

Title	剛直性高分子のリオトロピック液晶
Author(s)	寺尾,憲;佐藤,尚弘
Citation	液晶. 2014, 18(3), p. 108-117
Version Type	VoR
URL	https://hdl.handle.net/11094/78344
rights	ⓒ 2014 日本液晶学会
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

総説

剛直性高分子のリオトロピック液晶

寺尾 憲*¹/佐藤尚弘*²

剛直性高分子のリオトロピック液晶の等方一液晶相図は、その高分子の剛直性に強く影響される. 本稿では、高分子の化学構造により、どのような機序で剛直性、およびそれによってリオトロピック 液晶性が発現するのかについて、種々の高分子を例にとって紹介する.そして、いくつかの剛直性高 分子溶液系についての等方一液晶相図の実験と理論の比較を概説する.さらに、高分子鎖が光学活性 な場合にみられるコレステリック相についてもいくつかの興味深い系を紹介する. キーワード:剛直性高分子、持続長、Kuhnの統計セグメント長、リオトロピック液晶、ネマチッ ク相、コレステリック相、スメクチック相、等方一液晶相図、末端効果

1. はじめに

液晶性高分子には,主鎖や側鎖に剛直なメソゲン部位を 比較的内部回転が自由なスペーサーで結合させた高分子と 主鎖が均一に剛直な剛直性高分子に大別される.前者は, 通常バルク状態で液晶となり,温度変化によって等方一液 晶転移を起こすサーモトロピック液晶であるのに対し,後 者は溶液状態で液晶となり,濃度変化によって等方一液晶 転移を起こすリオトロピック液晶性を有する.ケブラーな どの剛直性高分子は,いわゆる液晶紡糸という手法によっ て高配向度の超強力繊維にできるが,リオトロピック液晶 性はその紡糸法に必須の性質である.本稿では,そのよう に工業的にも重要な物性である剛直性高分子のリオトロ ピック液晶性について述べる.

直鎖のポリスチレンをはじめとする多くの屈曲性高分子 の濃厚溶液に液晶性が無いのに対し、セルロース程度以上 の剛直性をもつ高分子には液晶性を示すものが多く見つ かっている.剛直性高分子の特徴として溶解のエントロ ピーの低さが挙げられるが、固体中と溶液中における分子 の変形の自由度の差が屈曲性高分子よりも小さい剛直性高 分子は溶解に伴うエントロピー変化が非常に小さく、いわ ゆる良溶媒にしか溶解しない.ゆえに液晶が出現する濃度 まで溶解する溶媒中では高分子間の引力的相互作用はほと

*1Ken TERAO

大阪大学大学院 理学研究科 高分子科学専攻・講師 大阪府豊中市待兼山町 1-1(〒 560-0043)

E-mail : kterao@chem.sci.osaka-u.ac.jp *² Takahiro SATO

大阪大学大学院 理学研究科 高分子科学専攻・教授 大阪府豊中市待兼山町 1-1(〒 560-0043) E-mail:tsato@chem.sci.osaka-u.ac.jp んど考慮する必要がない.

他方,実際に液晶が出現する濃度は高分子の種類によっ て大きく異なる.1990年代までには,様々な剛直性を持 つ高分子の溶液系の等方-液晶相図は高分子の剛直性を考 慮した理論によりかなり正確に予言できるようになっ た¹⁾.近年,様々な剛直性高分子の希薄溶液物性より,高 分子の剛直性の発現機序についてもさらに理解が深まって いる.また,リオトロピック液晶性の研究は直鎖高分子だ けでなく分岐高分子や環状高分子にも広がりつつある.そ こで本稿では主に溶液中での液晶性まで研究されている高 分子の剛直性の起源についてまとめると共に,それぞれの 系が持つ等方-液晶相図の特徴について述べる.さらに, 最近筆者らが行っている溶媒によって異なる液晶相が出現 する系や剛直環状鎖のリオトロピック液晶性,そして主に天 然高分子に見られるコレステリック液晶についても触れる.

2. 高分子の剛直性の起源

屈曲性高分子鎖の広がりは回転異性体近似モデルのよう な化学構造を考慮したモデルが用いられることが多い.こ れに対し,主鎖の剛直性が高くになるのに伴い,ビニルポ リマーのゴーシュに対応するような屈曲点の存在は非常に 少なくなり,代わりに,内部回転の揺らぎが重要になって くる.このような鎖の統計を扱うにはむしろ高分子を経路 に沿って微分可能な三次元空間中の連続曲線として取り扱 う方が都合がよくなる.この連続曲線を曲げの弾性エネル ギー ϵ の弾性ワイヤーとみなし,その形状が熱振動によっ て絶えず変形していると考えると,この鎖の温度*T*にお ける剛直性は以下のパラメータ λ^{-1} で特徴づけられる.

 $\lambda^{-1} = 2\varepsilon/k_{\rm B}T$

この λ^{-1} はKuhnの統計セグメント長と呼ばれる量で,持続長qの2倍に相当する.種々の高分子希薄溶液のデー

(1)

タからこのλ⁻¹を決定する方法の記述は他書^{2)~5)}を参照さ れたい.

多くの高分子はその内部回転に一定の自由度が存在する ため、高分子鎖が溶液中で剛直鎖として振る舞うためには 内部回転を制限する機構が必要である.ここでは、主鎖の 剛直性を保持する機構として、①主鎖そのものの内部回転 が起こりにくい場合、②多重らせん、③側鎖間の斥力的相 互作用、④側鎖間の水素結合、⑤溶媒分子との水素結合相 互作用についてまとめる.屈曲性高分子の分子形態が、回 転異性体近似モデルである程度説明できることが多いのに 対し、剛直性高分子の広がりは内部回転等の比較的小さな 揺らぎの違いが重要となるため、化学構造のみから剛直性 を定量的に予測することは困難であり、個々の系について 実験的に決定しなければならないのが実情である.

2.1 高分子の内部回転制限に伴う主鎖の剛直性

最も基本的な場合として, 高分子の主鎖そのものの内部 回転が起こりにくく剛直になる場合が挙げられる。例とし て Fig.1 に示すポリ(1,4-ベンズアミド)(1)やポリ(n-ヘ キシルイソシアナート) (PHIC; 2) などを取り上げる.図 中の二つの高分子は主鎖中のアミド基の平面性に伴う内部 回転制限により、高い剛直性を示す. 溶媒にもよるが、前 者が λ⁻¹で 100~150 nm^{6),7)},後者が 42~84 nm^{8)~10)}となる ことが報告されている.特に後者は汎用有機溶媒によく溶 けることもあり、その液晶性も詳細に調べられてい る1),11)~13). 剛直性高分子には難溶性のものが多いが、比 較的内部回転の自由度の高いアルキル鎖などを側鎖に導入 することで溶解性の向上がみられる。これらの剛直性がア ミド基の平面性に依っていることはアミド基の二重結合性 を弱めるような置換基を導入することにより確認できる. 実際、前者のベンゼン環の一部にフェニル基を導入したも の14), 後者の n-ヘキシル基をメチルブトキシフェニル基 に置き換えたもの¹⁵⁾のλ⁻¹がそれぞれ17 nm, 6 nm と著 しく高い屈曲性を持つことが報告されている. 先に述べた ように、PHIC(2)の剛直性が比較的溶媒に影響されるの も、溶媒との相互作用の違いがアミド基の平面性に影響す るためと考えられている.

 $\lambda^{-1} = 100-150 \text{ nm}$ $\lambda^{-1} = 42-84 \text{ nm}$ Fig.1 Chemical structures of poly(1.4-benzamide) (1) and poly(*n*-hexyl isocyanate) (PHIC). (2)

2.2 多重らせん

ー本の高分子としては内部回転の自由度,そして鎖の屈 曲性が高いものでも、多重らせんになることで高い剛直性 を示す.溶液中で安定に多重らせん構造を保つものには二 重らせん構造を取るデオキシリボ核酸(DNA、 $\lambda^{-1}=120$ nm)^{16)~19)},電解質多糖であるザンサン(キサンタンガムと も呼ばれる、 $\lambda^{-1}=240$ nm)²⁰⁾共に非常に高い剛直性を持 ち、リオトロピック液晶性も確認されている^{21)~23)}.さら に三重らせん構造を持つコラーゲン($\lambda^{-1}=330$ nm)^{24)~27)} や多糖のシゾフィラン($\lambda^{-1}=400$ nm)^{28),29)}などが挙げられ る.これらの多重らせんは分子間力で安定化されており、 加熱や溶媒条件によって一本鎖を得ることができるが、一 般に一本鎖から多重らせんを再構築するのは難しく、この ような条件下では様々な複雑な複合体が形成されることが わかってきている^{30),31)}.

2.3 嵩高い側鎖を持つ高分子の剛直性

高分子側鎖の嵩高さも、剛直性に影響することは容易に 想像される。このことはポリエチレンの特性比よりポリス チレンのそれが約3割大きいことからも自明であるが、線 状のビニルポリマーでは、例えば種々のポリ(アルキルメ タクリレート)の特性比が最大で2倍程度異なる^{32),33)}程度 で、液晶性を示すまで剛直になる高分子はほとんど存在し ない. ビニルポリマーの側鎖の間隔がほとんどのもので炭 素二つごとであるのに対し、主鎖の原子間距離が幾分長い ポリシランではすべての主鎖元素に2本ずつのアルキル側 鎖を持たせることが可能である.このポリシランの分子形 態は側鎖に強く依存することが報告されており^{34)~38)},例 えば、Fig.2に化学構造を示すポリシランの内、2本の側 鎖が共に直鎖アルキル基である3のλ⁻¹が7nmである³⁹⁾ のに対し、主鎖から3番目の炭素原子にメチル基が一つあ る4が $\lambda^{-1}=12$ nm^{40),41)}, 二つある5は210 nm⁴²⁾, 主鎖か ら2番目の炭素原子にメチル基が一つある6や7もそれぞ れ 140 nm, 170 nm と^{40),43)}側鎖のアルキル鎖上のメチル基 の有無およびその位置によって内部回転が制限され、その 剛直性に著しい変化がみられることがわかる.これらの 内,7についてはリオトロピック液晶性について詳しく調 べられている43)ほか、サーモトロピック液晶についても報 告されている44).

側鎖を高分子鎖にした櫛形高分子の場合,ビニルポリ マーでもその主鎖は剛直になる.このような高分子はモノ マー自身の分子量が非常に高くなるためポリマクロモノ マーと呼ばれる.また,その分子形状から,ブラシポリ マーとも呼ばれる.例として側鎖がポリスチレン,主鎖が ポリメタクリレート8またはポリスチレン9からなるもの を Fig.3に示す.両者共に側鎖が長くなるにつれて,その

 $\lambda^{-1} = 7 \text{ nm}, 12 \text{ nm}, 210 \text{ nm}, 140 \text{ nm}, 170 \text{ nm}$ Fig.2 Chemical structures of poly(dihexylsilane) (3), poly [*n*-hexyl-(*S*)-3-methylpentylsilane] (4), poly [(*R*)-3,7-dimethyloctyl-(*S*)-3-methylpentylsilane)] (5), poly [*n*-hexyl-(*S*)-2-methylbutylsilane)] (6), and poly [*n*-decyl-(*S*)-2-methylbutylsilane)] (7).

Fig.3 Chemical structures of polymacromonomers consisting of poly(methyl methacrylate) backbone and polystyrene side chains (8) and consisting only of polystyrene (9).

主鎖は著しく剛直化する^{45)~47)}. 側鎖が約 30 量体の 8 の λ^{-1} はトルエン中で 60 nm に達し⁴⁸⁾, 側鎖長が 30~40 の 8 がトルエンやキシレン中で液晶性を示すことが報告されて いる^{49),50)}. 9 の λ^{-1} は同じ側鎖重合度の 8 よりも幾分小さ いが,トルエン中での λ^{-1} は側鎖重合度 33 で 36 nm,側 鎖重合度 65 で 75 nm に達する^{46),51),52)}. これらはシクロへ キサン中やトルエン中ではゲル化するが,トルエンと同じ く良溶媒であるジクロロメタン中では,リオトロピック液 晶性を示す^{53),54)}. これらのポリマクロモノマーの高い剛直 性が主に側鎖間の斥力的相互作用であることは,シータ溶 媒であるシクロへキサンを溶媒とした場合に,剛直性がト ルエン中の約半分に減少することからも確かめられてい る^{46)~48),51),52)}.

2.4 分子内に水素結合を持つ高分子の剛直性

分子内の水素結合も高分子鎖の剛直性に重要な役割を果 たす.最も有名なのがポリペプチドである.変性したペプ チド鎖がランダムコイルとして振る舞い^{55),56)},その λ^{-1} が 2 nm 程度である⁵⁷⁾のに対し,**Fig.4**に化学構造を示すポ リ(γ -ベンジル-*L*-グルタメート)(**10**.PBLG)はらせん溶 媒中で λ^{-1} =300 nm の剛直ならせん構造を持ち⁵⁸⁾,最も 代表的なリオトロピック液晶高分子として多くの研究がな

Fig.4 Chemical structures of poly(γ-benzyl-L-glutamate) (10), poly(phenylacetylene) bearing L-alanine pendants (11), and poly(phenylisocyanide) bearing L-alanine pendants (12).

されている¹⁾. 著名な研究としては Yu らが単分散 PBLG (10)に対してその濃厚溶液にネマチック相だけでなくスメ クチック液晶も観察されることを高分子で初めて示したこ とが挙げられる⁵⁹⁾. 側鎖間の水素結合によって主鎖が剛直 化される例としてポリアセチレンやポリイソシアニドの系 がある. 図中の 11 と 12 の λ^{-1} はそれぞれ 260 nm (四塩化 炭素中)⁶⁰⁾, 440 nm (THF 中)⁶¹⁾と極めて大きく,双方と もに濃厚溶液中でコレステリック液晶となる.

側鎖間での水素結合が主鎖の剛直性に顕著な影響を及ぼ すことは多糖の誘導体についても古くから指摘されてき た.Burchardらはセルロースおよびアミロースのフェニ ルカルバメート誘導体が、剛直鎖として振る舞うことを示 した^{62),63)}.その後の著者らの研究によればこれらの剛直性 はそれぞれ $\lambda^{-1}=21 \text{ nm}(\text{THF 中})^{64}$, 22 nm (1,4-ジオキ サン中)⁶⁵⁾である.さらに、最近著者らは**Fig.5**に示すア ミロースのアルキルカルバメート誘導体(13, 14, 15)^{66),67)} やカードランのフェニルカルバメート誘導体(16)⁶⁶⁾がテト ラヒドロフラン中でかなり剛直な鎖(λ^{-1} でそれぞれ33 nm,75 nm,75 nm,57 nm)として振る舞うこと、また リオトロピック液晶性を有すること^{68),69)}を見出した.これ らの試料の剛直性が溶媒の極性の増加と共に著しく低下す ること、その様子が赤外吸収スペクトル中のアミドIバン ドの変化によって観測されることから、分子内水素結合 が、これらの高分子の剛直性に重要な役割を果たすことが わかった.また、これらの高分子の分子内水素結合の切ら れやすさは、溶媒に光学活性な乳酸エチルを用いた場合、 光学異性体によっても有意な違い(D体中での λ^{-1} がL体 中に比べ最大で1.8倍高い)がみられた^{67),70)}.そのほかの 例として、希薄溶液中での分子形態は決められていない が、キトサンのフェニルカルバメート誘導体もリオトロ ピック液晶性を持つことが報告されている⁷¹⁾.

2.5 溶媒分子と水素結合することによる高分子の剛 直性

少々まれな例となるが、前節で述べた多糖のカルバメート誘導体の内、Fig.6 に化学構造を示すアミロースのフェ ニルカルバメート誘導体 17, 18 はケトンやエステルを構 造中に持つ溶媒分子がカルバメートに水素結合することに よってアミロース主鎖の内部回転が制限される. 実際、こ れらの溶媒中では溶媒分子のサイズの増加と共に剛直性も 増加することが確認された^{72),73)}. 特に 18 の場合 λ⁻¹が 22 nm から 73 nm に増加することがわかった. しかし、これ らの系中で高分子 17, 18 は共にゲル化しやすく、異方相 は確認されたが、その液晶物性を定量的に評価するのは容 易ではない.

3. 高分子のリオトロピック液晶の相図

3.1 尺度可変粒子理論とリオトロピック液晶

高分子に限らず2成分系の相図はその系の熱力学的性質 を定式化することにより、理論的な予測が可能になる.高 分子系では平均場近似に基づく Flory-Huggins 理論が最 もよく知られる。しかし、臨界点近傍の濃度揺らぎなどの 問題から、希薄溶液物性から得られる分子形態や分子間相 互作用のみから屈曲性高分子一貧溶媒系の相分離挙動を定 量的に説明することはできない5,74).これに対し、冒頭で も述べたように剛直性高分子の等方一液晶相平衡挙動の説 明には分子間の斥力的な相互作用のみで十分であり、臨界 点近傍に見られるような長距離の濃度揺らぎを考慮する必 要はない. 文献5)に解説があるのでここでは詳しくは述べ ないが、Fig.7 に示す環球円筒みみず鎖に対する尺度可変 粒子(scaled particle theory, SPT)理論を適用することに より、相図の計算が可能となる、理論に含まれるパラメー タは、図中の経路長L、鎖の直径 d の他に、鎖の剛直性 λ⁻¹である.理論の結果は高分子鎖が短くなるほど,剛直 性が低下するほど、そして鎖が細くなるほど、相境界濃度 (高分子の体積分率ではなく質量濃度で表した)が上昇する ことを示しており、多くの剛直性高分子-溶媒系の等方-

in 4-methyl-2-pentanone

Fig.6 Chemical structures of amylose tris(phenylcarbamate) (17), amylose tris(3,5-dimethylphenylcarbamate) (18).

Fig.7 Schematic representation of the wormlike spherocylinder model where L and d denote the contour length and the chain diameter, respectively.

液晶相図がこの理論でかなり正確に説明できることが示さ れている¹⁾.これには、主鎖自身の内部回転制限により剛 直化する PHIC(2),分子内水素結合により高い剛直性を もつ PBLG(10),3重らせん構造を持つシゾフィラン, そしてセルロース誘導体⁷⁵⁾が含まれる.以下,いくつかの 特殊な系について順次述べる.

3.2 高分子電解質系

水中の高分子電解質間には強い静電的相互作用が働くた め、先に述べた鎖が太くなる場合と同様に相境界濃度が低 くなる. Fig.8 に二重らせん電解質多糖ザンサンの相境界 質量濃度 c₁(等方相と二相共存領域の境)と c_A(二相共存領 域と液晶相の境)を溶媒のイオン強度 C_sに対してプロット したものを示す.イオン強度の増加に伴い、相境界濃度も 高くなることがわかる.この現象は、電解質みみず鎖に対 する理論に適切な静電ポテンシャルを仮定することによ り、かなり定量的に説明される^{21,22}.

Fig.8 Ionic strength $C_{\rm s}$ dependence of the phase boundary mass concentrations $c_{\rm l}$ (between isotropic and biphasic regions) and $c_{\rm A}$ (between biphasic and anisotropic regions) for aqueous NaCl solution of xanthan at $25^{\circ}{\rm C}^{21}$.

3.3 側鎖間の相互作用により剛直化する場合

側鎖間の相互作用で主鎖が剛直化する場合、側鎖が密に 詰まっていることが重要であるが、Fig.9に模式図を示す ようにその末端付近では側鎖が末端の方を向いてしまう結 果, 高分子の中央部と末端部で異なる剛直性を持っていて もおかしくない。一般的にこのような効果は、回転半径や 固有粘度などの希薄溶液データの解析上は問題とならない ことが多い.これに対し、ポリ [n-デシル-(S)-2-メチル ブチルシラン)](7)の相境界濃度 Gは,低分子量側で非常 に強い鎖長依存性を持つ(Fig.10)。希薄溶液データより決 定した分子形態のパラメーター(図中ではλ-1の代わりに 持続長 $q = \lambda^{-1}/2$ を用いた)から計算される Gの理論値は, 高分子量側の実験値を再現するが分子量が低くなると共に 実験値とのずれが顕著になる.夏目ら43)は末端から4.3 nmの領域(この部分の経路長をL1とする)まで屈曲性鎖 として振る舞うとした Tailed-wormlike-spherocylinder に拡張した SPT 理論(図中の破線)で実験値が再現できる ことを示した.

よく似た現象はポリマクロモノマー系のリオトロピック 液晶についても見られる.ポリマクロモノマーは, Fig.9 に示すように,高分子主鎖末端付近の側鎖が主鎖の外側に も向くため,側鎖重合度が33と65のポリスチレンポリマ クロモノマー(8)の場合,固有粘度から求めた経路長は主 鎖よりもそれぞれ4または6nm長く見積もられる^{46),51)}. 中村らは主鎖側鎖共にポリスチレンからなるポリマクロモ ノマーのジクロロメタン中における qが固有粘度から決め られた分子パラメーターから計算される理論値よりも強い 分子量依存性を持つこと,そして経路長を固有粘度から得

Fig.9 Schematic representation of a brush polymer⁵¹).

Fig.10 Plots of c_1 vs weight-average molecular weight M_w for poly [n-decyl-(S)-2-methylbutylsilane)] (7) in isooctane at 25°C. Circles, experimental data ; solid curve, theoretical values calculated by the scaled particle theory (SPT) for the wormlike-spherocylinder model with the parameters indicated ; dashed curve : theoretical valuescalculated by the SPT for the tailed-worm $like-spherocylinder model with <math>2L_1=8$. 6nm^{43} .

られたものと比べ4あるいは6nm短くした場合の理論値 は実験値をかなりよく再現することを見出した^{53),54)}. 主鎖 末端付近の側鎖のセグメント密度分布は主鎖中心付近のそ れと大きく異なり,その違いの流体力学量(固有粘度)への 影響と熱力学量(相図)への影響が異なることが,この不一 致の原因であると解釈されているが,ポリシランの場合と 同様に主鎖末端付近の屈曲性の増加も Gに影響を与えてい るのかもしれない.

3.4 溶媒によって異なる相が出現する系:アミロー スカルバメート誘導体

先に述べたように、アミロースのアルキルカルバメート 誘導体(13, 14, 15)は分子内水素結合によってアミロース よりも一桁以上高い剛直性を持つ. Fig.11に示すように THF 中における λ⁻¹がこれらの高分子より小さいセル ローストリス(フェニルカルバメート)(CTPC)の相境界濃 度⁷⁵⁾に比べて低い.また、側鎖が長くなるに従って相境界 濃度が低くなるのは剛直性と鎖の太さの両方が増加するこ

Fig.11 Comparison between experimental and theoretical phase boundary concentrations for ATBC (14. circles), ATEC (13. triangles), and ATHC (15. squares) along with those for cellulose tris(phenylcarbamate)⁷⁵⁾ all in THF at 25°C. Filled and unfilled symbols denote experimental c_1 and c_A , and solid and dashed curves are theoretical c_1 and c_A , respectively⁶⁹⁾.

とに対応する. これらの実験値のほとんどが, 図中線で示 す SPT からの理論値でほぼ定量的に再現できるのに対 し, ATEC(13)の最低分子量試料の _Gはかなり大きく離れ ている. 質量濃度 0.46 g cm⁻³の溶液からこの試料の分子 鎖長に対応する Bragg 反射が観測されたことからスメク チック相の形成が示唆された. _Gは溶媒のキラリティに よってかなり変わるが, 液晶相の構造に顕著な違いはみら れなかった. 高分子系でのスメクチック相の形成の報告は 現在のところ決して多くはない. 代表例として単分散 PBLG(10)⁵⁹⁾の他, ポリシランに対する大越らの詳細な研 究⁴⁴⁰が挙げられる.

これらの高分子は THF 中よりも幾分低い λ⁻¹を持つ乳酸エチル中⁷⁰⁾でも液晶相を形成する(Fig.12).しかし,最低分子量の ATEC(13)-THF 系と同じように,その qはATBC(14)-THF 系のものと比べてかなり低く,SPT では説明できない.ATEC(13),ATBC(14),ATHC(15)共に高分子鎖長に対応する Bragg 反射が小角 X線回折の実験から見られたため,スメクチック相の形成が示唆された.なお,さらに広角側の反射からへキサゴナルパッキングを仮定して見積もった液晶相の濃度は高分子体積分率で0.9付近と非常に高いことがわかった.溶媒によって異なる液晶相が出現する理由として,高分子鎖末端間の相互作用や高分子鎖が平行に近づいた際の強い引力の存在が示唆されるが,現在のところ実験的な根拠は得られていない.

3.5 環状剛直鎖一溶媒系

さまざまな形状の低分子物質やクレイなどが液晶相を形

Fig.12 Phase diagram of ATBC (14) in _D-ethyl lactate (triangles), _L-ethyl lactate (squares), and in THF (circles) at 25°C. Unfilled and filled symbols denote c_A and c_I , respectively⁶⁹⁾.

成することを考えると、高分子系についても直鎖のみなら ず環状鎖も液晶相を形成することは容易に想像しうる.し かし、一般に直鎖から環状高分子を合成するには直鎖高分 子の両端を化学結合させる必要がある.すなわち高分子鎖 に一定の屈曲性がなければ環状高分子を生成する反応は非 常に起こりにくく、そのような高分子は環状 DNA 以外に は見当たらない.環状 DNA はリオトロピック液晶性を有 する⁷⁶⁾が、高分子電解質であること、そして主鎖の二重ら せん構造に基づくねじれによって超らせん構造を取ってい ることから、環状鎖のモデルとしては必ずしもふさわしく ない.

ごく最近寺尾らは、先に述べたアミロースカルバメート 誘導体が原料のアミロースに比べて最大で20倍程度剛直 になることを利用して、酵素合成法により得ることができ るシクロアミロース^{77),78)}より剛直な環状ATPC(17)⁷⁹⁾と 環状ATBC(14)⁸⁰⁾が調製できることを示した.これらは 一部の例外⁸¹⁾を除き直鎖アミロース誘導体と同じ剛直性を 持つ他、直鎖のものと同様に多くの溶媒に溶解し、溶媒に よっては-80℃の低温でも高い溶解性を保つ⁸²⁾ため、液晶 性高分子として期待が持たれる.試みに最も高い剛直性を 持つ環状ATBC(14)のTHF 濃厚溶液を調製したところ、 液晶相が確認された(Fig.13).しかしながら、現時点で液 晶の相図を決定できる程度の量が得られる環状鎖試料の分 子量が約5万とあまり高くないこと、ciが直鎖に比べかな り高いことから、詳細な相図の決定には至っていない⁸³⁾.

高分子のリオトロピック液晶の構造:コレ ステリック液晶

液晶を構成する高分子がキラルなモノマー単位からなる 場合,あるいは高分子鎖が片方巻きのらせん構造を取る場

Fig.13 (A) Polarized light micrograph of cATBC in THF. (B) Schematic representation for liquid crystal consisting of rigid ring polymers⁸⁰.

合,液晶中で隣接する2高分子間の相互作用が左右どちらかに傾くため、サブミクロンから数十 μ mにわたる比較的長周期の構造(コレステリック構造)が見られる。例えば、その長周期が数 μ m~数+ μ mのオーダーの場合偏光顕微鏡で観察が可能であり、また光の波長に近い場合、Fig.14に示すような片側の円偏光の選択反射が観測され、溶液は色付いて見える。Fig.12中の左上の溶液が青色であるのも同じ理由である。

高分子のコレステリック液晶は、多くのキラル高分子の 他、アキラルなポリイソシアナート(2)にキラルな低分子 あるいはキラルな側鎖を持たせたポリイソシアナートを添 加することによっても出現することが知られている⁸⁴⁾. そ のコレステリックピッチは高分子の種類の他に、高分子・ 添加剤濃度や温度にも強く依存する. 佐藤らは Fig.15 に 模式図を示すようなねじ山構造を持つ有効自由連結鎖モデ ル(EFJC, effective freely jointed chain model)⁸⁵⁾で剛直 性高分子のコレステリックピッチを定式化し、キラリティ (ねじ山)に対し適当なパラメーターを与えることにより、 シゾフィランや PBLG(10)などのコレステリックピッチ の濃度依存性をよく説明できることを示した⁵⁸⁾.

先に紹介した PBLG は, *m*-クレゾール中や1,2,3-ト リクロロプロパン中で濃度や温度変化に伴い, コレステ リックらせんのセンスが反転することが知られてい る^{86),87)}. このらせん反転の前後ではコレステリックピッチ が発散するため, ピッチの非常に大きな変化を伴うが, 先 の理論を用いた解析より, 分子間相互作用に関するパラ メーターは温度に対して緩やかに変化することが明らかに された⁸⁸⁾.

他方,3重らせん構造を持つシゾフィランは,非常に分子量の低いものを除き室温以下では3重らせん構造が安定 に存在することが示されているが⁸⁹⁾,その低温領域で,高 分子表面の水和水の協同的構造転移がみられる⁹⁰⁾⁻⁹²⁾.こ の転移は,高分子の剛直性などには顕著な影響を与えない が,コレステリック構造はこの温度付近で大きく変わるこ とが見出された⁹³⁾.転移点がより高くなる重水中でのコレ ステリックピッチの温度変化を**Fig.16**に示す⁸⁸⁾.転移温

Fig.14 Circular dichroism spectra for an ATBC (14) sample⁶⁹⁾.

Fig.15 Threaded effective freely jointed chain (EFJC) model⁵⁸⁾.

Fig.16 Temperature dependence of the cholesteric wavenumber q_c for concentrated D_2O solutions of a schizophyllan sample⁸⁸⁾.

度付近でコレステリック波数 q_c(コレステリックピッチの 逆数に比例)が転移的に変化することがわかる.この変化 も EFJC 理論中のキラル相互作用パラメータの変化とし て理論的に説明できることが示された.

5. おわりに

本稿では、剛直性高分子のリオトロピック液晶性に重要 な役割を果たす高分子鎖の剛直性がどのようにして発現す るのかについてまとめると共に、剛直性高分子溶液が形成 する液晶についていくつかの例を紹介した.1990年代ご ろまでの剛直性高分子のリオトロピック液晶に関する実験 的研究から、相境界濃度は比較的低い濃度で決まる分子形 態や分子間相互作用パラメーターで十分に説明できると考 えられていたのに対し、その後新しく出てきたブラシポリ マーなどの一部の系では、希薄溶液測定で得られる物性量 にはあまり影響しない末端付近の屈曲性が液晶性には顕著 に影響することなどを紹介した。剛直性高分子は、屈曲性 高分子に比べて溶媒が限られることが多く、まだまだ発展 の余地があると思われる。今後新しく、高い溶解性を持つ 高分子が出てくることにより、興味深い液晶特性が明らか になることが期待される。

6. 謝辞

本稿にまとめたもののうち,アミロースおよびカードラ ン誘導体に関するものの一部は JSPS 科研費 23750128 お よび 2541013 の助成を受けたものである.また,液晶相の 同定および高分子の剛直性の決定の一部には SPring-8 の BL 40 B 2 (課題番号 2007 A 1034, 2007 B 1296, 2008 A 1313, 2009 A 1049, 2011 A 1049, 2011 A 1925, 2011 B 1068) および KEK-PF の BL-10 C (課題番号 2010 G 080) での小角 X 線散乱法が用いられた.

参考文献

- 1) T. Sato and A. Teramoto : Adv Polym Sci, 126, 85 (1996)
- H. Yamakawa : Helical wormlike chains in polymer solutions. (Springer, 1997)
- Y. Nakamura and T. Norisuye : in *Soft-matter characterization* Vol. 1 (ed R. Pecora Borsali, R.) 236 (Springer, 2008)
- 4) Y. Nakamura and T. Norisuye. in *Polymer science*: A comprehensive reference (eds Matyjaszewski Editors-in-Chief: Krzysztof and Möller Martin) 5 (Elsevier, 2012)
- 5) 松下裕秀, 佐藤尚弘, 金谷利治, 伊藤耕三, 渡辺宏, 田中 敬二, 下村武史, 井上正志:高分子の構造と物性, 講談社 サイエンティフィク (2013)
- 6) M. Arpin and C. Strazielle: Polymer, 18, 591 (1977)
- 7) Q. Ying and B. Chu: Macromolecules, 20, 871 (1987)
- 8) H. Murakami, T. Norisuye and H. Fujita: Ma-

cromolecules, 13, 345 (1980)

- M. Kuwata, H. Murakami, T. Norisuye and H. Fujita : Macromolecules, 17, 2731 (1984)
- T. Itou, H. Chikiri, A. Teramoto and S.M. Aharoni : *Polym. J.*, **20**, 143 (1988)
- 11) T. Itou and A. Teramoto : *Macromolecules*, 21, 2225 (1988)
- 12) S.M. Aharoni : Macromolecules, 12, 94 (1979)
- G. Conio, E. Bianchi, A. Ciferri and W.R. Krigbaum : Macromolecules, 17, 856 (1984)
- 14) W.R. Krigbaum, T. Tanaka, G. Brelsford and A. Ciferri : *Macromolecules*, **24**, 4142 (1991)
- K. Yoshiba, R. Hama, A. Teramoto, N. Nakamura, K. Maeda, Y. Okamoto and T. Sato : *Macromolecules*, 39, 3435 (2006)
- 16) J.E. Godfrey: Biophys. Chem., 5, 285 (1976)
- J.E. Godfrey and H. Eisenberg : *Biophys. Chem.*, 5, 301 (1976)
- 18) D. Jolly and H. Eisenberg : Biopolymers, 15, 61 (1976)
- M.T. Record, Jr., C.P. Woodbury and R.B. Inman: *Biopolymers*, 14, 393 (1975)
- T. Sato, T. Norisuye and H. Fujita : Macromolecules, 17, 2696 (1984)
- T. Sato, T. Kakihara and A. Teramoto : *Polymer*, 31, 824 (1990)
- 22) T. Sato and A. Teramoto : Physica A, 176, 72 (1991)
- F. Livolant and Y. Bouligand : J Phys-Paris, 47, 1813 (1986)
- 24) K. Claire and R. Pecora : J. Phys. Chem. B, 101, 746 (1997)
- 25) F.H. Nestler, S. Hvidt, J.D. Ferry and A. Veis: *Biopolymers*, **22**, 1747 (1983)
- 26) E.J. Amis, C.J. Carriere, J.D. Ferry and A. Veis : *Int. J. Biol. Macromol.*, 7, 130 (1985)
- 27) T. Saito, N. Iso, H. Mizuno, N. Onda, H. Yamato and H. Odashima : *Biopolymers*, 21, 715 (1982)
- 28) T. Yanaki, T. Norisuye and H. Fujita : *Macromolecules*, 13, 1462 (1980)
- 29) Y. Kashiwagi, T. Norisuye and H. Fujita: *Macromolecules*, 14, 1220 (1981)
- 30) T. Sato and Y. Matsuda : Polym. J., 41, 241 (2009)
- Y. Matsuda, Y. Biyajima and T. Sato : *Polym. J.*, 41, 526 (2009)
- 32) J.W. Mays and N. Hadjichristidis : J Macromol Sci R M C, C28, 371 (1988)
- 33) M. Bercea, C. Ioan, S. Ioan, B.C. Simionescu and C.I. Simionescu : Prog. Polym. Sci., 24, 379 (1999)
- 34) M. Fujiki : J. Am. Chem. Soc., 118, 7424 (1996)
- 35) M. Fujiki, J.R. Koe, K. Terao, T. Sato, A. Teramoto and J. Watanabe : *Polym. J.*, 35, 297 (2003)
- 36) T. Sato, K. Terao, A. Teramoto and M. Fujiki : *Polymer*, 44, 5477 (2003)
- 37) W.J. Chung, H. Shibaguchi, K. Terao, M. Fujiki and M.

Naito : Macromolecules, 44, 6568 (2011)

- 38) H. Kato, Y. Sasanuma, A. Kaito, N. Tanigaki, Y. Tanabe and S. Kinugasa : *Macromolecules*, 34, 262 (2001)
- 39) P.M. Cotts: Macromolecules, 27, 2899 (1994)
- 40) K. Terao, Y. Terao, A. Teramoto, N. Nakamura, I. Terakawa and T. Sato : *Macromolecules*, 34, 2682 (2001)
- K. Terao, Y. Terao, A. Teramoto, N. Nakamura, M. Fujiki and T. Sato : *Macromolecules*, 34, 4519 (2001)
- 42) A. Teramoto, K. Terao, Y. Terao, N. Nakamura, T. Sato and M. Fujiki : *J. Am. Chem. Soc.*, **123**, 12303 (2001)
- 43) T. Natsume, L.B. Wu, T. Sato, K. Terao, A. Teramoto and M. Fujiki : *Macromolecules*, 34, 7899 (2001)
- 44) 大越研人:液晶, 16, 172(2012)
- 45) M. Wintermantel, M. Gerle, K. Fischer, M. Schmidt, I. Wataoka, H. Urakawa, K. Kajiwara and Y. Tsukahara : *Macromolecules*, 29, 978 (1996)
- 46) T. Hokajo, K. Terao, Y. Nakamura and T. Norisuye : *Polym. J.*, 33, 481 (2001)
- M. Sugiyama, Y. Nakamura and T. Norisuye : *Polym. J.*, 40, 109 (2008)
- 48) B. Zhang, F. Grohn, J.S. Pedersen, K. Fischer and M. Schmidt : *Macromolecules*, **39**, 8440 (2006)
- 49) Y. Tsukahara, Y. Ohta and K. Senoo : *Polymer*, 36, 3413 (1995)
- 50) M. Wintermantel, K. Fischer, M. Gerle, R. Ries, M. Schmidt, K. Kajiwara, H. Urakawa and I. Wataoka : Angew Chem Int Edit, 34, 1472 (1995)
- 51) K. Terao, T. Hokajo, Y. Nakamura and T. Norisuye : Macromolecules, **32**, 3690 (1999)
- 52) K. Terao, Y. Nakamura and T. Norisuye: *Macromolecules*, **32**, 711 (1999)
- 53) 前野光史,中村洋,寺尾憲,佐藤尚弘,則末尚志:高分子 論文集,56,254(1999)
- 54) Y. Nakamura, M. Koori, Y. Li and T. Norisuye : *Polymer*, 49, 4877 (2008)
- 55) C. Tanford, K. Kawahara and S. Lapanje : J. Biol. Chem., 241, 1921 (1966)
- 56) J.E. Kohn, I.S. Millett, J. Jacob, B. Zagrovic, T.M. Dillon, N. Cingel, R.S. Dothager, S. Seifert, P. Thiyagarajan, T. R. Sosnick, M.Z. Hasan, V.S. Pande, I. Ruczinski, S. Doniach and K.W. Plaxco : *Proc. Natl. Acad. Sci. U.S. A.*, **101**, 12491 (2004)
- 57) K. Terao, K. Mizuno, M. Murashima, Y. Kita, C. Hongo, K. Okuyama, T. Norisuye and H.P. Baechinger : *Macromolecules*, **41**, 7203 (2008)
- 58) T. Sato, J. Nakamura, A. Teramoto and M.M. Green : Macromolecules, 31, 1398 (1998)
- 59) S.M. Yu, V.P. Conticello, G. Zhang, C. Kayser, M.J. Fournier, T.L. Mason and D.A. Tirrell : *Nature*, 389, 167 (1997)
- 60) K. Okoshi, S. Sakurai, S. Ohsawa, J. Kumaki and E. Yashima : Angew. Chem. Int. Ed. Engl., 45, 8173 (2006)
- 61) K. Okoshi, K. Nagai, T. Kajitani, S.I. Sakurai and E.

Yashima : *Macromolecules*, **41**, 7752 (2008)

- 62) W. Burchard : in Soft-matter characterization Vol. 1 465 (Springer, 2008)
- 63) W. Burchard : Makromol. Chem., 88, 11 (1965)
- 64) F. Kasabo, T. Kanematsu, T. Nakagawa, T. Sato and A. Teramoto : *Macromolecules*, **33**, 2748 (2000)
- 65) K. Terao, T. Fujii, M. Tsuda, S. Kitamura and T. Norisuye : *Polym. J.*, 41, 201 (2009)
- 66) K. Terao, M. Murashima, Y. Sano, S. Arakawa, S. Kitamura and T. Norisuye : *Macromolecules*, 43, 1061 (2010)
- 67) K. Terao, F. Maeda, K. Oyamada, T. Ochiai, S. Kitamura and T. Sato : *J. Phys. Chem. B*, **116**, 12714 (2012)
- 68) T. Ochiai, K. Terao, Y. Nakamura, C. Yoshikawa and T. Sato : *Polymer*, 53, 3946 (2012)
- 69) K. Oyamada, K. Terao, M. Suwa, S. Kitamura and T. Sato : *Macromolecules*, 46, 4589 (2013)
- 70) S. Arakawa, K. Terao, S. Kitamura and T. Sato : *Polym. Chem.*, 3, 472 (2012)
- Y. Kuse, D. Asahina and Y. Nishio : *Biomacromolecules*, 10, 166 (2009)
- 72) M. Tsuda, K. Terao, Y. Nakamura, Y. Kita, S. Kitamura and T. Sato : *Macromolecules*, 43, 5779 (2010)
- 73) T. Fujii, K. Terao, M. Tsuda, S. Kitamura and T. Norisuye : *Biopolymers*, 91, 729 (2009)
- 74) T. Yamamoto, T. Narita, M. Nobe and T. Dobashi : Macromolecules, 37, 3475 (2004)
- 75) T. Sato, T. Shimizu, F. Kasabo and A. Teramoto : Macromolecules, 36, 2939 (2003)
- 76) S.S. Zakharova, W. Jesse, C. Backendorf and J.R. van der Maarel : *Biophys. J.*, 83, 1119 (2002)
- 77) T. Takaha, M. Yanase, H. Takata, S. Okada and S.M. Smith: *J. Biol. Chem.*, **271**, 2902 (1996)
- 78) Y. Nakata, K. Amitani, T. Norisuye and S. Kitamura : *Biopolymers*, 69, 508 (2003)
- 79) K. Terao, N. Asano, S. Kitamura and T. Sato : ACS Macro Lett., 1, 1291 (2012)
- K. Terao, K. Shigeuchi, K. Oyamada, S. Kitamura and T. Sato : *Macromolecules*, 46, 5355 (2013)
- N. Asano, S. Kitamura and K. Terao : J. Phys. Chem. B, 117, 9576 (2013)
- K. Terao, N. Morihana and H. Ichikawa : *Polym. J.*, 46, 155 (2014)
- 83) 森花直也. B.S. thesis, 大阪大学, (2014)
- M.M. Green, S. Zanella, H. Gu, T. Sato, G. Gottarelli, S. K. Jha, G.P. Spada, A.M. Schoevaars, B. Feringa and A. Teramoto : *J. Am. Chem. Soc.*, **120**, 9810 (1998)
- T. Sato and A. Teramoto : *Macromolecules*, 29, 4107 (1996)
- H. Toriumi, S. Minakuchi, I. Uematsu and Y. Uematsu : J. Polym. Sci., Polym. Phys. Ed., 19, 1167 (1981)
- H. Toriumi, K. Yahagi, I. Uematsu and Y. Uematsu : Mol Cryst Liq Cryst, 94, 267 (1983)

- K. Yoshiba, A. Teramoto, N. Nakamura and T. Sato : Macromolecules, 36, 2108 (2003)
- 89) T. Norisuye, T. Yanaki and H. Fujita : J. Polym. Sci., Part. B : Polym. Phys., 18, 547 (1980)
- 90) T. Itou, A. Teramoto, T. Matsuo and H. Suga : Macromolecules, 19, 1234 (1986)
- 91) K. Yoshiba, A. Teramoto and N. Nakamura : *Biomacromolecules*, 4, 1348 (2003)
- 92) K. Yoshiba, A. Teramoto, N. Nakamura, T. Shikata, Y. Miyazaki, M. Sorai, Y. Hayashi and N. Miura : *Biomacromolecules*, 5, 2137 (2004)
- 93) T. Asakawa, K. Van and A. Teramoto : *Mol Cryst Liq Cryst*, **116**, 129 (1984)