The result, Dmixed, is
used to train the next set of Dense, LSTM and CNN networks
that should correctly recognize the optimization without being
trained specifically for a given compiler. Lastly, note that
Dclang has a much higher number of samples than Dgcc. In
order to get correct results we also balance the number of
samples for each compiler inside each predictable class, in
training, validation and testing. After training each model for
this dataset, the accuracy values are shown in Figure 9.

This results are essentially unchanged from the compiler-
specific training, however, the CNN performs even more better
than the LSTM. Precise results are showed, for 2048 bytes, in
Table V.

TABLE V
METRICS OBTAINED IN THE MIXED DATASET WITH THE LONGEST INPUTS.

Model Accuracy Precision Recall F1

LSTM 98.10% 96.50% 99.68% 98.06%
CNN 99.07% 98.34% 99.79% 99.06%

Models metrics on the Multiclass dataset

Input Length (log scale)

Ac
cu

ra
cy

0.
2

0.
4

0.
6

0.
8

1.
0

1 5 10 50 100 500 1000

Dense
LSTM
CNN

Fig. 10. Accuracy of the various model in the Dmulti dataset.

At this point we can answer also RQmixed as follow:

CNN performs better than LSTM in the mixed dataset
and is faster at both training and inference time. The
Dense model still has no acceptable accuracy

C. Multiclass classification performance

Despite both CNN, and LSTM being able to correctly
detect optimization levels in binary data coming from different
compilers, the compiler is still not considered in the prediction.
In this section we evaluate the performance of the three
models while predicting not only if the binary is optimized
or not, but also the compiler that generated it. As explained
in Section III-D, the networks are slightly different in the last
Dense layer and activation function, compared to the one used
for binary classification. The dataset used is Dmulti. Figure 10
shows the accuracy of the prediction for the various models.
In case the compiler was predicted correctly, but with the
wrong optimization level we still consider the result a wrong
prediction while computing the accuracy.

We can see that also this case reflects the binary classi-
fication: the Dense model is unable to learn anything while
LSTM and CNN models have comparable result. Interestingly,
however, this time the LSTM performs better than the CNN
for the first 100 bytes, instead of the usual 10 in the binary
classification, and in the end the CNN has much less advantage
in accuracy over the LSTM. Moreover, if in binary classifi-
cation 50 bytes are required to achieve 90% accuracy, in the
multiclass double the amount is necessary to have the same
result.

Table VI shows the accuracy for the 125 and 2048 bytes
vector.

In our experiment, however, the LSTM proved to be really
difficult to train in this case as we managed to obtain this
result at the fourth attempt in training. In previous attempts,

TABLE VI
ACCURACY FOR THE MULTICLASS CLASSIFICATION USING DIFFERENT

BYTES INPUT.

Model Accuracy (125) Accuracy (2048)

LSTM 94.05% 98.84%
CNN 93.61% 98.87%

Difference between padded and not padded training set

Input Length (log scale)

Ac
cu

ra
cy

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1 5 10 50 100 500 1000

Padded
Not padded

Fig. 11. Accuracy of the LSTM model if it has been trained with padded
values or not

the LSTM topped respectively at 63% accuracy, 76% accuracy
and 85% accuracy with the highest length vector.

We can thus answer RQmulticlass as follow:

In the multiclass classification CNN and LSTM provides
similar accuracy, with the latter being slightly better
with input smaller than 100 bytes. The LSTM is however
harder and slower to train. The Dense model still
provides unacceptable accuracy.

D. Padding

In Section III-B we assert that our networks perform worse
if, during training, raw bytes sequences are never padded,
and then padded sequences are predicted. In this section we
present RQpad, investigating the difference between padding
in training or not. In this experiment we use the same network
with the same dataset, seed, and samples ordered in the same
way, except that in one case the input values are always of
2048 bytes, in the other they are randomly cut in the interval
[32, 2048] and padded with zeroes. Then we perform the
evaluation in the same way of the other Research Questions.
We evaluate the LSTM architecture on the biggest dataset we
have, Dclang , obtaining the results showed in Figure 11.

By further analyzing the confusion matrix, we can tell that
the LSTM trained without padded values always predicts “not
optimized” for inputs shorter than 235 bytes and the accuracy

matches the LSTM trained with padded values only at around
1500 bytes, with only 30% of the total sequence padded.

Although not formally presented, the CNN architecture
suffered the same problem in the multiclass dataset, predicting
the same class for inputs shorter than 140 bytes and then
matching the padded-trained counterpart at around 1000 bytes.
We can thus answer RQpad as follow:

If inputs are always of the same size during training,
networks will have significantly lower accuracy in pre-
dicting shorter sequences.

To summarize the five Research Questions we can conclude
the following:

Although the LSTM providing better accuracy for very
small inputs, the CNN is faster and easier to train.
For input sizes where the CNN is outperformed by the
LSTM, the accuracy is still low even in the LSTM model,
making the CNN a preferable choice in any case.

V. COMPARISON

Given the similarities with the work of Chen et al. [8], the
only related work attempting to recognize compiler flags in a
binary file, in this section we report the comparison with their
work along with a reasoning about the differences.

One of the main difference is the dataset used. In our study
we needed additional binaries coming from clang and, espe-
cially, we wanted to be absolutely certain that static libraries
could not interfere with the flags or the compiler used. For
this reason we limited the analysis to only two optimization
flags, given that replicating their study would mean building at
least 10 different Linux systems from scratch. Moreover, our
dataset is huge compared to their work. Only one executable
out of the 7701 we used, clang-10, is composed by 722804
functions, almost double their entire amount of functions for
all the categories combined. This can be easily explained as
we used radare2 instead of objdump as disassembler, a more
sophisticate tool that requires much more time but can also
detect indirect functions.

Despite disassembling the executable, in order to compare
the opcode-based approach with the raw bytes one, this task is
essentially not needed in our approach, given that we preferred
the raw bytes one. Using a more sophisticate disassembler in
order to get more functions can be very time consuming: in
our machine for example disassembling bison, a 400KiB ex-
ecutable, takes around 10 seconds. Disassembling busybox
instead, a 2MiB executable, takes 66 seconds. For larger
binaries, if the function grain is not required, their approach
still requires function beginning and ending, where ours can
just take a random 2048 bytes from the .text section and
be dominated by the inference time.

In addition, unlike them, we did not remove short functions
from the dataset: doing so would create differences between
evaluation and a real case study. On the contrary, we took this
as a challenge and tried to understand the fewest amount of
bytes required to get an accurate prediction. As shown in the

evaluation, we got a 90% accuracy, similar to their shallow
model, with only 45 bytes of input in the binary case, and
around 80 in the multiclass one. Assuming a mean of 4 bytes
for each instruction, we can see that removing short functions
is not recommended.

About the results, in the previous research the authors
claim that their study “exhibits accuracy of around 89%”.
Althuogh our approach can reach much higher accuracy, we
expect having to classify more than just two flags to be
harder. In the previous work, the authors also claimed that
the GRU [27] model, a kind of RNN, achieved much higher
accuracy than the CNN, although here we proved that CNN
can be comparable, if not better than RNNs (as LSTM is a
kind of RNN), even in multiclass classification, provided the
CNN is deep enough. In fact we used 6 convolution layers,
3 pooling layers and 2 dense layers, where the original paper
claimed to have tried CNN with two layers.

In the end, the two analyses can not be compared one-to-
one, as the previous one is focused more in the number of
optimization flags while we focused on the combinations flags-
compiler. For this reason, we plan to extend our analysis also
to the remaining flags in order to have a full evaluation and
comparison.

VI. DISCUSSION

Results obtained in Section IV provides, as an implication,
the possibility of detecting the binary flags with multiple
granularity in a fast way. In fact, we showed the possibility
to recover, with high accuracy, the compiler and optimization
flags used, with an inference time of 230µs, as showed in
Table II. In addition to the fact that dumping raw bytes from
an executable or library is really fast, as it involves just
reading the file itself, we can detect with very high confidence,
reaching almost 99%, the compilation settings with a file-grain
in less than one millisecond.

If a function grain is necessary, with our method disassem-
bling is still not necessary, as the functions headers can be
retrieved by other means (i.e. Deep Learning) and thus avoid-
ing again the slowest part of binary analysis. This allows our
tool to be used to check, even at run-time without a noticeable
performance impact, if the flags used for compilations were
unsafe, energy oriented, speed oriented, or forgotten at all.

In addition, the tiny amount of bytes required by our method
allow us to target very small portions of code, and thus can be
used to check which portions of the binary matches the used
compilation flags. This fact allows a better categorization of
the binary content and could help in binary analysis. In fact, if
a small portion of file with different flags and maybe compiler
than the rest of the file is found, there is a high likelihood that
this portion belongs to a static library. For this reason, that part
can be, not skipped as it could be a file purposely compiled
with different flags, but analyzed with lower priority.

VII. LIMITATIONS AND FUTURE WORKS

The analysis we conducted was limited to a single ar-
chitecture, a pair of compilers and a pair or optimization

levels. As we expect the current model, accordingly re-
trained, to work also with more compilers and in different
architectures we have no guarantees that this would be the
case. A threatening hypothesis is that our network could learn
particular optimization patterns generated by compilers only
in the x86 64 architecture that maybe are harder to learn in
other architectures. For this reason, we expect to conduct a
similar study also in other architectures such as ARM. This
last architecture, for example, has a fixed length encoding,
the lack of which was a problem in the analysis explained in
Section IV-A that compares opcode-encoding and raw data.

Moreover, the difference between O0 and O2 is pretty
huge compared to the difference between O2 and O3. Future
works will involve performing multiclass classification even
with the flags, by checking also other common settings like
the “minimum size executable”. It would be interesting also
to check the classification performance with a multilabel
classification where each label is a different compilation flag.
However this probably would be unfeasible in the number of
required data to be generated, at least with our method that
requires manually compiling an entire Linux system for each
class.

VIII. CONCLUSION

In this paper we described two deep learning networks,
one based on an Long-Short Term Memory model and the
other based on a Convolutional Neural Network model. We
evaluated them and showed that they both can achieve above
98% accuracy in both optimization and compiler detection,
with peaks of more than 99% when more data is available.

We also showed that even with very short input sequences
of just 125 bytes, corresponding to roughly 30 instructions,
the accuracy of the networks is around 95%. This enables the
classification not only at executable grain, but even at function
grain, given that we saw in Table III the average function size
is around 130 bytes. In case the function grained evaluation is
not needed, disassembly, an time-expensive operation, is not
required as we showed that both networks perform equally
good while handling inputs composed of raw bytes.

IX. REPLICATION

A replication kit can be found on Zenodo at the following
url [28]. The kit contains source code, dataset and models.
Instructions on how to replicate the results can be found in
the contained README.

The source code can also be found publicly on GitHub:
github.com/inoueke-n/optimization-detector.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Num-
ber 18H04094.

REFERENCES

[1] K. Hoste and L. Eeckhout, “Cole: compiler optimization level ex-
ploration,” in Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, 2008, pp. 165–174.

[2] M. Demertzi, M. Annavaram, and M. Hall, “Analyzing the effects
of compiler optimizations on application reliability,” in 2011 IEEE
International Symposium on Workload Characterization (IISWC), 2011,
pp. 184–193.

[3] Y. David, N. Partush, and E. Yahav, “Similarity of binaries through re-
optimization,” in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2017, pp. 79–94.

[4] N. E. Rosenblum, B. P. Miller, and X. Zhu, “Extracting compiler
provenance from program binaries,” in Proceedings of the 9th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering, 2010, pp. 21–28.

[5] N. Rosenblum, B. P. Miller, and X. Zhu, “Recovering the toolchain
provenance of binary code,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, 2011, pp. 100–110.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[8] Y. Chen, Z. Shi, H. Li, W. Zhao, Y. Liu, and Y. Qiao, “Himalia: Recov-
ering compiler optimization levels from binaries by deep learning,” in
Intelligent Systems and Applications, K. Arai, S. Kapoor, and R. Bhatia,
Eds. Cham: Springer International Publishing, 2019, pp. 35–47.

[9] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2015, pp. 1916–1920.

[10] B. Athiwaratkun and J. W. Stokes, “Malware classification with lstm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 2482–2486.

[11] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in International Symposium
on Code Generation and Optimization, 2003. CGO 2003. IEEE, 2003,
pp. 204–215.

[12] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1879–1901, 2018.

[13] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
“A survey on compiler autotuning using machine learning,” ACM
Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle,
J. Thomson, M. Toussaint, and C. K. Williams, “Using machine learning
to focus iterative optimization,” in International Symposium on Code
Generation and Optimization (CGO’06). IEEE, 2006, pp. 11–pp.

[15] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly, “Meta
optimization: Improving compiler heuristics with machine learning,”
ACM sigplan notices, vol. 38, no. 5, pp. 77–90, 2003.

[16] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley,
“{BYTEWEIGHT}: Learning to recognize functions in binary code,”
in 23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014,
pp. 845–860.

[17] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 611–626.

[18] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 99–116.

[19] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1667–1680.

[20] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, tech-
niques,” Addison wesley, vol. 7, no. 8, p. 9, 1986.

[21] M. Dwarampudi and N. V. S. Reddy, “Effects of padding on lstms
and cnns,” CoRR, vol. abs/1903.07288, 2019. [Online]. Available:
http://arxiv.org/abs/1903.07288

[23] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

[24] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[26] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[27] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[28] D. Pizzolotto and K. Inoue, “Compiler flag detection using cnn,” May
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3865122

