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INVOLUTIONS AND CIRCLE ACTIONS WHICH BORD
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In [7; §7] Fuichi Uchida demonstrates that the Thom-Gysin sequence
enables one to determine that any smooth principal circle action on S****x §2**+!
bords as a free S action. In this paper similar results are proved for free
involutions, Uchida’s results on circle actions extended in several directions,
and some results are elicited on the bordism of arbitrary involutions on products
of two spheres.

Denote by N*(G) and ﬁ*(G) respectively the bordism of smooth principal
G actions on closed smooth mainfolds and the bordism of smooth principal
orientation preserving G actions on closed smooth oriented mainfolds. In sec-
tion 1 it is shown that

Theorem 1.3. If T is a smooth fixed point free involution on the product
of two spheres S™ X S”, then [S™ x S”, T] bords in Ny(Z.).

In section 2 it is shown that

Theorem 2.1. Any smooth principal circle action on S™XS" bords in

Nx(SY).

Note that Uchida’s result [7; th. 7.3.] is a corollary to this theorem. Also in
section 2 one finds

Theorem 2.4. Any principal circle action on (S***)** bords in N*(S‘).

Theorem 2.5. If RP(n,) X --- X RP(n,) is a product of real projective spaces
so that at least two of the n; are odd, then any free circle action on RP(n,) X -+ X
RP(n,) bords in Ny(S").

Further, there are corollaries to each of these results giving modified orient-
ed analogues.

In section 3 the bordism of arbitrary smooth involutions on products of
spheres is examined. Let Ny(Z,) be the bordism of unrestricted smooth involu-
tions. Since there is an injection from Ny(Z,) into @N«(BO,) given by classify-
ing the normal bundle to the fixed set [3; §28], it suffices to consider the bordism
of the fixed set and its normal bundle. Hence an involution on a single sphere
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bords since the Smith results [1; chapt. 3] yield that the fixed set is itself a Z,
cohomology sphere and hence the total Stiefel Whitney class of the normal
bundle is trivial. Using the results of Bredon on the cohomology of the fixed
set of involutions on products of two spheres [1; chapt. 7] the following theorem
is exhibited.

Theorem 3.1. If T is a smooth involution on S™x S”, [S™ X S", T bords
in Nx(Z,) unless (m, n)=(3, 4), (5, 8), (6, 8), (6, 9), (7, 8), (7, 9) or (7, 10).

The author would like to thank R.E. Stong whose questions led to several of
the results of this paper.

1. Free involutions on the product of two spheres. If M admits a
free involution 7', then there is the Gysin exact sequence in cohomology for the
principal Z, bundle M—M|T. Following Uchida, this exact sequence is used
to determine the cohomology algebra of (S™x S*)/T and hence the bordism of

[S™x 8", T].

Lemma 1.1. If ¢ in H¥(M ; Z,) is a 1-dimensional cohomology element, and
x is any element of H¥(M, Z,) such that xc?"*=0, then Sqi(x)-c***=0 for k>1.

Proof. Sq'(xc?*¥)=0 but by the Cartan formula Sg'(xc?"*)=Sgq'(x)+c?"*+
x+Sq¢'(c?**¥) where the second summand is zero since Sq"(cf)=(]l- )c"“. One

inducts on 7 with the Cartan formula giving the induction step. ssx%
Let m<n, M=S"x S", and T be a free involution on M.
Then

Lemma 1.2. H*(M|T;Z,)=2Z,[c]/c*"* DA[x] as modules where k=m or n,
dim x=m--n—k, and c is the first Stiefel Whitney class of the principal Z, bundle
M—-M|T.

Proof. The Thom-Gysin sequence of M—M|T,

H*(fw/Tf-‘—*»H(M)iH*(M(T).
‘¢

yields the desired result modulo understanding the image of 8:H"(M)—H"(M|T)
in the case where the dimension of x is m. Denote by 3 the generator of H"(M).
It is sufficient to show that §(8)=c".

Suppose this is not case. Suppose §(3)=y where y=xc""" or y=xc"""+c".
Note that y-c=0 and H"*""(M|T)=Z,[c"*"]. Now since =*(x)=a in H™(M)
and 8 is an H*(M|T) module homomorphism, §(a-B)=x-y=c™"". Now by
applying lemma 1.1 one sees that S¢”(y)=x-y. It follows that V,, the m**
Wau class, is either x or x4c¢™.
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Hence the m* Stiefel Whitney class, W,,(M|T)=Sq(1+v,~+++-+9,,)=v,,+
powers of c=x--powers of ¢. Thus #*(W,,)=%(0. Now n*(7(M|T))=7(M) where
7(M) is the tangent bundle to M. Since W(M)=1 one has a contradiction. s

Theorem 1.3. If T is a smooth involution on M=S"x S", [M, T]=0 in
N(Z,).

Proof. Since Ny(Z,) is isomorphic to Ny(BO,) it suffices to compute the
bordism of the principal Z, bundle M—M|T. One first claims that the charact-
eristic ring of H*(M/T) is contained in the subalgebra generated by ¢. This
follows from lemma 1.2 and the fact that the 7 Wu class V; is the unique
element of Hi(M|T) such that Sg‘(x)=V;-x for x in H**™~#(M|T). Hence each
V,=¢' or 0 which implies the same is true for W;. Since ¢"*”=0), it follows that
[M, T]=O in N*(Zz).***

Corollary1.4. If T is a free orientation preserving involution on M=S™ x S”,
then [M, T1=0 in Qy(Z,).

Proof. There is a generalized Rohlin exact sequence &‘)*(zz)iﬂ*(zz)iz\“/*
(Z,) (see [2;(16.2)]). Further, via the augmentation split exact sequence Q*(Zz)
=0 POx(BZ,) where Q4(BZ,) is torsion of order 2 [6; pp.4-5]. Hence [M,T]=
[M|T x Z,, interchange]+[N, S] where [N]=0 in Q4. Thus 2[M|T]=0 imply-
ing that [M, T is of order 2. One need only note that p is monic on torsion of
order two.

2. Free circle actions on products of spheres and products of pro-
jective spaces. For a mainfold M let ¢:S* X M—M denote a smooth principal
circle action on M. One has easily

Theorem 2.1. [S™xS", $]=0in Ny(S").

Proof. Let v be the canonical complex line bundle over BS* and let v’=¢
®7. From the cofibration S(v*)—D(v*)—(D(v?), S(7*)) one gets a short exact
sequence OAN*(S‘)LN*(ZZ)»N*(S‘)eO where p is the restriction map from
free circle actions to free Z, actions. The result follows from theorem 1.3.4xx%

Corollary 2.2. If ¢ is a principal circle action on S™** X S***, then [S** X
S+ 1=0 in Dy(S?).

Proof. One again has a generalized Rohlin exact sequence Q*(S‘)

—iﬂ*(S‘)ilv*(S ). One computes Q4(S*)=Qx_,(BS") to learn that the torsion
is of order 2 and that Q,,(S") is torsion. Hence the forgetful map p is monic on
‘ﬁev(Sl)_—)Nev(Sl)'***

One considers next principal S* actions on even powers of odd dimensional
spheres.
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Lemma 2.3. Let N=(S**')*. For any principal S* bundle N—N|S’,
H*(N|SY=Z,[u]/w " QA(x,) QA(x,) R --* Q@A(%s—,) as a ring where the degree of
x; 15 2j-+1 and where u is the second Stiefel Whitney class of the principal S
bundle.

Proof. From the Z, cohomology Thom-Gysin sequence for the appropriate
principal S* bundle one learns that H**(N/S*)—H?*'(N) can not be epic since
dim (N/S*)<dim N. Hence H*’*!(N|S") must be generated by 2k—1 elements,
Xy, Xy ***y Xgp—y, Which map onto 2k—1 of the generators of H**}(N). Ifr=0
(2k+1) and 0<i<2j+1, it follows that multiplication by u from H"*{(N/S")
into H™*#**(N/S") is the zero homomorphism if 7 is odd or if 7=2j and is an
isomorphism otherwise. Hence the fact that the Z, rank of H?®**(N) is

2k 2k—1\ | (2k—1\__(2R\ . ..
(q ) and the fact that ( q—1>+< g )-—( q ) implies that the rank of

H@iTOH(N[SY) is <2§_1> if 7 is even and is 0 if 7 is odd. Since ¢ dimensional
monomials in the x,, .-, x,,_, generate a submodule of H?®**(N/S') of

dimension (22_1) the result follows. x 5%

Theorem 2.4. A principal S* action on (S?7+"* bords in Ny(S").

Proof. In the notation of lemma 2.3, it is enough to consider the bordism
class of N—=N/S' in Ny«(BS'). Now u generates the image of H*(BS") in H*
(N/S*) and Sq'(#)=0. It follows from lemma 2.3 that Sq':H**(N/S,)—>H"(N/[S")
is zero. Since W,,,,=Sq'(W,,) for an oriented mainfold and dimension of N/S*
is odd, the result follows. yxx

Corollary 2.5. [(S¥+')*,$]=0 in Qy (S") for all principal S* actions $.sxx

Now consider P=RP(n,) X :- X RP(n,). For a principal S* action on P one
considers the Thom-Gysin sequence with Z, coefficients of z: P—-P/S'. One
has 0—H 1(P/S‘)n—“;H (P)—H(P|S")~H 2(P/S‘)7c—*>where uis W,(P—P/[S"). Since
H*(P) is generated by 1 dimensional elements and since dim (P/S")<dim (P),
H'(P|S")—H'(P) is not epic implying #=0 and ~* is monic.

Let w=(i,, 7, **+, i) be a k-tuple of nonnegative integers, 7n(w)=1,+17,+
so-+1y, and W (P)=W(P)-- W, (P). If n;is odd, then W (RP(n,))=0 if n(w)
>n;—1. For P=RP(n,) X -+ X RP(n,) let ¢ be the number of odd #;. Then
W (P)=0 if n(»)>dim(Py—gq. Now 7(P)=nr*(7(P[S")) ® I so W,(P[S")=0 if
n(w)>dim(P)—q.

Theorem 2.6. If ¢:S"x 11 RP(n;)— 11 RP(n;)=P is principal and at
least two of the n; are odd, then [P, $]=0 in N*(S M.
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Proof. Consider P—P[S' in Ny4(BS'). From the arguments above, all
numbers are 0.y

Note. S'=S8"/Z, acts freely on S°/Z,—=RP(5) with orbit space being CP(2).
Since [CP(2)]# 0 in Ny, all the hypotheses of theorem 2.6 are needed.

Corollary 2.7. If $:5'x 11 RP(2n;+1)— Il RP(2n;+1)=P is orientation
preserving and principal, then [P, $]=0 in Q*(S‘).***

3. Involutions on a product of two spheres. Let X=S"XxS" m<n,
and let F' be the fixed set of an involution 7 on X. If » is the normal bundle
to Fin X, then the monomorphism Ny(Z,)—@ Nx(BO,) sends [X, T] into [F, v].
Now W(r(F))- W(v)=W(7(X)/F)=1. Hence if f classifies v—F, f*(@H*(BO,))
is contained in the characteristic ring of H*(F). Thus [X, T'] bords in Ny(Z,)
if [F] bords in @Ny.

From Bredon’s work [1; p. 410] one knows up to Z, cohomology ring the
possible fixed sets of Z, acting on X. They are:
(1) F~,S87
(2) F~,S748% 0<p<n, 0<qg<n
(3) F~.Pq) m>q
(4) F~P(QHP(g) m>q—1248
(5) Frpt+P(g) m>g
(6) F~,S?x87 0<p<m, 0<g<n
Consideration of these facts leads one to

Theorem 3.1. If T is an involution on X=S8"x S, [X, T1=0in N«(Z,)
unless (m, n)=(3, 4), (5, 8), (6, 8), (6, 9), (7, 8), (7, 9) or (7, 10).

Proof. Consider each of Bredon’s cases (1)—(6). For involutions where
the cohomology ring of the fixed set of T on X is described by one of the cases
(1)—(3), it is clear from elementary considerations that the total Stiefel Whitney
class of each component of Fis 1. Hence [X, T]=0 in Ny(Z,) for all (m, n).

In case (4) the positive dimensional cohomology is generated by two ¢
dimensional elements # and v with the property that ¥’=9*40 and uv=0. Now
Sq?(u)=u"=Sq?(v) so the ¢"* Wu class V(F)=u+v and V,(F)=W,F). Hence
W(F)=1+4+W, with W2=0. One concludes that [F]=0 in Ny and [X, T']=0
in Nx(Z,).

From Bredon [1; p. 414] case (5) can only occur if (m, n)=(3, 4), (5, 8),
(6, 8), (6,9), (7, 8), (7, 9), or (7, 10).

Now suppose the fixed set is case (6), that is,

H*(F) = A(#)®@A(v) with dim # = p and dim v = q. (%)
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It is clear that if F does not bound then the Steenrod action is given by
Sq?(v) = uv, Sq?"?(u) = v. (%)

Hence this theorem will be proved when the following two lemmas have been
demonstrated. x %

Lemma 3.2. If F is the fixed set of an involution on X=S" X S" with its
cohomology ring and associated Steenrod action given by (*) and (*x), then (p, q)=
(2, 3) with 8<(m+n)<10 or (p, 9)=(4, 6) with 16 <m+n<20.

Lemma 3.3. If Fis as in lemma 3.2, (m, n)=(7, 10).

Proof of lemma 3.2. The fact that (p, §)=(2, 3) or (4, 6) comes from E.
E. Floyd’s work [3; (3.1)]. Now let v be the normal bundle to F in X. ‘Since
W(X)=1, W(F)=14u+v=W(v) implying that dim »>q or m+n>p+2q. If
m+n=p-+2q, dim v=q. Consider the inclusion F—T(v) where T'(») is the
Thom space of ». The Thom class in H*(T'(v)) comes back to hit W,(v)=v. But
Sq(v)%0 which contradicts the fact that F—T'(v) factors through X. Hence
m-+n> p+2q.

Now suppose m-+n>2(p+q). Consider the sphere bundles of » and
7(F)®(m+n—p—q) together with involution given by multiplication by—1
(where k denotes the trivial £ plane bundle). Since W(v)=W (7(F)P(m~+n—
p—9)), [S@),—11=[S(7(F)®(m—+n—p—q), —1] in Nx(Z,). Applying [2; (24.1)]
one understands that [S(7(F)&®(m+n—p—g)), —1]=0 in N*(Zz). The Smith
homomorphism (see [5, §6]) acting m+n—(p+4g)—1 times yields [S(7(F)P1),
—1]=01in N*(Zz). However, [2;(24.2)] when applied to the twist involution on
FXF indicates that [S(7@1)/—1]o=[F X F]+0 which is a contradiction. It
follows that m+n<2(p-+q).

However, if m+n=2(p—q), applying [2; (24.2)] as before demonstrates that
0=[X]=[S®1)/—1]=[S(r®1/—1)]=[FX F1%+0. p+2g<m+n<2(p+g).xs

Proof of Lemma 3.3. According to Bredon, the case under consideration
occurs only if X*>X X EZ, is totally nonhomologous to zero and the homomor-
22
phism on cohomology induced by j: FXxBZ,—»XXEZ, is monic and is a
2y

H*(BZ,) module homomorphism [1; chapt. 7]. Also as in Bredon one need
only consider the maps on relative cohomology

H*(X, x) 2 H¥*(X x EZ,, %,x BZ,)"* H*(Fx BZ,, x,x BZ,)
2,

for x, a point in F. Let a,b, and ab be a basis for H*(X, x,) with dim a=m,
dim b=n. Let a represent a and 3 represent b in H*( XX EZ,, x,Xx BZ,). If
2,

t generates H*(BZ,) then
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j¥(a) = A" ?Qu+Bit" Qv+ Cot™ **PQuv
]*(,8) = Alt"_p®u_|_Bltn-q®.v+Cltn_(p+q)®uv.

Since j*(aB)+0, 4,B,+A4,B,+0. M

Now the cases which lemma 3.2 leaves to be discussed have the property
that m<p+¢ so C,=0. From (!) either B, or B,=0. Since S¢?(a) and Sq?(B)
are dependent on « and B over H*(BZ,), computing Sq?(j*(ar)) and Sg?(j*(3))
indicates that C,3=0. From the computation of S¢?~?(j*(«)) one understands
that B,30 since otherwise S¢?"?(j*(«)) is independent of uw while Sq?"?(«)
depends on @B, a contradiction. A similar argument on Sg?(j*(cr)) then shows
that 4,40.

Now using the fact that @ may be replaced by B+¢""™« one sees that the
only 6-tuple for (ﬁ" g" g") which needs to be considered is ((1) % (1)> Hence it

1 1 1
is clear that g<<m and n> p-+¢q and therefore one need consider only the cases

(p, 9)=(2, 3) with (m, n)=(3, 6) and (4, 5) and (p, ¢)=(4, 6) with (n, m)=(6, 11),
(6, 12), (6, 13), (7, 10), (7, 11), (7, 12), (8, 10), (8, 11) and (9, 10).

Now let m+4-s<n. Then S¢°(«) is dependent on « for dimensional resaons
if s<m—m and because i*(8)=b if s=n—m. Looking at Sq‘(j*(a)) in cases
(6, 11), (6, 12), (6, 13), (7, 11), (7, 12) and S¢’(j*(«)) in case (3, 6) shows that
these cases can not occur. Further Sg¢™(8) is independent of a@ so if n-s<
m—+n, S¢°(j*(B)) is dependent on o and on B. Thus looking at Sg‘(j*(8)) in
case (4, 5) and S¢*(j*(B)) in case (8, 10), (8, 11), and (9, 10) shows that these
cases can Not OCCUT. s

Note. To the author’s knowledge, it is unknown whether in fact there are
involutions on the exceptional cases in theorem 3.1 with the indicated fixed sets.

NoRTHERN KENTUCKY STATE COLLEGE
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