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ABSTRACT
In recent years, automatic emotion recognition has attracted the
attention of researchers because of its great effects and wide im-
plementations in supporting humans’ activities. Given that the
data about emotions is difficult to collect and organize into a large
database like the dataset of text or images, the true distribution
would be difficult to be completely covered by the training set,
which affects the model’s robustness and generalization in subse-
quent applications. In this paper, we proposed a model, Adversarial
Autoencoder-based Classifier (AAEC), that can not only augment
the data within real data distribution but also reasonably extend
the boundary of the current data distribution to a possible space.
Such an extended space would be better to fit the distribution of
training and testing sets. In addition to comparing with baseline
models, we modified our proposed model into different configura-
tions and conducted a comprehensive self-comparison with audio
modality. The results of our experiment show that our proposed
model outperforms the baselines.
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1 INTRODUCTION
In human social interaction, emotion has a great influence on pur-
pose expression, intention understanding, and decision-making.
In recent years, automatic emotion recognition has attracted the
attention of researchers due to its important role and wide ap-
plication in supporting humans’ activities [3, 15, 20] by tracking
user emotions in interactions, generating appropriate responses
to users’ needs and behaviors, improving the user experience and
trustworthiness [17, 20, 25]. With the rapid development and wide
use of artificial intelligence technology, a variety of neural network
models have been proposed for emotion recognition, especially for
speech emotion recognition [4, 8, 10, 24]. Deep learning is used to
enable the network to extract emotional features from the data for
emotion classification, by using manually extracted features or in
an end-to-end manner. Benefiting from the improvement of com-
puting resources and the innovation and optimization of network
structure, their performance in emotion recognition tasks has been
increasing.

However, due to the limitation of data, sometimes the distribu-
tion of training samples cannot cover the test samples, and it is also
difficult to estimate the real distribution of the whole data (see Fig-
ure 1). This problem will easily result in that the model performing
well on the training set, but the prediction accuracy for unknown
samples would not be satisfactory, and the ability of robustness
and generalization would be poor. Although some methods, e. g.
early stopping, dropout, and regularization, have been adopted to
alleviate the problem of overfitting, they are still confined by the
samples of the training set.

Another solution to overfitting is data augmentation. Data aug-
mentation utilizes the existing training samples to generate new
additional data, which can effectively alleviate the overfitting of the
model. It can also force the network to learn more robust features
and bring stronger generalization ability to the model. The method
is widely applied in image-related tasks, where new images are
generated by flipping, rotating, scaling, clipping, shifting, etc. This
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practice not only plays a key role in increasing training samples
on small datasets but also has positive effects on improving the
performance of models trained on large datasets [1]. Similarly, for
audio data, some data augmentation methods to maintain the valid-
ity of the labels are also frequently used, e.g. time stretching, pitch
shifting, and noise injection, which do not change the semantics of
the labels, so that the network is invariant to these transformations
and can be better generalized to unknown data [18].

Recently, Generative Adversarial Networks (GANs) have been
widely used to generate extra training samples in speech-related
tasks[2, 9, 16]. In these works, the generative model learns a map-
ping function from input distribution to generation distribution,
and the discriminative model tries to judge whether the generated
samples come from the real distribution or false distribution. In
the training set, a generative distribution is optimized through the
game between the generative model and the discriminative model,
and the new data is generated from the distribution close to the
original samples of the training set.

In this work, we focus on taking the audio feature as input and
output the prediction class of arousal and valence. The contributions
of this paper are as following:

• We propose a model based on adversarial autoencoder (AAE)
[11] and an emotional classifier with an adversarial training
strategy. Through the adversarial training process, the aug-
mented samples are generated based on the training data,
then fed into the emotional classifier with the original data,
which aims to improve the robustness and generalization
of the classifier and mitigate the problem of overfitting to a
certain extent. The performance of the model exceeds the
baseline models.

• We investigate different configurations of the proposedmodel
to find out how it is possible to optimize the generalization.
Each configuration has been analyzed to find a method that
can not only do the data augmentation but also extend the
data space within reason, so that the possible distribution
of generated data can not only include the distribution of
training samples but also include part of the distribution
space of test samples.

The rest of the paper is arranged as follows: In Section 2, we
briefly discuss the related work of data augmentation using GAN,
and put forward the hypothesis that the distribution of their gener-
ated samples is different from ours; Section 3 describes the network
structures of AAEC and each module; the experiment and results
are described in Section 4; we discuss the results of the experiment
in Section 5; finally, we conclude with a brief summary and provide
some directions for future research.

2 RELATEDWORKS AND HYPOTHESIS
2.1 GAN based audio data augmentation
Data augmentation method based on GAN is used in various au-
dio related tasks, where the practice plays an important role in
increasing sample size and improving network performance.

Madhu et al. [9] applied the Generative Adversarial Networks
based on WaveGAN [5] for data augmentation in the task of envi-
ronmental sound classification, and proved that comparedwith time
stretching, pitch shifting, additive background noise and dynamic

Figure 1: The hypothetical distribution diagram. (a) is the
hypothetical data distribution of the dataset; (b) is the hypo-
thetical data distribution after augmentation with existing
methods, by which increasing the variety of training sam-
ples; (c) is the ideal hypothetical data distribution that ex-
tends the boundary of the distribution in the dataset to a
possible real distribution.

range compression, the data augmentation method based on GAN
has a more active and effective role in improving the classification
accuracy.

Chatziagapi et al. [2] modified and improved a conditional GAN
architecture (BAGAN [12]) to generate synthetic spectrograms for
minority classes in speech emotion recognition tasks and improve
the quality of the generated spectrograms. Through experiments,
they concluded that the proposed method can solve the problem
of data imbalance in speech emotion recognition more effectively
than standard augmentation technology.

In the work of Qian et al. [16], the augmentated data from basic
GAN and conditional GAN is generated frame by frame based on
spectrogram feature level for robust speech recognition. The ex-
perimental results showed that the data augmentation method can
improve the system performance under all tested noise conditions,
and greatly improved the robustness of the system, which is also
better than the traditional manual data augmentation strategy.

However, because these models simply fit the distribution of the
original data and therefore only generate new samples close to the
original sample distribution of the training set, the generalization
of the models is still limited.

2.2 Hypothesis
We hypothesize that the distribution of training samples and testing
samples in the dataset are intersecting but might not totally overlap
with each other due to the limitation of collected data (as shown
in Figure 1(a)). For the existing methods, the distribution of the
generated feature samples is almost the same as that of the training
samples, and therefore it is difficult to generate extra samples in
the different distribution space of testing samples with training
samples (see Figure 1(b)). On the other hand, if the generator and
classifier are trained in each iteration, some approximate samples
with distance from the real distribution will be generated when
the mapping ability of the generator has not yet converged, and
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Figure 2: The architecture of the original adversarial autoencoder (AAE) and the proposed adversarial autoencoder-based
classifier (AAEC). 𝐷 and 𝐶 are annotations for discriminator and classifier respectively. E indicates the Gaussian noise and 𝑍
stands for the extracted hidden feature of 𝑋 . 𝑋 ′ is the reconstructed sample of 𝑋 yielded by the decoder.

these samples may appear in the area that the original training
data cannot cover. In this way, it may be possible to generate data
in a larger distribution space while retaining the main features
of the training set samples to a certain extent, which can expand
the boundary of the generated data distribution and improve the
probability of the generated data appearing in the testing data
distribution. Ideally, the augmented data will extend the boundary
of the data distribution to include both the training data distribution
and the test data distribution, which makes the distribution closer
to the distribution in the real world (see Figure 1(c)).

3 PROPOSED METHOD
In this section, we demonstrate the structure of our proposed adver-
sarial autoencoder-based classifier (AAEC) and the neural networks’
architecture for each module.

3.1 Adversarial Autoencoder-based Classifier
Figure 2 (a) shows the structure of the original AAE [11], which
is an autoencoder regularized by matching the aggregated poste-
rior (𝑍 ) to an arbitrary prior (E). The 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 encodes 𝑋 into a
representation 𝑍 , the 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 works as a generator that generates
the reconstructed sample 𝑋 ′, the discriminator 𝐷 distinguishes
whether E or 𝑍 comes from Gaussian Distribution, E for real while
𝑍 for fake. The adversarial network that guides𝑍 to match E, mean-
while, attempts to minimize the reconstruction error between 𝑋 ′

and 𝑋 . Speaking of our proposed AAEC, we made some modifica-
tions based on AAE (see Figure 2 (b)) inspired by Conditional GAN
(CGAN) [13] and Auxiliary Classifiers GAN (AC-GAN) [14]. Firstly,
we added a classifier to classify the label of the original sample 𝑋
and the reconstructed sample 𝑋 ′, as well as to distinguish 𝑋 ′ (fake)
from 𝑋 (real). Secondly, in order to improve the diversity of data,
mending the possible data distribution that can be presented by
testing samples but be lack of in training samples, while retaining
the main features to a certain extent, we separately fed E and 𝑍
to the 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 and averaged the reconstructed 𝑋 ′

E with 𝑋 ′
𝑍
(see

Equation 1).

𝑍 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋 )
𝑋 ′
E = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (E)

𝑋 ′
𝑍 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑍 )

𝑋 ′ = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑋 ′
E , 𝑋

′
𝑍 )

(1)

Equation 2 demonstrates the objective function of our proposed
method, where 𝐷 stands for the discriminator, 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (E, 𝑍 ) is
the notation that combines 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (E) and 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑍 ). Different
from the conventional GAN than only contains 2 players 𝐺 and
𝐷 , we add a classifier 𝐶 , which is composed with two parts (𝐶𝑐 ,
𝐶𝑑 ), to not only do the classification (annotated as 𝐶𝑐 ), but also to
distinguish 𝑋 ′ from real 𝑋 (annotated as 𝐶𝑑 ). Given an input 𝑋 , 𝐷
aims to estimate the representation extracted by 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 and E,
maximize the possibility of recognizing fake and real; while𝐶 is also
doing the maximization, it attempts to distinguish𝑋 ′ reconstructed
by𝐷𝑒𝑐𝑜𝑑𝑒𝑟 as fake and assigns a class to both𝑋 and𝑋 ′. We defined
that the class of the reconstructed 𝑋 ′ is the same as the original 𝑋 .
𝐸𝑛𝑐𝑜𝑑𝑒𝑟 , 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 is trained to maximally confuse 𝐷 and 𝐶𝑑 into
believing that representations and samples it generates come from
the real data space.

min
𝐸𝑛𝑐𝑜𝑑𝑒𝑟,𝐷𝑒𝑐𝑜𝑑𝑒𝑟,𝐶𝑐

max
𝐷,𝐶𝑑

= EE [log𝐷 (E)]) + E𝑍 [log(1 − 𝐷 (𝑍 ))]

+ E𝑋 [log𝐶𝑐 (𝑋 )] + E𝑥 [log𝐶𝑑 (𝑋 )]
+ EE𝑍 [log𝐶𝑐 (𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (E, 𝑍 ))]
+ EE𝑍 [log(1 −𝐶𝑑 (𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (E, 𝑍 )))]

(2)

3.2 Modules Architecture
Figure 3 and 4 show the neural networks we designed for each mod-
ule. Since the long-short-termmemory network has been confirmed
to be useful in audio processing [6, 21, 22], we hereby employed
one of its variants, gated recurrent units (GRU), to build the en-
coder and classifier, the number of cells was set to 64. The input
of encoder was the power spectrogram extracted from audio, we
fed them into a bi-directional GRU for processing the time-series

Paper Presentation MuSe '20, October 16, 2020, Seattle, WA, USA

47



Figure 3: The neural network architectures for the proposed (a) Encoder, (b) Decoder and (c) Discriminator.

Figure 4: The neural network architecture for the proposed
classifier.

information. After that, three dense layers were adopted to gen-
erate the hidden representation 𝑍 , the numbers of units for each
dense layer were 512, 256, 128. The decoder and discriminator were
simply constructed with three dense layers. The numbers of units
for each dense layer in the decoder were 64, 64, 38400, while the
numbers of units for each dense layer in the discriminator were
512, 256, 1.

The classifier is mainly composed of convolutional layer and
long-short-term memory network since the combination of them
has been widely implemented in speech emotion recognition stud-
ies [7, 23]. In our proposed classifier, we first fed the power spec-
trogram to a three-layer convolutional network, the numbers of
filters for each layer were 512, 256, 128 with kernel size as 3, 1, 3
respectively and strides were all equal to 1. Then, the extracted
features were passed to a bi-directional GRU with the cells number
as 64. Finally, there were three independent networks composed of
three dense layers for the sake of distinguishing real or fake, the
classification of the arousal dimension, and the classification of the
valence dimension. The numbers of units for each dense layer of
the distinguishing network were 512, 32, 1, while the numbers of

units for each dense layer in the classification networks were 512,
32, 3.

4 EXPERIMENT
4.1 Dataset and Preprocessing
We trained and evaluated on Multimodal Emotion-Target Engage-
ment Sub-challenge (MuSe-Topic) [19]. There are two tasks in this
dataset, predicting 10 classes of domain-specific and 3 classes of
valence and arousal from a car introduction video. In this study, we
only focus on the emotion prediction task based on audio modality.
Following the train–test splitting that has done with the origi-
nal dataset, we processed 4207 training samples and 1335 testing
samples. The evaluation scoring standard for the trained model
combines (0.34·) unweighted average recall (UAR) and (0.66·) F1 in-
dependent for each prediction, which is identical with the baseline.

As for the audio preprocessing, we extracted the power spectro-
gram from each video segment as features for later training use. We
firstly set the maximal length of each utterance to 15s. The longer
utterances were cut at 15s and the shorter ones were padded with
zeros. The sampling rate was set to 16000Hz. For each frame, a Fast
Fourier transform (FFT) of length 1024 with a hop length of 512
was calculated.

4.2 Settings and Baselines
As Algorithm 1 illustrates the training procedures, we iteratively
trained each module in AAEC. More specifically, we first trained
the 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 and 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 for mapping 𝑍 to E with K epochs.
Then, we trained the𝐷𝑒𝑐𝑜𝑑𝑒𝑟 individually to generate new samples.
After K epochs, the𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 started to be trained on original and
reconstructed samples. The number of total training iterations was
set to 500 and 𝐾1, 𝐾2, 𝐾3 were set to 10, 20, 20 respectively in our
experiment.

The other configurations for self-comparing of AAEC are shown
in Table 1, note that the notation𝐺 stands for the proposed encoder-
decoder, while𝐺𝑜𝑟𝑖 is a aberration for the original encoder-decoder
presented in Figure 2 (a) . To verify whether 𝐶 could completely
replace 𝐷 , the discriminator was removed in AAE_C. To confirm
whether 𝐶 could take advantage of adversarial training for improv-
ing performance, we designed AAE+C that 𝐶 was taken out from
the iteration and trained afterward. The AAEC′ was designed to
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Table 1: Results of F1, Unweighted Average Recall (UAR), and Combined (0.66 ·𝐹1+0.34 ·𝑈𝐴𝑅) for the 3-class valence and arousal
predictions and the Combined (mean) of valence and arousal.

Model Player Modality c-Arousal c-Valence Combined
F1 UAR Combined F1 UAR Combined

- ours

AAEC 𝐷 , 𝐶 , 𝐺 audio 39.80 40.06 39.89 40.72 40.89 40.78 40.33
AAE_C 𝐶 , 𝐺 audio 38.88 38.86 38.87 39.25 39.23 39.24 39.05
AAE+C 𝐷 , 𝐺 audio 38.15 38.41 38.24 37.69 39.01 38.14 38.19
AAEC′ 𝐷 , 𝐶 , 𝐺𝑜𝑟𝑖 audio 38.48 38.56 38.51 37.77 37.78 38.11 38.31
Classifier - audio 34.66 34.81 34.71 35.92 36.16 36.00 35.36

- Stappen et al. [19]

SVM - audio 34.29 34.07 34.21 42.30 40.18 41.83 38.02
LSTM+Self-ATT - audio 34.60 35.00 34.74 37.54 36.78 37.28 36.01
MMT - audio, visual, text 39.02 40.52 40.12 37.30 37.87 37.50 38.81

Algorithm 1 AAEC training procedure

1: optimizer = 𝐴𝑑𝑎𝑚(𝑙𝑟 = .2𝑒 − 4, 𝑏𝑒𝑡𝑎_1 = 0.5)
2: for number of total training iterations do
3: for 𝐾1 epochs do
4: train 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 and 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟
5: end for
6: for 𝐾2 epochs do
7: train 𝐷𝑒𝑐𝑜𝑑𝑒𝑟
8: end for
9: for 𝐾3 epochs do
10: train 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟
11: end for
12: end for
13: extract trained 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 and fine-tune on original dataset

with optimizer = 𝑆𝐺𝐷 (𝑙𝑟 = .5𝑒 − 5)

compare the effect of the proposed encoder-decoder to the origi-
nal one. Moreover, we also trained a pure classifier with the pro-
posed architecture to verify the effectiveness of AAEC. The baseline
models presented in Table 1 are chosen from the reported works
done by Stappen et al. [19], which contain single modality emotion
recognition and multi-modality emotion recognition. 𝑀𝑀𝑇 is the
abbreviation for Multi-model Transformer.

4.3 Results
Table 1 shows the comparison results, where the bold font denotes
the best performance. From the statistic results yield by our mod-
els, we can see that the adversarial training genre models (AAEC,
AAE_C, AAEC′) outperform the pure classifier, also the classifier
trained on augmented data (AAE+C) has a better performance by
increasing about 2.6% than the classifier alone. Moreover, the com-
parison between AAEC and AAE+C suggests that the model takes
the advantages of adversarial training by increasing the perfor-
mance about 2.2%. Furthermore, from the results of AAEC and
AAE_C we can see that the model containing discriminator im-
proves the combined score by around 0.8%, which might imply that

even though the work of 𝐷 and 𝐶 overlap to a certain extent, 𝐷
still can not completely be replaced. Additionally, by comparing
the performance of AAEC with AAEC′, the proposed modifica-
tion (separately feeding E and 𝑍 to the 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 and averaging the
reconstructed 𝑋 ′

E with 𝑋 ′
𝑍
for obtaining 𝑋 ) achieves better per-

formance (40.33%), which is around 2% higher than the score of
AAEC′ (38.31%).

Compared to the performance of baselines, the proposed model
achieves the best combined score, which is about 2.2% higher than
audio-modality SVM, about 4.3% higher than audio-modality LSTM
with self-attention, about 1.5% higher than MMT with three modal-
ities.

5 DISCUSSION
We randomly generated some samples in each iteration using the
generator of AAEC and visualized the samples based with principal
component analysis (PCA) to compare the distribution of the aug-
mented samples and the original samples, as shown in Figure 5. The
shown samples continuously accumulated following the training
process.

From Figure 5 we can see that the original distribution of the
training set cannot fully cover the distribution of the test set in the
MuSe-Topic dataset, which meets the conjecture of Figure 1. Our
method makes up for this problem to a certain extent. Through the
process of adversarial training, when the generator’s ability has not
converged during the early period, it would generate some almost-
true-like samples that have a certain offset with the real distribution
to expand the distribution of training data and supplement the data
that was not accessible by the classifier. This could be the reason
why AAEC performs better than the pure classifier and the classifier
trained on the augmented data (AAE+C). At the later stage of the
training iteration, we can see from Figure 5 (the second row) that
most of the samples the model generated are almost within the
real distribution, which can be regarded as true-like samples used
to augment the training data. This stage also has positive effects
on improving the performance of the classifier. Referring to the
results achieved by AAEC and AAE_C, AAE_C is not as good as
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Figure 5: Data visualization.We randomly generatednew samples and visualized them in each iteration. The generated samples
shown in the figure are continuously accumulated following the training process.

AAEC. We suspect this is because, when 𝐶 and 𝐷 are all working
for learning the distribution mapping, the true-like sample that
the generator in AAEC can generate in the later training stage
would be closer to the real distribution than that generated by
AAE_C, in which only𝐶 was used to learn the distribution mapping.
These samples help the classifier to refocus back to the real sample
distribution after seeing the possible sample distribution expanded
in the early training period. Therefore, it may not be a particularly
good choice to blindly expand the possible sample distribution to
compensate for the incompleteness of the original training data.
The model still needs abilities and methods to refocus back on the
most real distribution. In addition, there is an important tip when
making the model focus back on the real sample. We may need to
let the generator generate some data in the real data distribution
but reasonably make them as far as possible from the original real
samples, in other words, to fill the area in the real distribution
that the original data cannot cover. This guess can be corroborated
to a certain extent by the results of AAEC and AAEC′. Without
the perturbation of averaging the generated 𝑋 ′

E with 𝑋 ′
𝑍
, the new

sample that AAEC′ can generate will be very close to the original
true sample. It means that when the model refocuses on the true
sample distribution, the sample diversity that AAEC′ can provide
is lower than that of AAEC.

In the experiment, we also tried to integrate other modalities
with audio modality, such as facial expressions, texts. But no mat-
ter whether it is a single modality or multi-modality, it could not
outperforms the model with only audio modality. We may consider
that this may be due to the type of this dataset, which is a video
set for introducing cars, the model cannot capture much emotional

information from facial expressions and texts. But this problem still
worth exploring more deeply.

6 CONCLUSION
In this paper, we propose a model based on adversarial autoencoder
and an emotional classifier with an adversarial training strategy.
The experiment suggests that our proposed method can not only
augment training samples within the existing true distributions but
also reasonably extended the data space to a possible distribution
that can better fit training and testing sets. The results show that
our model outperforms the baseline of single modality and also
achieves a better score than the multi-modality baseline model.
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