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1. Introduction

By a classical result of Wang [15] a connected compact caompianifold X has
holomorphically trivial tangent bundle if and only if thei® a connected complex Lie
group G and a discrete subgrolip such tat is biholomorphibeaguotient man-
ifold G/T. In particularX is homogeneous. X is Kahleg, must be conative
and the quotient manifold; /T’ is a compact complex torus.

The purpose of this note is to generalize this result to the-gwmpact Kahler
case. Evidently, for arbitrary non-compact complex mddifeuch a result can not
hold. For instance, every domain ov&f has trivial tangent bundle, but many domains
have no automorphisms.

So we consider thedpen caséin the sense of litaka ([7]), i.e. we consider man-
ifolds which can be compactified by adding a divisor.

Following a suggestion of the referee, instead of only aeréng Kahler mani-
folds we consider manifolds in clagsas introduced in [5]. A compact complex man-
ifold X is said to be class i@ if there is a surjective holomorphic map from a com-
pact Kahler manifold ont&X . Equivalentl) is bimeromomplio a Kahler manifold
([14]). For example, every Moishezon manifold is in class

We obtain the following characterization:

Main Theorem. Let X be a connected compact complex manifddl a closed
analytic subset and = )?\D. Assume thafX is in classC as introduced in[5] (also
called “weakly Kahler").

Then the following conditions are equivalent
(1) D is a divisor which is locally si.c. (see definitions ir§2 below) and the loga-
rithmic tangent bundler’' (— log D) is a holomorphically trivial vector bundle OiX .

(2) There is a complex semi-torus  acting effectively owith X as open orbit
such that the all the isotropy groups are themselves semi-to

Moreover if one (hence both of these conditions are fulfiledthen D is

1991 Mathematics Subject Classificatior82J27, 32M12, 14L.30, 14M25.
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a sn.c. divisor and there is a short exact sequence of complex Liepgo
1 (C*)! - G — Alb(X) — 1

where Alb(X) denotes the Albanese torus &fand d = dim(X) — (1/2)b1(X).

In the algebraic category we have the following result.

Corollary 1. Let X be a non-singular complete algebraic variety defined oier
D a divisor with only simple normal crossings as singulastiend letX = )?\ D.
Then the following conditions are equivalent
(1) The logarithmic tangent bundl&(—log D) is a trivial vector bundle onx.
(2) There is a semi-abelian variety  acting dh with X as open orbit

Corollary 2. Let X be a nonsingular algebraic variety defined ovér

Then the following are equivalent
(1) There exists a completioW < X such thatD = X \ X is a sn.c. divisor and
T(—log D) is trivial.
(2) X is isomorphic to a semi-abelian variety

Proof. This follows from the preceding result because ewenyi-abelian variety
admits an equivariant completion by a s.n.c. divisor. O

2. Terminology

A complex semi-torug is a connected complex Lie group which can be realized
as a quotient of a vector grout’(, +) by a discrete subgroup  such that gener-
atesC" as complex vector space. Equivalently, a connected conlpkexgroup G is a
semi-torusif and only if there exists a short exact sequence of complexgroups

0—-L—-G—->T-—0

whereT is a compact complex torus ahd~ (C*)¢ for somed € N.

We also need the notion of a divisor with only simple normaissings as singu-
larities (“s.n.c. divisor”).

A divisor D on a complex manifoldy is called “locally s.n.c.” if for every point
x € X there exists local coordinates, ...,z, and a numbed € {0,...,n} such
that in a neighbourhood of the divis@ equals the zero divisfathe holomorphic
function [T%, zi.

It is called a “divisor with only simple normal crossings amgsilarities” or
“s.n.c. divisor” if in addition every irreducible comporteof D is smooth.

The definition of “locally s.n.c” implies that, given a lotals.n.c. divisorD on a
manifold X and a pointp € X there is an open neighborhodd  pf M such that
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all irreducible components o N D are smooth.

Hence a locally s.n.c. divisoD is necessarily s.n.c. uniéssontains an irre-
ducible component which is not everywhere locally irretiei

Let X be a compact complex manifold with a locally s.n.c. dividor There is a
stratification as followsXy = X = )?\ D, X1 =D\ Sing(D) and fork > 1 the stratum
Xy is the non-singular part of Sinﬁ@,l). If in local coordinatesD can be written as
{2: 11z =0} thenz =61, ... z) € X, iff #{i11<i<d, z=0}=k.

Let D be an effective divisor on a complex manifald Then the sheaf2'(log D)
of logarithmic 1-forms with respect toD is defined as tl8y-module subsheaf of the
sheaf of meromorphic one-forms ot which is locally generated by allf/f where
fis a sectionOx N O%.

This sheaf is always coherent. It is locally free if is a logad.n.c. divisor.
In fact, if D = {z1---z4 = 0}, then Q(log D) is locally the freeOgz-module over
dzi/z1, .. .,dza/za, dzas1, - - ., dz,.

For alocally s.n.c.divisor D on a complex manifold we define thegarithmic
tangent bundleT’ (— log D) as the dual bundle a!(log D).

Then T (~log D) can be identified with the sheaf of those holomorphictaec
fields V onX which fulfill the following property:

V, is tangent toX, atr for every and everye X;.

In local coordinates: IfD :{z : Hle 7 = 0}, thenT (log D) is the locally free
sheaf generated by the vector fieldsd/@z;) (1 <i <d) and9/0z; (d <i <n).

3. The proof of the main theorem

Proof. (1)= (2):

Triviality of 7(—log D) implies that the sheaf of logarithmic one-forf3(log D)
is trivial as well.

Let V = QY(X,logD) and V* = I'(X, T(— log D)). By [4], [10] every logarith-
mic one-formw € Ql()?, log D) is closed if X is Kahler. For an arbitrary manifold
X in classC there is always a holomorphic surjective bimeromorphic rpapx’ — X
from some compact Kahler manifolfl’. Moreover, by blowing-upX’ if necessary, we
may assume thap—%(D) is a s.n.c divisor onX’. Now the aforementioned result for
Kahler manifolds implies thatl p(fw) = 0 for everyw € 521()?, log D). Sincep is
biholomorphic on some open subset, we obt@&n= 0. Therefore closedness of loga-
rithmic one-forms holds not only for Kahler compact complaanifolds, it holds for
all manifolds in clas<.

Thus

0 =dw(x,y) = x(w(y)) — y(w)) — w(lx, y])

forw € V, x,y € V*. Now w(y) and w(x) are global holomorphic functions on a
compact manifold and therefore constant. Hemce(y)) = 0 = y (w(x)). It follows that
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w([x,y])=0forall we V, x,y e V*. ThusV* is acommutativeLie algebra of holo-
morphic vector fields onX. Let G C Aut()?) denote the subgroup generated by the
one-parameter groups corresponding to vector fields V*. Recall that the sections
in T(—log D) can be regarded as the vector fields which are tangend,tot eveay

x € Xy for all k. It follows that theG -orbits inX are precisely the connected com-
ponents of the stratX; . In particul&  has an open orbit, namiet Xg = )?\ D.
Furthermore the closed orbits 6¢f are the connected comp®mérthe unique closed
stratumX, wherel is the largest natural number with # 0.

The existence of an open orbit implies that  acts transitivai the Albanese
torus Alb()?). Therefore, all the fibers ok — Alb()?) are isomorphic. LetX —
Y — Alb()?) be the Stein factorization. Since the Stein factorizati®rcanonical, it
is compatible with the Autf)-action. For this reasofi — Alb(X) is a finite holomor-
phic map of G -spaces. Heneg  acts transitivelyYon . It follohat ¥ is a compact
complex space which is a quotient of a connected commutatimeplex Lie group, in
other words,Y must be a compact complex torus. By the unilisrgaoperty of the
Albanese torus this implies = Al).

Thus the fibers ofp” X — Alb(X) are connected. LeHf  be the kernel 6f —
Alb(X). Recall thatG is commutative. It follows that thé -orbits share precisely
the intersections of; -orbits itX with fibers of the mapo:_)? — AIb()?). Moreover,
H acts freely on an open orbit in each fiber @f This implies thatH is connected.

Now let Z be a closed; -orbit (i.e. a connected component of thallest stra-
tum X,). Then the fibers op|, are closedH -orbits.

If X is Kahler, a result of Sommese ([13], prop. 1) implies tHated orbits ofH
are fixed points. Due to Fujiki ([5]) the same assertion hdlsan arbitrary manifold
X in classcC.

It follows that p[;: Z — AIb()?) is biholomorphic.

For each irreducible componem; @  and eache V we may regard the
residueres (v). This residue is given as integral af over a small loop around;

A priori, it is a holomorphic function onD; . But, sinc®; is congbathis holomor-
phic function is constant (Alternatively, one may also useaulation in local coor-
dinates which shows thatw = 0 forces resy) to be locally constant).

Let n =dimX andg = dimAlbx).

Fix p € Z. Nearp,Z is the intersection af ® — g irreducible components
D1, ..., D, of D. We choose a basisv, ..., w,) of V such that

2mi if i=j <d,

res(;), =
ests); {O if i #j or j>d.
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Now we choose a poing € X nearp and define local coordinates near via

exp</ w,-) if i <d,
X q

wj if i >d.
p

zi(x) =

Then in these local coordinates we can describeuthas follows:

i<l
wi = Zi
dz; if i >d.

It follows that there is a biholomorphic map from a neightitmod of p to a neigh-
bourhood of 0 inC" taking the fundamental vector fields of Li&( ) into vector dil
of the form > ,_, a;w;(0/0w;). This implies in particular thatd contains a totally
real compact subgrouf  $%)? acting as

K>(@01,...,00):z— (0121, - -, 0azas Za+1, - - - » Zn)-

Thus H is a connected commutative complex Lie group of dinmensi containing
a totally real compact subgroup of real dimensidn . It fodothat H is a complex
semi-torus. On the other hand, the above description of Hheector fields in local
coordinates also implies thadf  admits an almost faithfuresgntation on the tangent
space of each fixed point @i . Therefole  is a semi-torus of dgioed which ad-
mits an almost faithful representation. It follows thdt  bs isomorphic to €*)?.

As a consequence we obtain th@t admits a short exact seqoécomplex Lie
groups in the form

1— (C*)? = G — Alb(X) — 1

Thus G is a semi-torus as well.

1) < (2):

Let vy,...,v, be a basis for the vector space G6f -fundamental vector fiefds o
X. The complementD é?\X of the open orbitX can be characterized as the set of
those points where the vector fields fail to span the tangantle Tx. Thus D is
defined by the vanishing of

n
w :/\v,- ern ()?,A"’T;).
i=1

Since A"Tx is a line bundle, it is clear thab is of pure codimension one.
Now let p € suppD andG, =a € G :a(p) = p}. By assumptionG, is a semi-
torus and therefore reductive. This implies that thg  -a&ctan be linearized negr
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i.e. there is anG, -equivariant biholomorphism between amameEghbourhood?  of

pin X and an open neighbourhood of 0 in the vector spéce TI,)E. It follows that

a neighbourhood op iD is isomorphic to a union of vector salesg of codimen-

sion one inW . From the assumption that thg  -action is effectone can deduce
that this is a transversal union, i.®.N Q is a simple normal crossings divisor in the
neighbourhood2 ofp . Thu® is locally s.n.c.

Recall that the isotropy groups are required to be semi-torparticular, they are
reductive. Therefore the action of every isotropy subgrizufinearizable in some open
neighbourhood. This implies that for every point @hwe can find a system of local
coordinates in which th& -fundamental vector fields are 5imp

9 9 90 0
Zlazl""’Zdazd’ 8Zd+1’”" 82,1,’

whered equals the dimension of the isotropy group. Hence we ha
T(X, D)~ X x Lie(G).

We have already seen tha is locally s.n.c. In order to shat ithis s.n.c.,
it suffices to verify that each irreducible component @f  i®rgwhere locally irre-
ducible. In other words, we have to show that, given an opeaghbheurhood2 and
two irreducible component®;, D; ab N Q these two components are not contained
in the same irreducible component &f  unleBs D7 . Using thel locardinates
(z;); introduced above, the irreducible components/ofi 2 are given as

D;={peQ:z(p) =0}

with i running from 1 tod . For each such there isGa -fundamengator field of
the form
9

< 82,‘ '
This vector field vanishes identically ob; , but not on aby wijthz i. By the
identity principle this vector field also vanishes on theolgll) irreducible component
of D containingD; . As a consequence, fo¥ j it is not possible thaD; and; are
contained in the same global irreducible componenDof . ]

Remark 1. In the proof for the direction “(1x= (2)” we did not employ the
Kahler assumption. Therefore this part of the theorem iglvaven without requiring
X to be Kahler.
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4. Examples

4.1. Toric varieties. The easiest examples of equivariant compactifications of
(C*)¢ with trivial logarithmic tangent bundles ai®,;(C) and P1(C)?. More examples
are obtained from the theory of toric varieties, see e.g. [[8]].

Now let A be a complex semi-torus admitting a short exact sscpie

Q) 1-C)Y —-A4A—-T—1

whereT is a compact complex torus. LEt— L be a smooth equivariant compact-
ification of L = (C*)?. Then a smooth equivariant compactification 4f  can be con-
structed as a fiber productt = (A x L)/ ~ where @, x )~ (a’, x') iff there exists an
elementg € L such thata - g~ =¢’ andg - x = x'.

This construction preserves the Kahler condition:

Lemma. If L is Kahler, then A is Kahler, too.

Proof. The fiber bundle (1) is given by locally constant tidas functions with
values in the maximal compact subgrokp Iof , acting by mudtplon. By averag-
ing we may assume that the Kahler metric bris K -equivariant. Thus the associated
Kahler form w; induces a closed semi-positive, (1 1)-form dnsuch that the restric-
tion to the tangent bundle of any fiber is positive. Taking swfitthis (1, 1)-form and
the pull-back of a Kahler form oi” yields a Kahler form @n O

(This is a special case of a general result of Blanchard [2tkvimplies that for
any holomorphic fiber bundle of compact complex manifoltls—» B with typical fiber
F and b1(F) = 0 the Kahler property for bottB andll  implies the Kahleoperty
for E.)

In this way we see that every semi-torus admits a smooth adait Kahler com-
pactification. On the other hand, our Main Theorem impliest tvery smooth equiv-
ariant Kahler compactification of a semi-torus arises is thay.

In contrast, non-Kahler compactifications may arise in ynamys, see e.g. [9] and
the examples given further below in this article.

4.2. ClassC versus Kahler. A compact complex manifold is projective iff it is
both Kahler and Moishezon. On the other hand, every algeheriety is birational to
a projective variety and therefore in cla§s As a consequence, a compact algebraic
manifold is always in clas€ and it is Kahler iff it is projective.

Hence a compact smooth non-projective algebraic toricetsaifsee [12], p. 84 for
the existence of such toric varieties) yields an example cérapact complex manifold
X with s.n.c. divisorD such that the logarithmic tangent benBi(— log D) is trivial
and X is in classC, but not Kahler.
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4.3. Non-Kahler examples. If X is a compact complex manifold with trivial
tangent bundle, and the connected component of its autdnsonpgroup, thenX is
Kahler iff X is in classC iff G is commutative.

In the logarithmic case, there is such a conclusion only ie dimection: If X is a
compact complex manifold with s.n.c. divis@»  such that-Igg D) is trivial, then
the Kahler assumption implies that the connected compooeAut(X, D) is commu-
tative. On the other hand the commutativity does not imply it&hler property as we
will see by the example given below.

Let o, 3 € C with |a|, |3| > 1. We define a-action onC?\ {(0, 0)} by

(z1, 22) — (" z1, B"22).

Then the quotient ofC? \ {(0, 0)} by this Z-action is a so-calledHopf surface Such
a Hopf surfaceX is diffeomorphic toS* x §3. In particular dimHl()?, C) is odd and
thereforeX can not be Kahler. Moreover, it can not be in class

Now let T be the quotient of€* x C* by the subgroup

{(«",8") 1 n € Z}.

Then T is a complex semi-torus and is an equivariant compactification @ . The
isotropy groups at the two non-open orbits are isomorphi€to

Thus all the isotropy groups are semi-tori and consequehtylogarithmic tan-
gent bundle is trivial (see Remark 1).

4.4. The noncommutative case.lLet X be a non-Kahler compact complex
manifold with a locally s.n.c. divisoD such thé@t —(og D) is trivial.

In this case it is still true that there is a connected complex group G with
dim(G) = dim()?) acting onX with X = X \ D as open orbit. However;  might
be non-commutative and thé -action on the open orbit is ohiyost free, i.e., the
isotropy group at a point of the open orbit is not necessdrilyal, but at least dis-
crete.

The easiest such examples, with ()=are obtained by considering discrete sub-
groupsT in connected complex Lie groups with compact qubt@yl'. By a result
of Borel (see [3]) every semisimple Lie group contains suctc@ompact” discrete
subgroupI’ . Such complex quotients have been studied in [16].

Next let us give an example withh # (). Recall thatSL,(C) contains discrete co-
compact subgroupE  such that(Y) > 0 for ¥ = SL,(C)/T (see [8]). ThenH(Y, O)
is a vector space of positive dimension equabigY) > 0 and the induced action of
SL»(C) on H(Y, O) is trivial (see [1]). For anyx € H(Y, O) let o/ denote the image
via

exp: HY(Y, 0) — HY(y, 0%).
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Thena’ defines a topologically triviaC*-principal bundle. Since th§L,(C)-action on
H(Y, O) is trivial, this is a homogeneous bundle.af  denotes thenested compo-
nent of the group ofC*-principal bundle automorphisms, we thus obtain a shorttexa
sequence

1-C"—G— SLy(C) — 1.

Such a sequence is necessary split. He6ce~ C* x SL»(C). Now consider the
compactification)? of the total spaceX of this bundle given by adding a 0- and a
co-section Then X has a trivial logarithmic tangent bund#® — (og D) for D :)?\X

and G acts onX with X as open orbit.

4.5. The condition on the isotropy groups. Next we present an example to
show that the condition on the isotropy groups in property iRthe Main Theorem
can not be dropped.

To see this, we first note that a complex-analytic semi-tonay contain closed
complex Lie subgroups which are not semi-tori. The easiesh £xample is obtained
as follows: Embedd the additive group (which is not a semigpinto the semi-torus
C* x C* via

Cotd (e, e") e C* x C*.

To verify that the image is indeed @osed subgroup, consider its pre-image in the
universal covering ofC* x C*. If we realize the universal covering by: (z1, z2) —
(e, e%2), then

7Y F(C) = {(t,if) 1t € C} + (2riZ)? = {(Zl, 22): 222;521 e 7[i] }

Hence f () is closed and@* x C*)/f(C) ~ C/Z[i]. In this way the complex man-
ifold X = C* x C* can be realized as &-principal bundle over the elliptic curve
E = C/Z[i]. The embeddingC — P3(C) induces a compactificatioo? of X by
adding aco-section to theC-principal bundleX — E. Thus we obtain an equivari-
ant compactification where the isotropy group for a point)?a\ X is isomorphic to
(C, +) and therefore not a semi-torus. If we now look at the veéi®ld correspond-
ing to this action of the additive grougC(+), we see that it vanishes of order two
at the oco-section. This implies that, regarded as a section in tharltgnic tangent
bundle, it does vanish at theo-section with multiplicity one. In particular, the loga-
rithmic tangent bundle admits a holomorphic section whieimishes somewhere, but
not everywhere. Hence the logarithmic tangent bundle carbedrivial.

Remark 2. This example was first used by Serre for an entirely diffengur-
pose: Via GAGA theC-principal bundle overE is algebraic. In this way one obtains
an exotic algebraic structure on the complex manifSldx C*. This yields an example
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of an algebraic variety which is not affine (in fact every reguunction is constant),
although it is Stein as a complex manifold.

5. An application

Let U — A be a family of projective manifolds. By our characterizatiof log-
parallelizable manifolds we obtain an easy proof that theo$eall 1 € A for which
U, is an equivariant compactification of a semi-abelian vgrierms a constructible
subset ofA .

Proposition. Let 7: U — A be a smooth projective connected surjective map
between Khler complex manifolds and Idd  be a hypersurfaceton  whias dwot
contain any fiber ofr.

Let S denote the set of all € A for which the fiberU, = 7=1({t}) is an equiv-
ariant algebraic compactification of a semi-abelian vayietith U, \ D as open orbit

Then S is constructiblei.e., there is a finite family of pairs of closed analytic
subsetsY; C Z; C A such thatS =, Z; \ V;.

Proof. By our theoremS coincides with the set of alE A with the property
that 7—({t}) N D is a s.n.c. divisor and furthermore the logarithmic tangamdle is
trivial.

The fiber dimension dima(~Y(x(x))) is Zariski semicontinuous, because is
proper. Hence there is no loss in generality in assuming tmatfiber dimension is
constant. Letr denote this fiber dimension. Then for everye A the number of
irreducible components of~1(p) N D equals dimH?~?(r—1(p) N D, C). Using the
resolution of the sheaf of local constant functidisby coherent sheaves via the holo-
morphic de Rham complex

O—>Q—>O—>Ql—>---

combined with the semicontinuity results for coherent gheait follows thatA de-
composes as a finite union of constructible sets along whiehntmber of irreducible
components ofr—(p) N D is constant.

Now a divisor withm irreducible components in a compact carpihanifold F
is a s.n.c.divisor iff all the irreducible components are smooth ancetrieansversally.
These are Zariski open conditions (as long as the numberreducible components
does not jump).

Put together, these arguments show that thedset  af@ll\ for which the fiber
7~Y(p) N D is a s.n.c. divisor constitutes a constructible subsen of

Thus there is no loss of generality in assuming that(p) N D is always a
s.n.c. divisor.

Let E denote the bundle of logarithmic vertical vector fieldfen E is a vector
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bundle of rankr where = ding{ ) dim(A). By our Main Theorenr € S iff E|y, is
holomorphically trivial. By the semi-continuity theorem

Z={teA:dmr U, E|y)>r}
is a closed analytic subset ¢f and
Q={teA:dimT U, Ely)=r}

is Zariski open inZ . Moreover, for € Q every section ofE|y, extends to some
neighbourhood ofU, inm—1(R). Thus the setw of all points im—%(Q2) where the
sections ofE|y, fail to spanE|y, is a closed analytic subset. Singeis proper,§ =
Q\ w(W) is Zariski open inZ . [l

Remark 3. For a similar result by different methods, compare [11].
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