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Abstract: Relevant, predictive normal, or disease model systems are of vital importance for drug
development. The difference between nonhuman models and humans could contribute to clinical
trial failures despite ideal nonhuman results. As a potential substitute for animal models, human
induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) provide a powerful tool for drug
toxicity screening, modeling cardiovascular diseases, and drug discovery. Here, we review recent
hiPSC-CM disease models and discuss the features of hiPSC-CMs, including subtype and maturation
and the tissue engineering technologies for drug assessment. Updates from the international
multisite collaborators/administrations for development of novel drug discovery paradigms are
also summarized.

Keywords: hiPSC-derived cardiomyocytes; maturation; subtype; disease modeling; drug discovery

1. Introduction

Human induced pluripotent stem cells (hiPSCs) were developed by Dr. Shinya Yamanaka more
than 10 years ago [1]. This technology allows pluripotent stem cells to be derived from healthy persons,
as well as patients. hiPSCs have been used in multiple fields, leading to significant technological and
therapeutic developments. hiPSC-derived cardiomyocytes (CMs) have been used to model several
major cardiomyopathies, including ion related, structural, and metabolic cardiomyopathy, providing
new insights into the mechanism underlying the disease phenotype. A potential genetic therapy
based on CRISPR/Cas9 and adeno-associated virus has also been proposed and validated in an hiPSC
disease model. Another promising application of hiPSC-CMs is drug toxicity screening (Figure 1);
despite the remaining issues such as immaturity and heterogeneity within the hiPSC-derived CM
culture, a new paradigm based on hiPSC-CMs has been proposed for more accurate prediction of the
proarrhythmia risk.
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Figure 1. Overview of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) 
model for drug screening. Healthy or patient-derived somatic cells can be reprogrammed into human 
induced pluripotent stem cells (hiPSCs) and then differentiated into all subtypes of cardiomyocytes 
(hiPSC-CMs), including ventricular, atrial, and nodal myocytes. iPSC-CMs can be matured and 
engineered into three-dimensional (3D) cardiac tissue, and used for applications including disease 
modeling, drug development, and toxicity screening. MEA: multielectrode array, for detection of 
extracellular field potential (FP) of CMs. Calcium transient: the intracellular calcium concentration 
during the CMs beating. Membrane potential: difference in electric potential between the inside and 
outside of cell membrane. The recording of membrane potential of CMs can be used for analyzing 
action potential (AP). Force: also known as contractile force, generated by the shift of the sarcomere. 
The contractile force and frequency are closely related to cell function. 

In this review, we provide an overview of hiPSC-CMs and their features, including 
characterization, maturation, and tissue engineering. Their applications in cardiac disease modeling 
and new drug testing paradigms are also summarized and discussed. 

Figure 1. Overview of human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model
for drug screening. Healthy or patient-derived somatic cells can be reprogrammed into human induced
pluripotent stem cells (hiPSCs) and then differentiated into all subtypes of cardiomyocytes (hiPSC-CMs),
including ventricular, atrial, and nodal myocytes. iPSC-CMs can be matured and engineered into
three-dimensional (3D) cardiac tissue, and used for applications including disease modeling, drug
development, and toxicity screening. MEA: multielectrode array, for detection of extracellular field
potential (FP) of CMs. Calcium transient: the intracellular calcium concentration during the CMs
beating. Membrane potential: difference in electric potential between the inside and outside of cell
membrane. The recording of membrane potential of CMs can be used for analyzing action potential
(AP). Force: also known as contractile force, generated by the shift of the sarcomere. The contractile
force and frequency are closely related to cell function.
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In this review, we provide an overview of hiPSC-CMs and their features, including characterization,
maturation, and tissue engineering. Their applications in cardiac disease modeling and new drug
testing paradigms are also summarized and discussed.

2. Generation of Human iPSC-CMs and Their Subtypes

Cardiovascular disease (CVD) is a leading cause of the global deaths [2]. Modeling CVD is
essential for understanding its causes and the therapies of such diseases. There are already reports
on the use of human primary CMs to model human heart [3–6]; however, limited access to human
samples and the variability of human material cause problems, since each tissue source can only be
assessed once [3]. hiPSC-CMs can be obtained in large amounts, and they recapitulate the properties
of human heart cells. Ventricular CMs, a chamber-specific CM population, have been differentiated
with high purity and widely used in the study of drug responses and disease modeling. Notably, a
chemically defined cardiac differentiation protocol was recently developed to produce ventricular-like
CMs with >90% purity and on a large scale [7]. The heart is composed of multiple cell subtypes,
including not only ventricular CMs, but also pacemaker cells and atrial myocytes [8]. These subtypes
are all important to the proper functioning of heart. In order to obtain more accurate drug responses
and better therapeutic effects, it is of vital importance to acquire tissue-specific cells and promote
their maturation [9,10]. While significant progress has been achieved in ventricular tissue engineering,
iPSC-derived atrial tissues are still immature.

In contrast to ventricular cardiomyocytes, atrial cells are smaller and thinner, and they have
fewer transverse tubules (T-tubules) and less calcium-handling machinery. Retinoic acid (RA) was
recently used to differentiate iPSCs into atrial CMs. Lee et al. developed an improved differentiation
protocol for the generation of atrial linages by utilizing developmental signaling gradients that specify
atrial mesoderm precursors [11]. More recently, by using a stage-specific activation of RA signaling in
monolayer-based culture, Cyganek et al. demonstrated that cardiac progenitors could be efficiently
directed toward a highly homogeneous population of atrial CMs [12]. Zhao et al. described a scalable
tissue-cultivation platform that can electrophysiologically distinguish atrial and ventricular tissues with
chamber-specific drug responses and gene expression [13]. These studies provide a solid foundation
for further generation of atrial tissues.

Pacemakers are important for patients suffering from cardiac arrhythmia. There are numerous
reports on using different protocols to obtain and evaluate cell populations from the cardiac conduction
system. White et al. successfully developed a cardiac pacemaking conduction system via co-expression
of the chicken GATA6 enhancer and mink-lacZ transgene [14]. Yano et al. also reported that a fraction
of Nkx2.5-positive cardiac precursor cells were committed to pacemaker cells expressing If channels
predominantly encoded by the hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) and
HCN4 genes [15]. It was reported that the addition of B12 or SKCa activator during differentiation
can promote an increase in the nodal population [16]. Moreover, via stage-specific manipulation of
developmental signaling pathways, Protze et al. developed a transgene-independent protocol to
differentiate sinoatrial node cells from iPSCs [17]. Further efforts are needed to develop a robust
differentiation protocol for generating mature ventricular CMs, atrial CMs, and pacemakers to enable
better myocardium recapitulation.

3. Patient-Specific iPSC-CMs as Disease Models

iPSCs have been derived from patients and introduced into various patient-specific iPSC-CMs for
modeling cardiomyopathies in vitro. These models can be categorized as inherited or nonhereditary,
and they are reviewed below (Table 1).
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3.1. Inherited Cardiomyopathy

3.1.1. Ion Channelopathy

Ion channelopathies are one of the most well-established iPSC-based disease models because of
their better-understood impact on action potential (AP) [18]. Abnormalities occurring in AP generation,
synchronization, or propagation may cause cardiac channelopathies related to arrhythmia [19]. The most
common ion channelopathy is long QT syndrome (LQTS), which has a prevalence of 1 in 2000 [20].
Decreased systolic Ca2+ release leads to impaired cellular contractility and delayed repolarization
of ventricular CMs. LQTS is characterized by a prolonged QT interval, causing increased risk of
ventricular tachyarrhythmia or sudden cardiac death [21]. LQTS is divided into more than 10 different
subtypes defined by specific ion channel mutations. Among these, the voltage-gated sodium (Nav)
channel and the cardiac voltage-gated potassium (Kv) channel, both electrical impulse-initiating ion
channels, are the primary mutation types [22]. LQTS type 1 (LQT1) occurs due to mutations in KCNQ1,
and LQT1 iPSC-CM disease modeling was first generated by Moretti and his collages [23]. Different
disease-specific human iPSC lines have been developed from patients with these ion channel gene
mutations. The LQT1 disease model accurately reflects the disease features, having a slow outward
potassium current (IKs), abnormal channel activities, and increased susceptibility to tachyarrhythmia
induced by catecholamine [24,25]. LQT2 has mutations in KCNH2, a human ether-à-go-go-related
gene (hERG) that mediates rapid delayed-rectifier potassium current IKr, which is important for the
repolarization phase of the AP [26]. Thus, the LQT2 disease models revealed significant prolongation of
the action potential duration (APD) and a reduction in IKr when compared to healthy control cells [27].
Precise genetic modification of the KCNH2 mutation increased the IKr current conducted by the hERG
channel and normalized the APD [28]. Malan et al. developed hiPSC-CMs from an LQT3 patient with
an SCN5A mutation, known to mediate fast Nav1.5 channel inactivation. LQT3 hiPSC-CMs exhibited
accelerated recovery from Nav1.5 inactivation, AP prolongation, and early afterdepolarizations (EADs)
even at low stimulation rates, which are considered to be the main cause of arrhythmia [29]. Roche et al.
investigated the SCN5A mutation, using different independent systems, and compared the advantages
and limitations of disease-specific, engineered iPSC-CMs and heterologous HEK293-cells for disease
modeling and drug discovery, emphasizing the importance of investigating the mechanisms of Brugada
syndrome in independent systems [30]. These cell-based models indicated that ion-trafficking defects
are the associated pathological mechanism of the disease electrophysiological phenotype, and that
regulation of key genes may be governed by a complex regulatory landscape.

Another common inherited channelopathy is catecholaminergic polymorphic ventricular
tachycardia (CPVT), mainly caused by mutations in calcium-handling genes characterized by Ca2+

cycling and electrophysiology defects in patients [31]. The most prevalent CPVT1, responsible for 60%
of total cases, is caused by mutations in RYR2, which encodes the cardiac ryanodine receptor. CPVT2
is less common, causing less than 5% of total cases, and is produced by a mutation in CASQ2, encoding
cardiac calsequestrin [32]. Both mutations lead to abnormal calcium leakage from the sarcoplasmic
reticulum (SR), causing cytosolic calcium overload and subsequent delayed afterdepolarizations and
triggering ventricular arrhythmias [33]. CPVT patient-derived hiPSC-CMs carrying either RYR2 or
CASQ2 mutations have been generated by several groups. Using selective pharmacology and genome
editing, Park et al. generated a novel model that effectively recapitulates the CPVT1 profile caused
by dominant mutations in RYR2 [34]. They regarded the activation of Ca2+/calmodulin-dependent
protein kinase (CaMK II) as a key factor for triggering arrhythmias in CPVT patients, suggesting a
molecular pathway linking β-adrenergic stimulation to arrhythmogenesis. Using these disease models,
a series of potential compounds have been tested for modifying aberrant Ca2+ handling and delayed
afterdepolarizations (DADs) [35–38].
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3.1.2. Structural Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with abnormalities in
morphology, with an estimated prevalence of 1 in 500 worldwide [39]. Most cases of sudden death
related to HCM are caused by the conversion of ventricular arrhythmia to ventricular fibrillation [40].
Over 1500 mutations have been identified in HCM, most of which are located in sarcomere genes.
These genes are responsible for CM contraction and relaxation [41]. Approximately 70% of HCM
patients had either MYH7 (encoding β-myosin heavy chain) or MYBPC3 (myosin-binding protein)
mutations, and their heart explants revealed lower tension forces compared to healthy individuals [42].
Less common mutations are located in other sarcomere genes such as actin (ACTC), cardiac troponin T
(TNNT2), myosin light chain (MYL2), and cardiac troponin I (TNNI3) or non-sarcomere genes such
as ion channels, Z-disc genes, and membrane transporters [41]. Five HCM hiPSC-CM models have
been derived from patients carrying either MHY7 or MYBPC3 mutations using viral vectors [43].
Intraventricular injection of adeno-associated virus has shown potential as therapy for treating the
MYL2 mutation in heart cells [44]. CRISPR/Cas9 editing has also been used to generate HCM disease
modeling with site-directed homozygous or heterozygous variants [45]. These cell-based models
recapitulate key features of the HCM phenotype such as increased sarcomere organization and aberrant
Ca2+ handling, providing a new in vitro model for identifying pathogenesis and developing new
therapeutic strategies for these inherited heart disease [46]. However, engineered heart tissue (EHT) has
more advantages in terms of mechanism elucidation than single-cell models, as EHT can better reflect
and mimic the cell–cell interaction at the tissue level. Cashman et al. first developed EHTs created from
cardio-facio-cutaneous syndrome (CFCS) patients with BRAF mutations (encoding a serine/threonine
kinase), and this tissue-based model better recapitulated key aspects of the HCM phenotype in vivo,
providing a powerful tool for studying the patient-specific mechanisms of myocardial dysfunction [47].

Dilated cardiomyopathy (DCM) is another type of structural cardiomyopathy. DCM is mainly
due to sarcomere mutations and has a prevalence of 1 in 2500 individuals [48]. Hearts affected by DCM
tend to have increased chamber size and thinner chamber walls leading to volume overload, systolic
dysfunction, and progressive heart failure (HF) [49]. DCM has high morbidity and mortality rates
and is the leading cause of HF in young people. More than 80 different genes associated with DCM
have been described. Of these, TTN encoding titin is the most prevalent mutant gene identified in
around 20–25% of DCM patients [50]. Sun et al. first developed DCM iPSC-CMs with a mutation in
TNNT2, recapitulating the DCM disease phenotypes morphologically and functionally. Their model
has altered Ca2+ handling, decreased contractility, and abnormal α-actin distribution [51]. Dai et al.
revealed that the TNNT mutation destabilizes the molecular interactions of troponin with tropomyosin
and limits PKA binding to sarcomere [52]. Mutations occur less commonly in nuclear lamina, Nav

channel α-subunit 5 (SCN5A), desmin (DES), phospholamban (PLN), Bcl2-associated athanogene 3
(BAG3), and RNA-binding motif protein 20 [53].

Arrhythmogenic cardiomyopathy (ACM) is another common structural cardiomyopathy usually
caused by mutations in desmosomal proteins, leading to progressive HF and lethal arrhythmias [54].
Approximately half of the patients with ACM have gene mutations in desmosomes, such as desmoplakin
(DSP), desmocollin (DSC), desmoglein-2 (DSG2), plakoglobin (JUP), and plakophilin-2 (PKP2).
The PKP2 mutation is the most common pathogenic type in ACM [54]. hiPSC-CMs with a PKP2
mutation recapitulated key features of arrhythmogenic right-ventricular cardiomyopathy (ARVC),
including low β-catenin activity, abnormal nuclear translocation of junction plakoglobin, and less
cell surface localization of desmosomes, presenting an adipogenic phenotype [55]. However, it
was reported by Kim et al. that only by co-activating peroxisome proliferator-activated receptor
(PPAR)-α/PPAR-γ pathways, both of which are responsible for metabolism, can iPSC-CMs with a PKP2
mutation display efficient ACM features within 2 months [56,57]. This report proposed for the first
time that induction of adult-like metabolism phenotype plays a role in adult-onset disease modeling.

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease with an incidence of 1 per
5000 males. The cells of DMD patient are highly susceptible to mechanical stress and injury as they lack
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the dystrophin protein [58]. Dystrophin is a fundamental component of the dystrophin–glycoprotein
complex, which is expressed at the muscle sarcolemma and bridges the cytoskeleton and extracellular
matrix, maintaining cellular stability [59]. Dystrophin deficiency leads to progressive muscle scarring
and degeneration, HF, and eventually death. DMD patient-derived iPSC-CMs exhibited excessive
Ca2+ influx and increased sensitivity to hypotonic stress, accumulation of reactive oxygen species
(ROS), and mitochondrial damage, eventually inducing cell apoptosis [60]. Dystrophin modifications
by CRISPR/Cas9 have been proven to be a fast way to rescue DMD, with efficient restoration of CM
contractility and calcium transients detected to varying degrees [61].

3.1.3. Metabolic Cardiomyopathy

Acid-α-glucosidase (GAA) is an amylolytic enzyme located in the lysosome and is responsible for
glycogen degradation. Deficiency of GAA results in the accumulation of glycogen in lysosomes, a
condition called Pompe disease (PD) [62]. As a result of dysregulation of glycogen metabolism,
PD myocytes display increased cytoplasmic glycogen particles, endoplasmic reticulum stress,
mitochondrial aberrance, abnormal calcium signaling, and progressive autophagic buildup [63].
The PD can be divided into infantile and late-onset phenotypes. Huang et al. reported that derivation
of infantile-onset PD-iPSCs into CM-like cells recapitulated the hallmark of PD cells, including glycogen
accumulation and differential ultrastructural aberrations [64]. A subsequent drug rescue test showed
that GAA or I-carnitine could reverse the major pathologic phenotypes. Raval et al. investigated
the mechanism of PD in tissue using a generated EHT model [65]. They stated that the lack of GAA
ability leads to deficits in Golgi-based protein glycosylation, thus finally leading to lysosomal glycogen
accumulation and HCM. Sato et al. generated late-onset Pompe disease-specific iPSC-CMs and showed
that glycogen accumulation can be ameliorated by lentiviral GAA rescue [66]. Using metabolic profile
analysis, they found that oxidative stress and mitochondrial dysfunction induced in the PD model may
be related to cardiac complications [67]. The imbalance between oxidative stress and an antioxidative
stress response may, therefore, reveal the pathogenesis of late-onset PD.

Barth syndrome (BTHS) is an X-linked mitochondrial disorder caused by a mutation in tafazzin,
an acyltransferase encoded by TAZ [68]. Tafazzin is responsible for the normal acylation of cardiolipin,
which is mainly located in the mitochondrial inner membrane. BTHS features multisystem disorders
such as cardiomyopathy, neutropenia, and skeletal myopathy [69]. Using BTHS patient-derived
iPSC-CMs, Wang et al. investigated the structural, metabolic, and functional abnormalities caused by
TAZ mutation [70]. They engineered BTHS iPSC-CMs into a “heart-on-chip” and demonstrated sparse
and irregular sarcomeres with weak contractile force in this chip. These findings indicate the presence
of a link between TAZ mutation and impaired CM mechanical function, providing new insights into
the pathogenesis of BTHS.

3.2. Chronic Nonhereditary Cardiomyopathy

Chronic heart failure (CHF), such as congestive heart failure, is a progressive syndrome caused by
CVDs including coronary artery disease and myocardial infarction, as well as high blood pressure,
and it results in structural or functional changes in the heart [71]. Heart failure with reduced ejection
fraction (HFrEF) is a common type of CHF, usually caused by long-term use of catecholamines
(e.g., norepinephrine) in patients with end-stage HF [72]. HFrEF hearts show hypertrophy, a
weaker force–frequency response, and decreased β-adrenergic sensitization [73]. Through chronic
norepinephrine stimulation, Tiburcy et al. successfully generated HF models with not only pathological
hypertrophy, cellular death, and contractile dysfunction, but also N-terminal pro B-type natriuretic
peptide (NT-proBNP) release, features consistent with the clinical diagnosis of HF [74]. Their work
provides guidance for the establishment of HF modeling, drug screening, and tissue-based heart repair.
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Table 1. Categories of patient-specific iPSC-CMs as disease models.

Disease Model Categories Related Genes Reference

Inherited
cardiomyopathy

Ion Channelopathy

Long QT
syndrome

(LQTS)

Type 1 KCNQ1 [23–25]

Type 2 KCNH2 [27,28]

Type 3 SCN5A [29,30]

Catecholaminergic polymorphic
ventricular tachycardia (CPVT) RYR2 [34]

Structural
Cardiomyopathy

Hypertrophic cardiomyopathy
(HCM)

MYH7,
MYBPC3,

ACTC, TNNT2,
MYL2, TNNI3

[43,45,47]

Dilated cardiomyopathy (DCM)
TTN, TNNT2,
SCN5A, DES,
PLN, BAG3

[51–53]

Arrhythmogenic cardiomyopathy
(ACM)

DSP, DSC,
DSG2 JUP,

PKP2
[54,56]

Duchenne muscular dystrophy
(DMD) DMD [60]

Metabolic
cardiomyopathy

Pompe disease (PD) GAA [64–66]

Barth syndrome (BTHS) TAZ [70]

Chronic
nonhereditary
cardiomyopaty

Chronic Heart
Failure

Heart failure with reduced ejection
fraction (HFrEF) N/A [74]

4. Maturation Differences between hiPSC-CMs and Adult CMs

Although multiple subtypes of CMs have been induced from either healthy donors or patients
for applications such as drug screening, disease models, and regenerative medicine, they still remain
immature in terms of microstructure, electromechanics, and metabolism compared with adult CMs.
This shortcoming limits the application of hiPSC-CMs. We summarized the gap between hiPSC-CMs
and adult CMs in these aspects (Table 2).
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Table 2. Main characteristics of hiPSC-CMs and human adult CMs.

Characteristics Parameters hiPSC-CMs Human Adult CMs Assessment Methods

Morphology and
Microstructure

Cell Shape Round shape Rod shape, anisotropic

Imaging
Immunostaining to assess structural features

Cell size

Length 5–10 µm (diameter) 150 µm

Width 20 µm

Height 5 µm 15 µm

Volume 2000 µm3 40,000 µm3

Length/width ratio — 7:1

Nucleation and ploidy Mononucleated, diploidy Binucleated (25%) and
polyploidy

Sarcomere 1.6 µm, disorganized 1.8 µm (contracted)-2.2
µm (relaxed), organized

Enriched isoforms α-MHC, ssTnI, MLC2A,
N2BA, SMA

β-MHC, cTnI, MLC2V,
N2B

Other microstructures
Lack T-tubules and M-band;

poor SR, mitochondria;
circumferential IDs

Developed and abundant
microstructures; polarized

IDs

Electrophysiology

Beating
Beating spontaneously or

stimulated by a 0.08–4
mN/mm2 force

Beating only when
stimulated by a 40–80

mN/mm2 force

Patch clamp and MEAs for ion channels and AP currents
Video-optical recording, atomic force microscopy (AFM).

and muscle thin films (MTFs) for contractile force
measurements (Frank–Starling relationship)

Membrane capacitance ~20 pF ~190 pF

Conduction velocity 10–20 cm/s 60 cm/s

Upstroke velocity 10–50 V/s 150–350 V/s

Action potential −60 mV (like nodal) −90 mV

Specific currents IKf IK1
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Table 2. Cont.

Characteristics Parameters hiPSC-CMs Human Adult CMs Assessment Methods

Calcium Handling

ECC Slow Fast

Calcium imaging using fluorescent calcium indicators
Ion channels NCX

LTCC-β2 (20-fold higher),
RyRs (1000 folds higher),

calsequestrin, SERCA

Metabolism

Mitochondria Round shape with poor
cristae

Oval shape with
developed cristae; active

fission and fusion Mass spectrometry (MS) and nuclear magnetic resonance
spectroscopy (NMR) for metabolic flux assays

Oxygen consumption and extracellular acidification rate
to access mitochondria respiration

Imaging and fluorescent staining for mitochondrial
membrane potential (MMP)

Abundance (% to cell volume) <5% ~30%

Location Perinuclear space Between myofibrils and
under sarcolemma

Metabolic substrate Glucose (85%), fatty acid
(15%)

Fatty acid (80%), glucose
(20%)

ATP source Anaerobic glycolysis FAO

Gene Expression Upregulated genes

Cell-cycle genes: CDK
Automaticity genes: HCN4,

KCNJ2
Fetal/natal isoform genes
Glycolysis-related genes

Cell-cycle arrest genes:
CDKI

Overall upregulation of
structure organization

and function
development genes

Imaging
Flow cytometry to access cell cycle

Fluorescent staining

AFM, atomic force microscopy; AP, action potential; cTnI, cardiac muscle troponin I; ECC, excitation–contraction coupling; FAO, fatty-acid oxidation; ID, intercalated disc; LTCC-β2:
L-type calcium channel β subunit; MEA, microelectrode array; MLC2A, myosin regulatory light chain 2 atrial isoform; MLC2V, myosin regulatory light chain 2 ventricular isoform; MMP,
mitochondrial membrane potential; MS, mass spectrometry; MTF, muscle thin film; N2B; titin isoform type containing only N2B elements; N2BA, titin isoform type containing both N2A
and N2B elements; NCX, Na+–Ca2+ exchanger; NMR, nuclear magnetic resonance spectroscopy; RyR2, ryanodine receptor 2; SERCA, sarco/endoplasmic reticulum Ca2+ ATPase; SMA,
smooth muscle actin; SR, sarcoplasmic reticulum; ssTnI, slow skeletal muscle troponin I; α-MHC, myosin heavy chain α-isoform; β-MHC, myosin heavy chain β-isoform; pF, picofarad.
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4.1. Morphology and Structure

Human cardiac myocytes exit the cell cycle and become quiescent with further growth in size and
increased maturation in the first decade after birth [75,76]. Adult CMs always appear polyploidy with
an elongated, anisotropic, and well-developed SR, T-tubules, mitochondria, highly organized sarcomere
structures, and polarized intercalated disc (ID) complexes including desmosomes, gap junctions (GJs),
and adhesive junctions (AJs) [77,78]. Sarcomeres are longitudinally repeated subunits of myofibrils
that serve as the contractile apparatus of CMs. However, newly differentiated hiPSC-CMs tend to be
monoploid and have poor myofibrils, as well as other essential ultrastructures, in addition to a small,
rounded shape [79]. Moreover, the isoforms and expression of myofibril assembly-related proteins in
hiPSC-CMs, such as α-actin, titin, myosin heavy chain (MHC), myosin regulatory light chain 2 (MLC2),
and the troponin complex, are also less mature than their adult counterparts [80,81]. Although the
cellular structure was compatible with this function, the deficiency of key substructures resulted in
poor ion activities, slower Ca2+ handling, and inefficient mitochondrial metabolism in hiPSC-CMs.

4.2. Electrophysiological Properties

The electrophysiological phenotype of hiPSC-CMs is distinct from that of adult CMs, mainly due
to the differential expression of key ion channels and GJ proteins. hiPSC-CMs beat spontaneously
because of the high expression of potassium hyperpolarization-activated cyclic nucleotide-gated
channel 4 (HCN4, encoded by HCN4), which is related to sodium influx in the pacemaker, while adult
CMs only beat when stimulated with a 40–80 mN/mm2 force [82]. The resting membrane potential
of hiPSC-CMs is less negative (~−60 mV) than mature CMs (~−90 mV) as a result of insufficient
expression of Kir2.1 (encoded by KCNJ2) [83]. Furthermore, the upstroke velocity of hiPSC-CMs
(~15–30 V/s) is much slower due to lacking sodium channels such as Nav1.5 (encoded by SCN5A)
and lower membrane capacitance (~20 pF) related to the smaller size than that of mature CMs with
fast upstroke velocity (~−150–350 V/s) and higher capacitance (~190 pF) [84]. hiPSC-CMs also have a
shorter plateau phase, partly due to the low expression of voltage-gated L-type calcium channel (LTCC)
alpha subunit (Cav1.2), which mediates influx of Ca2+ into the cytoplasm [85,86]. Lastly, the electrical
conduction speed in hiPSC-CMs (~10 cm/s) tends to be much lower than that in adult CMs (~100 cm/s)
due to the lower expression of GJs and their circumferential distribution in hiPSC-CMs [87].

4.3. Calcium Handling

Excitation–contraction coupling (ECC) is the foundation of muscular activity. In ECC, the opening
of LTCC caused by APD leads to an influx of extracellular Ca2+ and subsequent release of SR Ca2+

through ryanodine receptors (RyRs), causing Ca2+ accumulation in the cytoplasm [88]. Upon muscle
contraction, Ca2+ binds to troponin C and triggers myofilament displacement, and contraction occurs.
Then, cytoplasmic Ca2+ flows out of the cell via the Na+–Ca2+ exchanger (NCX) or back to the SR
(SR/ER intracellular calcium pool) through the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA),
and relaxation finishes [88]. In adult CMs, T-tubules are an invagination of the cytoplasmic membrane,
and such specialized structures cause spatial coupling of LTCC and RyRs [89]. However, the lack of
T-tubules, undeveloped SR, and lower expression of key calcium-handling proteins in hiPSC-CMs,
such as SERCA, calsequestrin (calcium-buffering protein), and Cavβ2 (LTCC β-subunit), slow calcium
dynamics with weak Ca2+ signal and peak delay [90,91].

4.4. Metabolism

Metabolic transition occurs swiftly after birth, due to the significant increase in oxygen and
nutrients in the blood. Mitochondria continuously undergo morphological and physiological changes
during CM maturation for a decade after birth [92]. In adult CMs, mitochondria with developed cristae
and oval shape are well organized, located among myofibrils and under the sarcolemma, making up
~30% of total cell volume [93]. More than 95% of the total ATP consumed in adult CMs is supplied by



Int. J. Mol. Sci. 2020, 21, 8893 11 of 32

fatty-acid β-oxidation (FAO) in the mitochondria; two-thirds of the generated ATP supports contraction,
whereas the remaining one-third is used for ion pumps [94]. However, hiPSC-CMs share the same
mitochondrial phenotype as fetal CMs, located around the nucleus with smaller size, fewer numbers
(<5% of cell volume), and poor cristae. More than 80% of the energy is generated from glycolysis
rather than FAO. In addition, low fatty-acid utilization is partly due to low transport efficiency of fatty
acids and low expression of electron-transport-chain proteins.

5. Approaches for CM Maturation

5.1. Prolonged Culture Time

It takes human CMs a decade to reach full maturation in vivo [78]. When cultured for a year,
hiPSC-CMs were larger in size and had aligned sarcomeres, improved calcium handling, and other key
features as observed in adult CMs, such as M-bands, indicating that the hiPSC-CMs had a more mature
phenotype [95,96] (Table 3). Although long-term culture does facilitate the maturation of hiPSC-CM in
various aspects, it is time-consuming and costly, and it is unable to induce T-tubules; thus, it may not
meet the requirements of drug screening and development [74].

5.2. Biochemical Cues

Cardiovascular homeostasis plays an important role in heart development by producing a dynamic
microenvironment, a synergistic effect of hormones and cytokines. The levels of thyroid hormones
and endogenous glucocorticoids (GCs) rise sharply around the time of birth, and it has been reported
that both are essential for normal heart maturation [97,98]. Treatment with tri-iodothyronine (T3)
strongly accelerates contractile force and metabolism maturation, and induces cell-cycle arrest of
hiPSC-CMs in vitro [99]. A combination of T3 and GCs or dexamethasone, an analogue of GCs, can
synergistically induce further maturation of hiPSC-CMs in vitro, including the formation of T-tubules,
which cannot be achieved by any single drug [100]. Moreover, combined T3 and GCs or its analogue,
dexamethasone, can synergistically induce the formation of T-tubules and improve calcium kinetics in
hiPSC-CMs [101]. Angiotensin II, a main effector peptide, functions in the regulation of blood pressure
in the renin–angiotensin system, and it can also promote human embryonic stem cell (hESC)-CM
hypertrophy by activating the MAPK signaling pathway, which is involved in sarcomeric organization
during CM differentiation [102].

Cytokine factors act via autocrine and paracrine effects. Normal cardiac metabolism
requires insulin-like growth factor (IGF) and neuregulin-1 (NRG1), both independently and
synergistically [103,104]. Zhou et al. demonstrated that IGF acts as an activator of Akt, thereby
prompting reprogramming of fibroblasts to functional CMs [105]. These cells are polynucleated and
exhibit cellular hypertrophy and enhanced mitochondrial respiration. NRG1 enhances the patterning
of the ventricular trabecule layer and endocardial cushion, both crucial for formation of heart
chambers [106]. When treated with NRG1 alone, hESC-CMs matured with cell growth and metabolic
remodeling. The synergistic force–frequency relationship was improved upon treatment with NRG1
combined with IGF [107]. Other cytokines, such as fibroblast growth factor (FGF), transforming growth
factor beta (TGF-β), and vascular endothelial growth factor (VEGF), play roles in the maintenance of
GJs and aggregation in the three-dimensional (3D) culture system of hPSC-CMs [108–110].

A significant postnatal CM maturation is the metabolic switch from glycolysis to oxidative
phosphorylation (OXPHOS). Correia et al. reported that the medium in which glucose is replaced
with galactose and fatty acids facilitates the overall maturation of iPSC-CMs into adult-like CMs [111].
Yang et al. also verified that switching the energy source affects mitobiogenesis and FAO in iPSC-CMs.
Moreover, galactose plays a role in ameliorating lipotoxicity resulting from high fatty-acid exposure [112].
The studies have bridged substrate utilization and functional maturation of hPSC-CMs and will facilitate
the application of iPSC-CMs in clinical and preclinical studies.
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Oxygenation level is a critical cue in CM differentiation, suggesting that hypoxia may play a
negative role in early cardiogenesis [113]. Hypoxia-inducible factor 1-alpha (HIF-1α), a central regulator
of metabolism, can be upregulated by hypoxia, whereas increased oxygen tension inhibits HIF-1α
activity and promotes the metabolic switch to OXPHOS during murine heart development [114].
However, the high-glucose culture medium, which is widely used for the culture of hiPSC-CMs,
activates HIF-1α and upregulates lactate dehydrogenase A (LDHA), thereby facilitating glycolysis
while suppressing OXPHOS; this is considered to hinder cell metabolic maturation [115]. When
the HIF-1α–LDHA axis is suppressed by chemical or small interfering RNA (siRNA) inhibition,
hiPSC-CM metabolism swiftly shifts from anaerobic glycolysis to OXPHOS and shows enhanced
maturation [116]. These findings provide key insights into the molecular control of hPSC-CM
metabolism during maturation.

5.3. Biophysical Cues

Mechanical and electrical stimulation are widely used to promote maturation of hiPSC-CMs
in vitro. Both neonatal and adult CMs are assumed to have a rod-like and elongated shape with
an average length-to-width ratio of 7:1 in vivo, but revert to a rounded shape after being cultured
in a static standard culture condition [117]. It is considered that the standard culture conditions do
not exhibit the hemodynamic environment which is present in vivo. Either electrical or mechanical
stimulation could lead to structural maturation of hiPSC-CMs with rod-like morphology and more
aligned sarcomeres [118–120]. After exposure to synchronized mechanical and electrical stimulation,
hiPSC-CMs displayed enhanced structural maturity and positive-ion activities. This activity is partially
due to the enhancement and polarization of GJs promoting electrical conduction [121].

Cellular interactions should be taken into account while considering CM maturation. In vivo,
extracellular matrices (ECM), which are mainly produced by endothelial cells and fibroblasts, are
abundant, facilitate normal CM shape, and participate in mechanotransduction pathways [122]. In an
in vitro hiPSC-CM culture system, not only natural animal ECMs but also artificial polymers, especially
polydimethylsiloxane (PDMS), are often used to create scaffolds to mimic the ECM crosslink [123,124].
Xu et al. presented a onion epithelium-like biomimetic microchip made from PDMS to promote
in vitro cellular organization [125]. This microchip technology presents new insights into hiPSC-CM
maturation enhancement by biophysical factors. Lyra-Leite et al. reported that mitochondrial function
can also be regulated by ECM elasticity, whereas mitochondrial stress responses are regulated by
both matrix elasticity and tissue alignment [126]. The Ca2+ handling of iPSC-CMs cultured on PDMS
substrates was significantly enhanced with a faster upstroke velocity and improved SR Ca2+ cycling,
while these alterations were independent of gene expression [127].

5.4. Co-Culture

The heart grows in a multicellular environment and noncardiomyocytes (non-CMs), such as
endothelial cells, cardiac fibroblasts and leukocytes, occupy around 15–30% in volume of the mammalian
fetal heart and maintain sustainable proliferation during cardiomyocyte development [128]. ECM
is mainly produced by non-CMs and provides mechanical support for cardiomyocytes; non-CMs
secrete cytokines to facilitate CM development through paracrine effects. Yoshida et al. co-cultured
hiPSC-CMs in vitro with non-CMs including mesenchymal stem cells (MSCs) and endothelial cells
(ECs), resulting in improved maturation of hiPSC-CMs [80]. When hiPSC-CMs were cultured only
with soluble factors containing cytokines and exosomes secreted by MSCs, the iPSC-CMs also exhibited
enhanced maturation, revealing paracrine effects of co-cultured non-CMs. In addition to types of
non-CMs, the proportion of non-CMs is also critical for generating functional iPSC-CMs in an in vitro
co-culture system. Iseoka et al. reported that, when co-cultured with non-CMs, iPSC-CMs occupied
30–50% of total cells, exhibiting stable structures, and they had increased cardiotherapeutic potential
compared with other ratios [129].
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5.5. 3D Cardiac Tissues

Conventional two-dimensional (2D) culture systems (monolayer hiPSC-CMs) are popular because
of their simplicity and moderate scalability [130]. However, 2D cultures fail to recapitulate in vivo
conditions, such as cellular crosstalk, tissue architectures, and extracellular microenvironments [131].
On the other hand, 3D culture systems could include cellular elements, ECM scaffolds, and fluidic
microenvironments, which could be an ideal tool to mimic the cell–cell interaction in vivo [132].
Therefore, engineered heart tissues/muscle (EHT/EHM) has advantages in terms of mechanism
elucidation and reconstitution of adult myocardium at the tissue level.

Zimmermann et al. first developed adult-like 3D-EHTs with neonatal rat cardiac myocytes and
ECM proteins, representing a new approach to in vitro cardiac function research and heart repair
based on ETH [133]. Later studies showed that hiPSC-CMs EHT could be matured by using electrical
and mechanical stimulation or passive afterload. Hirt et al. described that continuous electrical
stimulation induced further maturation in both rat EHT and human ETH with a denser cellular
network, well-developed ultrastructure including M-bands and GJs, and increased ion activities [134].
By concurrent electromechanical stimulation at physiological frequency, Godier-Furnémont et al.
observed a positive force–frequency relationship (FFR) for the first time in mammalian EHM, denoting
functional maturation of EHM associated with increased calcium handling [135]. Leonard et al. verified
that a suitable afterload is beneficial for functional maturation of hiPSC-CMs in EHTs [136].

More recently, it was reported that EHT could promote maturation close to the adult level by
applying rapid electrical stimulation in a specific time window. Takeda et al. utilized a newly
developed 3D artificial tissue by coating ECMs on single-cell surfaces for cardiotoxicity assays [137].
These 3D-hiPSC-heart tissues are useful for drug screening or cardiotoxicity assays, as the system
showed doxorubicin sensitivity and hERG channel blocking profile in vitro. The 3D structure facilitates
CMs self-organizing into an advanced and complex structure. Li et al. developed a device based on a
low-attachment substrate where hiPSC-CMs can self-organize into a 3D tissue ring [138,139]. Without
any external stimulation, the tissue ring cultured in the 3D system could spontaneously generate
re-entrant waves, accompanied by rapid pacing, thus leading to enhanced maturation of CMs in an
autonomous manner.

As mentioned above, ECMs are mainly produced by non-CMs and for better heart tissue
organization; thus, non-CMs are also needed for ECM remodeling in the process from hiPSC-CMs
to EHT. Non-CMs, such as endothelial cells, cardiac fibroblasts, and leukocytes, occupy ~15-30% of
the total cardiac volume in mammalian fetal heart and retain sustainable proliferation during CM
development [95]. The quantity and type of non-CMs are critical for generating functional iPSC-CMs
in an in vitro co-culture system. ECTs containing 50-70% CMs combined with non-CMs exhibited
stable structures and increased cardiotherapeutic potential [129].

Organoids, 3D cultures of multiple cell types, could partially recapitulate in vivo tissue or organ
structure and function. Richards et al. reported a scaffold-free hiPSC-derived cardiac organoid that
structurally and functionally resembles the vascular structure within the developing myocardium. This
platform facilitates the investigation of cellular, matrix/material, and addition factors required for heart
development [140]. More recently, the same group modeled the myocardial infarction by using cardiac
organoids that recreate the necessary features, including fibrosis, metabolic shift, and pathological
calcium-handling properties [141]. Buono et al. developed organoids derived from HCM patients.
These organoids demonstrated significant phenotype of the hypertrophic cardiomyopathic human
heart in comparison to the healthy control [142]. Monsanto et al. reported scaffold-free 3D organoids,
termed CardioClusters, with controllable cell ratio and size, as well as minimal cell loss. The injection
of these CardioClusters into a murine infarction model promoted the cell retention, capillary density,
and heart function during the 20 week observation [143].
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5.6. Regulation on the Molecular Level

Single-cell RNA sequencing studies indicated that gene expression patterns in adults are quite
distinct from those in fetal heart and hiPSC-CMs; thus, regulation of intercellular gene expression has
been one of the most popular methods for increasing hiPSC-CM maturation. Serum response factor
(SRF), an important transcriptional regulator, impacts almost every aspect of CM maturation, partly due
to its key role in regulating sarcomere genes [144]. SRF depletion significantly affect CM development,
such as impaired sarcomeres, T-tubules, and mitochondria. Some major SRF coactivators, including
myocardin family transcriptional regulator (MRTF), homeodomain-only protein homeobox (HOPX),
GATA family transcription factor (GATA), myocyte enhancer factor-2 (MEF2), and nuclear receptor
superfamily (NRs), mediate various progress in CM maturation according to different extracellular
stimuli. The MRTF–SRF axis can convert mechanical stress into sarcomere expansion [145]. HOPX, a
novel co-factor of SRF for CM maturation, functions in the process of myofibrillar isoform switching
and CM hypertrophy with preserved systolic function [146,147].

SRF functions in synergy with GATA and MEF2 motifs in a maturing heart, although the role of
the two is still controversial [148,149]. NRs are another major group of transcription regulators related
to SRF that control CM maturation. Such factors include the heterodimers formed by peroxisome
proliferator-activated receptors (PPARs)/retinoid X receptors (RXRs) and estrogen-related receptors α,
β, and γ (ERRs) [150,151]. Both PPARs and ERRs directly interact with PGC1α/β (PPARγ coactivator
α/β), the master regulators of FAO and mitochondrial respiration [152–154].

Epigenetic modifications exert a profound impact on transcriptional regulation, such as DNA
methylation, histone modification and chromatin remodeling [155]. DNA hypermethylation is
associated with gene silencing, whereas demethylation results in gene activation during CM
maturation [156]. It has been reported that activation of H3K27ac, H3K4me1, H3K4me3, and
H3K9ac is associated with increasing maturation in CMs [89,157].

MicroRNAs (miRNA) represent a posttranscriptional regulation method that modulates gene
expression by silencing key messenger RNA (mRNA). miR-1 and Let-7i are highly enriched in
mature CMs and these factors could facilitate electrophysiological maturation and respiratory
capacity respectively when overexpressed in hiPSC-CMs [158,159]. Simultaneous overexpression
of miR-125b-5p, miR-199a-5p, miR-221, and miR-222 resulted in improved maturation including
α/β-MHC switching, sarcomere alignment, mitochondrial cristae formation, and improved Ca2+

handling [160]. Overexpressed Let-7i and miR-452 but repressed miR-122 and miR-200a were shown
to be a new in vitro maturation cocktail for iPSC-CMs, resulting in increased force generation, cell area,
and fatty-acid utilization [158].

5.7. In Vivo Maturation

hiPSC-CMs could mature extensively when transplanted in vivo, compared to in vitro cultures.
After transplantation into healthy neonatal rat hearts, hiPSC-CMs exhibited an adult-like phenotype
in structure, function, and gene expression profile within 2 months, indicating that the maturation is
accelerated in a noncell-autonomous manner [161]. hiPSC-CMs can also achieve further maturation
in a fast way even when transplanted into a diseased heart. hiPSC-CMs derived from an ACM
patient were transplanted into neonatal animals and expressed more mature morphology after 1
month, including T-tubule formation, Cx43 expression, and calcium dynamics [162]. Although the
mechanism for this accelerated in vivo maturation remains unknown, the natural environment with
electromechanical stimulation, signaling through GJs, paracrine factors, and systemic factors could be
the key factors [163].

Over time, considerable efforts have been devoted to improving the maturation of hiPSC-CMs,
which show significantly improved genetic, morphological, and electrophysiological features. However,
there are still issues remaining. Fully matured hiPSC-CMs similar to adult CMs have not been generated;
it is still unclear whether patient-derived CMs could be matured in a manner similar to that of the
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normal hiPSC-CMs, while there are no methods to produce CMs with high maturation at a large scale
and low cost.

Table 3. Strategies for enhancing hiPSC-CM maturation.

Strategy Function Signaling Pathway Ref.

Long-term culture
Cellular hypertrophy,

aligned sarcomere and
M-bands

N.A. [95,96]

Biochemical cues

Hormone
T3, GC

Accelerate contractile force
and metabolism

maturation, T-tubules,
cell-cycle arrest

PPARα/PGC1-α ↑ [97–101]

Angiotensin II Hypertrophy MAPK ↑ [102]

Cytokine factor

IGF, NRG1

Growth and differentiation,
hypertrophy,

polynucleated, enhanced
mitochondrial respiration

ERK ↑
PI3K-Akt ↑ [105–107]

FGF, TGF-β, VEGF GJ development, 3D
structure modeling

MAPK ↑
PI3K-Akt ↑

TGF-β/Nodal pathway
↑

[108–110]

Others

Fatty acid

Mitobiogenesis, metabolic
remodeling (metabolic

switch from glycolysis to
OXPHOS)

FAO/PPARα ↑
PI3K-AKT ↓ [111,112]

O2

Accelerative
differentiation, metabolic

remodeling

HIF-1α/LDHA ↓
Wnt/β-catenin ↑

[113,115,
116]

Physical cues

Mechanical/electrical cues

Increased length/width
ratio, rod-like morphology,

aligned sarcomeres,
improved ion activities,

GJs polarization

Akt ↑
Ca2+/PKC/ERK ↑ [118–121]

ECM

Enhanced cellular
organization,

mitochondrial function
and Ca2+ handling

p38 MAPK ↑
Akt ↑ [125–127]

Co-culture

Improved cell survival and
cell size, aligned

sarcomere, increased
mitochondrial respiration;

clear GJs and enhanced
intercellular actions

AMPK ↑
cGMP–PKG ↑ [80,129]

3D culture

Profound maturation in all
aspects, M-bands,

developed tissue/organoid
structure

MAPK ↑
Akt ↑ [134–138]

Regulation of gene expression

Transcriptional
level

Gene knockout
or overexpression

Sarcomere development
and mitochondrial

respiration

SRF axis pathways↑
(such as HOPX, GATA,

MEF2, PPARs/RXRs,
ERRs)

[145–154]
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Table 3. Cont.

Strategy Function Signaling Pathway Ref.

Epigenetic
modification

DNA methylation,
histone

modification,
chromatin

remodelling

Cell growth, sarcomere
development, improved

function

H3K27ac, H3K4me1,
H3K4me3, and

H3K9ac ↑
[89,156,157]

Posttranscriptional
regulation RNAi

Hypertrophy, α/β-MHC
switching, aligned

sarcomere, metabolic
remodeling, improved

Ca2+ handling

miR-1, let-7i,
miR-125b-5p,

miR-199a-5p, miR-221
and miR-222 ↑

miR-122 and miR-200a
↓

[158–160]

In Vivo Maturation

Adult-like phenotype with
T-tubules, increased Cx43
expression and calcium

dynamics

N.A. [161,162]

T3, triiodothyronine; GC, glucocorticoid; IGF, insulin-like growth factor; NRG1, neuregulin-1; FGF, fibroblast growth
factor; TGF-β, transforming growth factor beta; VEGF, vascular endothelial growth factor; OXPHOS, oxidative
phosphorylation; GJ, gap junction; ECM, extracellular matrix; RNAi, RNA interference.

6. Functional Assessment of hiPSC-CMs for Drug Screening

As a powerful drug screening tool, the hiPSC-CM model must be used at the preclinical stage
for new drug development while avoiding side effects. Three main cardiac functional parameters,
electrical conduction, force generation, and cardiac ECC, have to be monitored for human heart drug
discovery, and development of novel efficient assessment systems is still underway (Table 4) [19,164].

6.1. Electrophysiological Characterization

As a result of the opening and closing of ion channels located within the membrane, APs generate
and propagate through the heart, and a series of ion channelopathies are related to the malfunction of
ion channels [83]. Thus, ion channels have been widely studied for screening of drug targets, as well
as for predicting drug side effects [165]. Functional assessment of electrophysiology is essential during
drug screening of hiPSC-CM models.

The patch-clamp technique, regarded as the gold standard since its introduction, is a versatile
electrophysiological tool for directly studying ion channel functions, and it opens a new avenue in
drug discovery for ion channelopathies [166]. Although this method can offer accurate assessment of
drug-induced arrhythmia at the cellular level, it is still considered to be low-throughput, invasive, and
limited at the tissue level [167].

Microelectrode arrays (MEAs) are well accepted for recording the extracellular field potential (FP)
of signal cardiac myocytes, as well as heart tissue, in a real-time, high-throughput, and noninvasive
manner [168]. By recording the FP duration, the MEA system is able to measure both spontaneous
and stimulated electrical activities, such as beat rate, electrical conduction velocity, refractory period,
and AP length (QT interval), as extracellular FP is directly correlated with the intracellular AP [169].
Gilchrist et al. systematically assessed six arrhythmia-related parameters on the basis of an analysis of
MEA recordings of hiPSC-CMs, and they discovered that the arrhythmia parameter variations detected
were in agreement with clinical data when CMs are exposed to cardiotoxic drugs [170].

Although the multiparameter analysis system has been proven to be useful for arrhythmia drug
screening, it is still considered as a cellular-level test for CMs dispersed in such culture systems.
Stancesu et al. tested the electrical properties of hESC-CMs cultured in a patterned 2D system [171].
Such patterned MEA surfaces enabled hESC-CMs to be fabricated into tissues, which was not
found in common MEA systems. However, a flat 2D culture system is not sufficient to produce a
well-aligned sarcomere and originated GJs, essential for adult CM function. Li et al. developed a
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tissue-like cardiac construct on an MEA surface coated with aligned polydimethylglutarimide [172]
or poly(lactic-co-glycolic acid) fibers [173]. Accordingly, hiPSC-CMs cultured on aligned fiber-coated
MEA showed anisotropic propagation of the field potential and increased maturation, compared to 2D
and random fiber coating culture systems, indicating that the 3D culture system is more reflective of
in vivo systems.

6.2. Contractility

Contractile force and mechanical beating are more visual events for cardiac functional evaluation,
especially in CMs with well-aligned sarcomeres. The deficiency in contractile force is directly responsible
for some inherited and acquired heart diseases, such as DCM and HF [174,175]. The contraction
and relaxation of CMs are consistent with the shift of myocardial fibers; thus, there is a predictable
force–length relationship, named the Frank–Starling mechanism [176]. Furthermore, contractile force
also responds to deformation of the ECM and, thus, can be detected in a direct or indirect manner.

Video–optical recording, usually containing a high-speed video microscope mounted with a motion
vector analysis system, presents a noninvasive method for evaluation of contraction characteristics
in beating cells [177]. Hayakawa et al. applied combined video–optical recording to drug response
evaluation and investigated the relationship between contractile motion and electrophysiological
changes in monolayer hiPSC-CMs [178]. Sala et al. employed video–optic measurements to a
multisystem including monolayers, tissues and organoids, for quantifying cardiac muscle contractile
force, both in vitro and in vivo [179].

Atomic force microscopy (AFM) has proven to be a versatile tool for the measurement of individual
cellular or cluster mechanical properties such as not only beating and stiffness, but also Young’s
modulus [180]. In the system, a scanning probe contacts the cells and senses mechanical signals that are
later passed on to the mounted cantilever, causing cantilever deflection. Finally, cantilever deflections
can be captured by an optical system [180]. Using the AFM method, Liu et al. described that iPSC-CMs
generated from DCM patients showed decreased force and elasticity compared to normal samples at
the cellular level [181]. According to this research, AFM can be applied to drug screening for subtle
alternations in a dose-dependent manner. Furthermore, AFM is compatible with other detection
methods such as MEA, as only synchronous recording of the beating force and electric events can
explain the cardiac excitation–contraction coupling. Caluori et al. first implemented the combination
of AFM/MEA with an in vitro DMD-derived iPSC-CM model, and stated that the method is sufficient
as an assessment platform for the beating–force relationship of cells [182]. However, as neither the
signal cell nor the cell cluster recapitulates the cell–cell organization in vivo or accounts for the cellular
environment, none of the above studies illustrated the force–length relationship in vivo.

As discussed previously, researchers are focusing on 3D-EHTs because they can mimic the aligned
and layered tissue structure of the native heart tissue. The muscle thin film (MTF) platform generated
by Agarwal et al. is a higher-throughput tool at the tissue level, as the anisotropic iPSC-CMs cultured
in soft cantilevers mimic the laminar architecture in vivo [183]. Upon muscle tissue contraction, the
PDMS cantilevers deform proportionally to the force generated by the muscle tissue, and the deflection
can be quantified using optical recording equipment, enabling contractility assessment. Their method
first linked the cellular structure and function at the tissue level, and it proved to be a powerful tool
for a functional assessment of drug screening and disease modeling. Wang et al. assembled BTHS
iPSC-CMs and tested impaired contractile stress generation in a model using the MTF assay [70].
Garbern et al. applied a micromolded gelatin MTF to assess the functional maturity of generated
iPSC-CMs [184]. In their research, both contractile force and beating decreased via downregulation of
the mammalian target of rapamycin (mTOR) pathway, validating that the MTF assay is a functional
platform for drug screening and disease mechanism studies.
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6.3. Cardiac Excitation–Contraction Coupling (ECC)

Ca2+ dynamics bridge electrical excitation to contraction which is called ECC. The instantaneous
changes in cytosolic calcium concentration during contraction and relaxation are referred to as calcium
transient (CaT) [185]. It has been reported that the irregularity of CaT is one of the main causes of
arrhythmia, as AP is induced by intercellular calcium [186,187]. Calcium indicator-based fluorescence
imaging, also known as calcium mapping, is widely applied in cardiovascular drug evaluation [188,189].
By tracking intracellular Ca2+ flow, action potentials can be detected not only at the single-cell level,
but also in the whole tissue, which adequately reflects the overall ECC.

Using individual hiPSC-CMs, Prajapati et al. performed simultaneous recordings of AP and
CaT via patch clamp and calcium imaging, respectively, to further elucidate the mechanism linking
calcium cycling and arrhythmias [190]. In their study, CaT was closely related to AP in both normal
conditions and pathological conditions, such as EADs and DADs, revealing the complex dynamics and
detailed mechanisms of arrhythmias. Moreover, using a CaT screening assay, Kopljar et al. developed
an hiPSC-CM-based comprehensive risk quantification system in a simplified and high-throughput
manner, providing a powerful tool to identify different arrhythmias, including torsades de pointes
(TdP) [191]. As cytosolic calcium triggers cardiomyocyte contraction, CaT analysis is also regarded as
complementary in the study of contractile force. Saleem et al. implemented a screening assay using
hiPSC-CM EHTs for FFR research and confirmed a positive relationship between CaT and FFR but a
reverse correlation between inotropic effect and frequency induced by omecamtiv mecarbil, a positive
inotropic agent that strengthens heart performance [192]. Their work proved that a combination of
calcium mapping and force monitoring is a reliable and effective method for routine drug testing.

Table 4. Assay methods for hiPSC-CM evaluation.

Assay Method Parameter of CMs Throughput Invasive or
Noninvasive

Specific Skill
Required Cost

Patch clamp
Membrane

potential; ion
channel current

Low Invasive Yes Medium

Microelectrode
array Field potential Medium Noninvasive No High

Motion analysis
[177] Contractile force Medium Noninvasive No Low

Atomic force
microscopy [181]

Contractile force;
cell stiffness Low Invasive Yes Low

EHT [133]/muscle
thin film [183] Contractile force High Noninvasive No Low

Imaging [190]
Calcium transient;

membrane
potential

High Medium
invasive No Low

7. Update from the International Consortium for Novel Drug Testing Paradigm

After the development of new drug candidates, they need to pass the safety test before entering
the market. The present safety testing paradigm (S7B/E14) is only based on drug-induced hERG
channel blockade and the prolongation of QT interval, rather than directly focusing on the prediction
of lethal proarrhythmic risk. A significant number of drug candidates could influence hERG [193] and
are often rejected for further clinical development. However, some of these rejected drugs are free of
proarrhythmic effects in both nonclinical and clinical assays [194]. In order to develop a more precise
assessment technique, the United States (US) Food and Drug Administration called up a consortium of
members from regulators, industry, and academia, which reached the conclusion that a novel paradigm
should be established to replace the current one. The new paradigm, named comprehensive in vitro
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proarrhythmia assay (CiPA), includes a nonclinical in vitro assay on hiPSC-CMs and in silico modeling.
It aims to discover the electrophysiological mechanisms underlying the possible proarrhythmic effect
for drug candidates and is expected to become a pharmacological safety screening tool for drug
development [195]. Recently, the CiPA international validation study was carried out across multiple
sites with 28 blinded compounds [196], demonstrating the overall utility of the MEA methodology
and hiPSC-derived CMs. This study also investigated the variation in evaluation results among
different sites, suggesting that the three predictors, arrhythmia events, delayed repolarization, and
repolarization prolongation caused by drugs, are sufficient to evaluate the efficacy of drugs with
necessary accuracy. The data could support the claim that the CiPA has more accurate prediction of
arrhythmia risk than the present guideline (S7B/E14).

The Japanese National Institute of Health Sciences (NIHS) also brought experts from multiple
fields to develop a new testing paradigm for predicting clinical proarrhythmia risk, called the Japan
iPS cardiac safety assessment (JiCSA) [197,198]. JiCSA developed an evaluation system using an
MEA [117], multiple hiPSC-CM cell lines, and a selection of 60 compounds with different torsade de
pointes (TdP) risks. By using a two-dimensional map [199], the relative TdP score was given to each
compound. The data obtained by JiCSA demonstrated predictability of proarrhythmia risk, which
could be reproduced in two cell lines from different suppliers [200,201]. The compounds selected by
JiCSA overlapped with all 28 compounds selected by CiPA. In addition, the JiCSA data demonstrated
good correlation with the CiPA study despite the different analysis methodologies [198]. Both CiPA
and JiCSA have demonstrated the capability of hiPSC-CMs to evaluate proarrhythmia risk, which
could be one of the most important applications of hiPSC-CMs. Collaboration among multiple sites
around the world has already shown the reproducibility and robustness of the evaluation system.

In addition to the electrophysiology used by JiCSA and CiPA, contractility has been recently
suggested as an evaluation factor for predictive safety assessment, since the cardiovascular liability of
drugs occurs commonly via altered function of the contractile myocardium [202]. A multinational
consortium comprising four academic teams and two companies was established, and a blinded
evaluation of 28 drugs was carried out on 3D EHTs. The data indicated that the contraction amplitude
was a good predictor of inotropes in 3D EHTs. With refinement of the test conditions, the platform-cell
accuracy could be increased to 93%, compared with in vivo animal models.

There is scope for advances in various aspects, including improved maturation, combined subtype
of cardiac cells, personalized medicine, scale-up production of hiPSC-CMs, and multiple readout,
which could improve the application of hiPSC-CMs in drug development in the future.

8. Conclusions

hiPSCs induced from healthy and diseased donors and differentiated CMs are able to recapitulate
the molecular and functional characteristics of the human heart. A large number of cardiomyopathies
have been modeled, providing helpful tools for better understanding the cause of disease and for
developing effective therapies. Since differentiated CMs tend to have less maturation than adult
CMs, many efforts have been made for the functional and morphological improvement of hiPSC-CMs.
Multiple readout methods, such as MEA, elastic pillar, motion analysis, and voltage dye, have been
used for evaluating hiPSC-CMs. Novel drug testing paradigms (CiPA and JiCSA) have been proposed
for better prediction of the proarrhythmic risk for drug candidates. By applying 28 or more standard
drugs to the 2D monolayer hiPSC-CM tissue, these multisite collaborators have proven the capability
of hiPSC-CMs to evaluate proarrhythmia risk. In the future, by integrating more maturation and
multiple readout technologies into the new paradigms, the robustness and accuracy can be further
improved. Similarly, patient-specific iPSC-CMs could help develop personalized therapy.
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Abbreviations

ACM Arrhythmogenic cardiomyopathy
AFM Atomic force microscopy
AJ Adhesive junction
AP Action potential
APD Action potential duration
ARVC Arrhythmogenic right-ventricular cardiomyopathy
BTHS Barth syndrome
CaT Calcium transient
CFCS Cardio-facio-cutaneous syndrome
CHF Chronic heart failure
CiPA Comprehensive in vitro proarrhythmia assay
CM Cardiomyocyte
CPVT Catecholaminergic polymorphic ventricular tachycardia
CVD Cardiovascular disease
DAD Delayed afterdepolarization
DCM Dilated cardiomyopathy
DMD Duchenne muscular dystrophy
EAD Early afterdepolarization
EC Endothelial cell
ECC Excitation–contraction coupling
ECG Electrocardiogram
ECM Extracellular matrix
EHT/EHM Engineered heart tissue/engineered heart muscle
ER Endoplasmic reticulum
ERR Estrogen-related receptors (including α, β, and γ)
FAO Fatty-acid oxidation
FFR Force–frequency relationship
FGF Fibroblast growth factor
FP Field potential
GAA Acid-α-glucosidase
GATA GATA family transcription factor
GC Glucocorticoid
GJ Gap junction
HCM Hypertrophic cardiomyopathy
HCN4 Hyperpolarization-activated cyclic nucleotide-gated potassium channel 4
hERG Human ether-à-go-go-related gene
HF Heart failure
HFrEF Heart failure with reduced ejection fraction
HIF1 Hypoxia-inducible factor 1-alpha
hESC Human embryonic stem cell
hiPSC Human induced pluripotent stem cell
hiPSC-CM Human induced pluripotent stem cell-derived cardiomyocyte
HOPX Homeodomain-only protein homeobox
ID Intercalated disc
IGF Insulin-like growth factor
JiCSA Japan iPS cardiac safety assessment
LDHA Lactate dehydrogenase A
LQT1/2/3 Long QT syndrome type 1/type 2/type 3
LQTS Long QT syndrome
LTCC L-type calcium channel
MEA Multielectrode array
MEF2 Myocyte enhancer factor-2
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miRNA/miR MicroRNA
MMP Mitochondrial membrane potential
MS Mass spectrometry
MSC Mesenchymal stem cell
MTF Muscle thin film
NCX Na+–Ca2+ exchanger
NMR Nuclear magnetic resonance spectroscopy
Non-CM Noncardiomyocyte
NRG1 Neuregulin-1
NRs Nuclear receptor superfamily
NT-proBNP N-terminal pro B-type natriuretic peptide
OXPHOS Oxidative phosphorylation
PD Pompe disease
pF Picofarad
PGC-1 Peroxisome proliferator-activated receptor-γ co-activator 1-alpha/beta
PPAR Peroxisome proliferator-activated receptor
RA Retinoic acid
RXR Retinoid X receptor
RyR Ryanodine receptor
SERCA Sarco/endoplasmic reticulum Ca2+ ATPase
SR Sarcoplasmic reticulum
SRF Serum response factor
ssTnI Slow skeletal muscle troponin I
T3 Triiodothyronine
TdP Torsade de pointes
TGF-β Transforming growth factor beta
TNNT Troponin
TTN Titin
T-tubule Transverse tubule
VEGF Vascular endothelial growth factor
α-MHC Myosin heavy chain α-isoform
β-MHC Myosin heavy chain β-isoform
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