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The nonlinear evolution of resistive double tearing modes �DTMs� with safety factor values q=1
and q=3 is studied with a reduced cylindrical model of a tokamak plasma. We focus on cases where
the resonant surfaces are a small distance apart. Recent numerical studies have shown that in such
configurations high-m modes are strongly unstable and may peak around m=mpeak�10. In this
paper, it is first demonstrated that this result agrees with existing linear theory for DTMs. Based on
this theory, a semiempirical formula for the dependence of mpeak on the system parameters is
proposed. Second, with the use of nonlinear simulations, it is shown that the presence of fast
growing high-m modes leads to a rapid turbulent collapse in an annular region, where small
magnetic island structures form. Furthermore, consideration is given to the evolution of low-m
modes, in particular the global m=1 internal kink, which can undergo nonlinear driving through
coupling to fast growing linear high-m DTMs. Factors influencing the details of the dynamics are
discussed. These results may be relevant to the understanding of the magnetohydrodynamic activity
near the minimum of q and may thus be of interest for studies on stability and confinement of
advanced tokamaks. © 2007 American Institute of Physics. �DOI: 10.1063/1.2446420�

I. INTRODUCTION

The advanced tokamak �AT� scenario, where the maxi-
mum current density is located off the magnetic axis, is of
considerable interest for achieving thermonuclear fusion
conditions and a quasisteady-state operation in future toka-
mak devices �e.g., Refs. 1 and 2�. The associated nonmono-
tonic q profiles have pairs of resonant surfaces with the same
rational value qs=m /n and may give rise to double tearing
modes �DTMs�.3 Several detailed studies of DTMs were mo-
tivated by their possible role in rapid current penetration,
compound sawtooth oscillations, off-axis sawtooth crashes
and disruptions �e.g., Ref. 4 and references therein�. It is
important to understand the behavior of these instabilities in
order to ensure efficient profile control and safe operation of
tokamak devices.

In this paper we consider cases with qs=1 and qs�1
DTMs, both of which have attracted much attention in ex-
periments. For instance, compound sawtooth oscillations
were observed in the Tokamak Experiment for Technology
Oriented Research �TEXTOR� after two qs=1 resonances
had formed.5 Off-axis sawteeth were observed in the Toka-

mak Fusion Test Reactor �TFTR� when the minimum of the
safety factor, qmin, is near or below 2.6 Resistive and neoclas-
sical qs=2 DTMs were investigated in the Axisymmetric Di-
vertor Experiment �ASDEX�-Upgrade, one motivation being
the possible interaction of these modes with internal trans-
port barriers �ITBs�.7,8 In the Japan Atomic Energy Agency
Tokamak Upgrade �JT-60U� qs=3 DTMs are thought to play
a crucial role in disruptions, as indicated by experimental
observations and numerical results.9–11

In contrast to previous numerical studies, which focused
mostly on cases where two resonant surfaces are located a
relatively large distance apart �e.g., Ref. 12� and the most
linearly unstable mode has the lowest possible poloidal mode
number �e.g., �m ,n�= �3,1� for qs=3�, our interest lies in the
regime where the distance between neighboring resonant sur-
faces is still small. For this case, it was found that DTMs
�and multiple tearing modes in general� with high poloidal
and toroidal mode numbers m and n are strongly unstable.13

The linear instability of DTMs for equilibria with small
inter-resonance distances was studied numerically in Ref. 4.
The purpose of the present paper is �i� to show that the find-
ings of Ref. 4 agree with linear DTM theory, and �ii� to
present first nonlinear simulation results involving high-m
DTMs for cases with qs=1 and qs�1. For simplicity, a re-
duced magnetohydrodynamic �RMHD� model is employed.

Existing linear theory for DTMs �Ref. 14� predicts that
in the strongly coupled limit �small mode numbers, small
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inter-resonance distance� the linear growth rate increases
with the mode number as �lin�m2/3. Here, it is shown that
this scaling agrees with numerical results. A semiempirical
analytical formula for estimating the mode number mpeak of
the fastest growing mode in terms of the system parameters
is proposed, based on the transition criterion between the
strongly and weakly coupled limits derived in Ref. 14.

The magnetic island dynamics during the nonlinear evo-
lution of qs=3 and qs=1 DTMs is described. In the qs=1
case, the m=1 internal kink mode is unstable and eventually
dominates the dynamics. However, full reconnection is not
possible for small inter-resonance distances, so the core
merely undergoes oscillatory motion. Full reconnection is
only possible when the inter-resonance distance has already
increased beyond the limit where modes with m�1 become
subdominant or negligible compared to the m=1 mode. This
is demonstrated using an intermediate case where the m=2
mode has a slightly higher growth rate than the m=1 mode.

Finally, the early evolution of the m=1 mode is investi-
gated in detail. Of particular interest is the nonlinear driving
due to fast growing high-m DTMs. It is shown how the ef-
ficiency of this driving depends on the initial conditions of
the simulation and that the driving, despite its radial local-
ization, is capable of triggering the global resistive m=1 in-
ternal kink mode, similar to the case of qs=1 triple tearing
modes �TTMs� studied recently.15

This paper is organized as follows: In Sec. II the physi-
cal model is introduced. In Sec. III we describe the equilib-
rium configurations used and their linear dispersion relation.
Section IV is dedicated to a comparison between linear
theory and numerical data, and in Sec. V nonlinear simula-
tion results are presented. In Sec. VI we draw conclusions,
discuss possible applications, and motivate further research
in this direction.

II. MODEL

We use the reduced magnetohydrodynamic �RMHD�
equations in cylindrical geometry and in the limit of zero
beta.16,17 This model has proven to be useful in studies of
MHD instabilities, when the focus is on a qualitative descrip-
tion of fundamental aspects of the magnetized plasma sys-
tem, as is the case here. The RMHD model governs the evo-
lution of the magnetic flux function � and the electrostatic
potential �, as described previously in Ref. 4. The normal-
ized RMHD equations are

�t� = ��,�� − ��� − SHp
−1 ��̂j − E0� , �1�

�tu = �u,�� + �j,�� + ��j + ReHp
−1 ��

2 u . �2�

The time is measured in units of the poloidal Alfvén time
�Hp=�	0
ma /B0 and the radial coordinate is normalized by
the minor radius a of the plasma. 
m is the mass density and
B0 is the strong axial magnetic field. The current density j
and the vorticity u are related to � and � through j=−��

2 �
and u=��

2 �, respectively.
Resistive diffusion is measured by the magnetic Rey-

nolds number SHp=�� /�Hp in Eq. �1�, with ��=a2	0 /�0 as
the resistive diffusion time and �0=��r=0� is the electrical

resistivity at r=0. We use SHp=106, which is numerically
efficient and physically reasonable in the framework of the
model used. Viscous dissipation is measured by the kine-
matic Reynolds number ReHp=a2 /��Hp in Eq. �2�, where � is
the kinematic ion viscosity. We choose regimes where the
Prandtl number Pr=SHp /ReHp satisfies Pr�10−2, so that the
viscosity effect is limited to small-scale flows and does not
affect the instability of the dominant modes.

The source term SHp
−1 E0 in Eq. �1� compensates the resis-

tive diffusion of the equilibrium current profile on the time
scale �R /�Hp=D12

2 SHp, where D12 is the length scale of inter-
est, i.e., here the inter-resonance distance �normalized by a�.
E0 is taken to be constant, so the resistivity profile is given in
terms of the equilibrium current density distribution as
�̂�r�= j�r=0� / j�r�. For simplicity, the temporal variation of
the resistivity profile �̂ is neglected.

As in Ref. 4, each field variable f is decomposed into an

equilibrium part f and a perturbation f˜ as

f�r,�,�,t� = f�r� + f˜�r,�,�,t� . �3�

The system is described in terms of the Fourier modes, �m,n

and �m,n, obtained from the expansion

f�r,�,�,t� =
1

2�
m,n

fm,n�r,t� . ei�m�−n�� + c.c., �4�

with m as the poloidal mode number and n is the toroidal
mode number. In the following, the �m ,n� subscripts will
often be omitted for convenience. We consider only the non-
linear couplings between modes of a single helicity h=m /n,
so the problem is reduced to two dimensions. Results for the
linearized system are obtained using initial-value and eigen-
value solvers as described in Ref. 4. The nonlinear RMHD
equations are solved numerically using the simulation code
described in Ref. 15.

In order to ensure numerical accuracy, we have evalu-
ated the energy balance �temporal change in the system’s
energy compared to the dissipated energy� and compared the
results obtained with different numbers of grid points and
Fourier modes. In particular, the time histories and mode
structures of individual modes were inspected in detail. Both
linear and nonlinear calculations were performed with a grid
spacing of r=5�10−4 and smaller. The number of Fourier
modes is specified below for each case. In the regimes where
the linear theory of DTMs �Ref. 14� is valid, it was used to
benchmark numerical results �e.g., the resistivity scaling SHp

�

with �� �1/3 ,3 /5�; cf. Figs. 11–14 in Ref. 4�.

III. EQUILIBRIUM AND LINEAR INSTABILITY

The equilibrium state is taken to be axisymmetric �only
m=n=0 components� and free of flows, i.e., �=u=0. The
equilibrium magnetic configuration is uniquely defined in
terms of the safety factor q�r�, and the magnetic flux function
and current density profiles are obtained though the relations

q−1 = −
1

r

d

dr
�0,0 and j0,0 =

1

r

d

dr

r2

q
. �5�

The model equation used for the q profile is4
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q�r� = q0 . F1�r� . �1 + �r/r0�2w�r�	1/w�r�, �6�

where

r0 = rA
�m/�nq0��w�rA� − 1
−1/�2w�rA��,

w�r� = w0 + w1r2,

F1�r� = 1 + f1 exp�− ��r − r11�/r12�2	 .

With the parameter values in Table I the equilibrium q pro-
files shown Fig. 1 are produced, each of which has two reso-
nant surfaces with qs�q�rsi�=m /n at the radii r=rsi

�i=1,2�. The distance between the resonances,
D12= 
rs2−rs1
 was chosen to be sufficiently small, so that
broad spectra of DTMs are unstable, with dominant modes
having m greater than the lowest poloidal mode number that
is consistent with a given field line pitch qs=m /n. The dis-
persion relations �spectra of linear growth rates� �lin�m� are
plotted in Fig. 2. In cases �D-1� and �D-2�, pairs of resonant
surfaces with qs=3 and 1, respectively, are located a small
distance D12=0.06 apart, so that the fastest growing mode
has mpeak=8. In addition, we consider case �D-3� with
qRes=1, which has a larger inter-resonance distance,
D12=0.21. Here, the dominant mode is mpeak=2. The charac-
teristics of all cases are summarized in Table II. Linear
eigenmode structures of DTMs with various mode numbers
m were presented in Ref. 4. Note that there can be up to two
unstable eigenmodes for a given �m ,n�. Eigenmodes peaking

in the region 0�r�rs1 �for qs=1� or near rs1 �for qs�1� are
denoted by M�1�, while those extending to the outer resonant
surface are labeled M�2�. When D12 is small, the M�2�-type
eigenmodes are usually dominant for m�2 and only their
growth rates are plotted in Fig. 2.

Finally, a comment is in place with regard to the region
that can undergo magnetic reconnection in the cases studied
here. The profiles of the equilibrium helical flux functions
�*=�+r2 / �2qs� in Fig. 3 show that the reconnectable re-
gions do not include the magnetic axis at r=0. Since all
cases satisfy �*�r=0���*�rs2�, the reconnection can only be
partial.18,19

IV. COMPARISON WITH LINEAR THEORY

Pritchett, Lee, and Drake �PLD� �Ref. 14� developed a
linear theory for resistive DTMs by applying the techniques
and results from the theory for the resistive m=1 internal
kink mode by Coppi et al.20 PLD derived analytical forms
for the linear growth rate �lin of DTMs in the limit of strong
and weak coupling. The strongly coupled limit applies to

TABLE I. Parameter values for the q profiles in Fig. 1 using the model
formula �6�.

Case q0 rA w0 w1 m n f1 r11 r12

�D-1� 2.6 0.655 3.8824 0 3 1 −0.238 0.4286 0.304

�D-2� 1.3 0.655 3.8824 0 1 1 −0.238 0.4286 0.304

�D-3� 1.25 0.655 3.8824 0 1 1 −0.238 0.4286 0.304

FIG. 1. �Color online� Equilibrium safety factor profiles q�r� for cases
�D-1�–�D-3�. The properties of these profiles are listed in Table II and dis-
persion relations are shown in Fig. 2.

FIG. 2. �Color online� Spectra �lin�m� of unstable DTMs for the three cases
in Fig. 1 for SHp=106 and ReHp=108 �ReHp=107 in case �D-3��. For case
�D-2� �circles� the growth rates of both m=1 eigenmodes, M�1� �single kink�
and M�2� �double kink�, are shown: ��1��m=1�=4.0�10−3 and ��2��m=1�
=2.5�10−3. All other growth rates belong to M�2�-type eigenmodes, as de-
fined in the text.

TABLE II. Properties of the q profiles shown in Fig. 1. The linear instability
characteristics of these cases were previously studied in Ref. 4, with the case
labels given in the second column. The values of the magnetic shear and the
resistivity at the resonant surfaces are denoted by si�s�rsi� and �̂i� �̂�rsi�,
respectively. The mode numbers of the fastest growing mode, mpeak, are
valid for SHp=106 and ReHp=108 �ReHp=107 in case �D-3��.

Case
Case
in Ref. 4 qs qmin D12 s1 s2 �̂1 �̂2 mpeak

�D-1� �IIIb� 3 1.99 0.06 −0.10 0.12 0.76 0.84 8

�D-2� �Ia� 1 0.99 0.06 −0.10 0.12 0.76 0.84 8

�D-3� �Ib� 1 0.96 0.21 −0.20 0.45 0.75 1.07 2

022107-3 Dynamics of resistive double tearing modes… Phys. Plasmas 14, 022107 �2007�



modes which are close to ideal-MHD marginal stability,
whereas weakly coupled modes are strongly ideal-MHD
stable. Defining the poloidal wave number k�=m /r0

�r0= �rs1+rs2� /2� and the distance xs=D12/2, the validity of
the dispersion relations in the two limits is given by the
constraint14

� k�
2

Bs�SHp
1/3

� k�xs
strong

� � k�
2

Bs�SHp
1/9

� k�xs
weak

� 1, �7�

where Bs�=s�rsi� /qs, with s=rq� /q as the magnetic shear
evaluated at a resonant surface. The lower limit is based on
the requirement that the resistive layer width �� is smaller
than the distance xs, and the upper limit corresponds to a
large-aspect-ratio approximation used in the derivation of the
dispersion relation. Modes that fall into the transitional re-
gime between the strongly and weakly coupled limits are
neither close to marginal stability nor strongly ideal-MHD
stable. In this section we reproduce essential steps from
PLD’s derivation and compare the theoretical predictions
with numerical results, focusing in particular on the m de-
pendence of the linear growth rate. It is then shown that a
semiempirical formula for the mode number mpeak of the
fastest growing mode can be extracted from the theory.

The dispersion relation for strongly coupled DTMs
�small k�xs� is14

�lin = �̂k�
2/3Bs�

2/3SHp
−1/3 � m2/3 �strong coupling� , �8�

where �̂= �̂��̂h� is a normalized growth rate. The dependence

of �̂ on the ideal-MHD instability drive measured by �̂h was
obtained by PLD through asymptotic matching. At marginal

stability one has �̂h=0 and �̂�0�=1. Equation �8� implies that
the growth rate increases with the poloidal mode number m.
A comparison of the m2/3 power law with numerically com-
puted growth rate spectra from Ref. 4 is given in Fig. 4.
Good agreement is found, apart from the data point
�lin�m=1� in case �D-2� with SHp=106 �arrows in Figs. 4�a�

and 4�b��. This deviation is most likely related to the fact that
��= ��lin / �k�

2 Bs�
2SHp��1/4�0.37�D12=0.74�xs in that case,

which violates the condition ���xs.
14 Here, �� is the linear

resistive layer width given by Eq. �22� in Ref. 4. Note that in
order to fit Eq. �8� to the numerical data in Fig. 4 we use

�̂�1, which means that DTMs are only approximately mar-
ginally stabile and lie slightly in the ideal-MHD stable
domain.

In the limit of weak coupling �large k�xs� the dispersion
relation is14

�lin � � 8��5/4�
�h��− 1/4�

4/5� k�
2 Bs�

2

SHp
3/5

. �9�

The quantity �h is given by

�h = −
�k�

3

Bs�
�

0

xs

dx . B*
2�x� , �10�

and thus depends on the shape of the q profile �here,
B*=B��r�−B��rsi� is the helical field that reverses sign
across r=rsi�. In the limit of xs→0 one can approximate B*

by a parabola centered halfway between the resonances,
B*�Bs��xs

2−x2� /2xs, which yields �h�Bs�k�
3 xs

3. With this,
Eq. �9� gives

�lin � m−6/5 �weak coupling� . �11�

�Note that the parabolic approximation affects only the xs

dependence, not the m dependence. Here, we assume that xs

is small and the weak coupling is realized through large m.�
This result shows that in the weakly coupled limit the growth
rate of DTMs decreases with increasing m. The m−6/5 power
law does not fit the data, which can already be seen from the
convexity �d2�lin /dm2�0� of the spectra for cases �D-1� and
�D-2� in Fig. 2 as opposed to the concavity of �lin in Eq. �11�.
Here, it is useful to check the validity of the weakly coupled
limit. Substitution of the profile parameters xs�0.03,

FIG. 3. �Color online� Equilibrium helical flux functions �*�r� for cases
�D-2� and �D-3�. The radial extent of “reconnectable” regions is indicated by
arrows.

FIG. 4. �Color online� Comparison between theory and simulation: m de-
pendence of the linear DTM growth rate. Only the growth rates of M�2�-type
modes are shown. The dashed lines indicate the scaling law �lin�m2/3. To fit

Eq. �8� to the data, �̂ in the range 0.7��̂h�0.9 is used. �a� Spectra
�lin

�2��m ,SHp� of case �D-2� for SHp=106, 107, 108. The data are the same as in
Fig. 10 of Ref. 4. �b� Spectra �lin

�2��m ,qs� for qs=1 and 3 �cases �D-2� and
�D-1�� with SHp=106. The data are the same as in Fig. 6�A� of Ref. 4.

022107-4 Bierwage et al. Phys. Plasmas 14, 022107 �2007�



r0=0.42, and Bs��0.11 into Eq. �7� we find 7�mweak�14
�m�7� for SHp=106. The fact that the m−6/5 law is not
observed in our data suggests that the transition regimes as-
sociated with the lower and upper bounds of mweak are so
broad that they overlap for m�7 �note that the theory does
not define the exact meaning of the symbol “�”�. For larger
values of SHp the lower limit for m is reduced. Indeed, the
high-m side of the spectrum for cases �D-1� and �D-2� be-
comes concave for SHp=108 �cf. Fig. 10 in Ref. 4� where
5�mweak�14 is required according to Eq. �7�. For case
�D-3� where xs�0.1, the weak coupling limit is valid for
1�mweak�4 �SHp=106� which encompasses essentially all
unstable modes as can be seen in Fig. 2. Again, the number
of unstable modes is too small for the spectrum to follow the
m−6/5 law in any significant interval. We conjecture that an
appreciable number of modes satisfying the dispersion rela-
tion Eq. �9� for the weakly coupled limit may only be found
for very small xs and very large SHp.

One more comment is in place with regard to the upper
boundary of the weak coupling limit, k�xs�1. When this
boundary is exceeded by increasing xs, then weak coupling
implies that the modes are spatially decoupled and eventu-
ally turn into independent single tearing modes. On the other
hand, if xs is left sufficiently small, such that the perturbation
at one resonant surface can still be “felt” at the other reso-
nance, an increase in k�=m /r0 such that r0 /m�xs may be
expected to weaken the mutual driving of the perturbations:
an O-point at one resonance will “push” not only the facing
X-point but also on O-points. To the best of the authors’
knowledge, this regime is not yet understood. The stabiliza-
tion of high-m modes seems to depend on other factors, in-
cluding the mechanism breaking the ideal-MHD constraint.
For instance, collisionless DTMs due to electron inertia tend
to have a broader spectrum of unstable modes than resistive
DTMs for the same q profile.21

The growth rates plotted in Fig. 2 increase with m for
m�mpeak and a decrease for m�mpeak. According to Eqs. �8�
and �11�, this behavior corresponds to that predicted for the
strongly and weakly coupled limit, respectively. Despite the
lack of a distinguished band of weakly coupled modes in the
cases considered here, we conjecture that an estimate for the
mode number of the fastest growing mode mpeak may be
obtained from the transition criterion in Eq. �7� derived by
PLD, i.e., k�xs��k�

2 / �Bs�SHp��1/9. Solving this relation for m
yields

mtrans � r0/�xs
9Bs�SHp�1/7 �12�

for mode numbers in the transitional regime. Let us compare
some values obtained from Eq. �12� with numerical results.
For instance, for case �D-2� �where r0=0.42, Bs��0.11,
xs�0.03� one obtains mtrans=7 ,5 ,4 for SHp=106 ,107 ,108.
The measured values for mpeak are 8 ,6 ,5 �Fig. 4; see also
Fig. 10 in Ref. 4�, which suggests that mpeak�mtrans+1. Tests
with other configurations gave similarly good agreement, de-
spite the fact that the xs dependence is described only ap-
proximately under the assumption that q�r� is parabolic
around r=r0. Indeed, there is not much freedom for varying
the shape of the q profile in the inter-resonance region when
the distance between the resonances must be small, so for

realistic q profiles the parabolic approximation may be ex-
pected to be sufficiently accurate.

Based on the good agreement between linear theory and
simulation, we propose the semiempirical formula

mpeak �
r0

�xs
9Bs�SHp�1/7 + 1 �13�

for the dependence of mpeak on the system parameters. Equa-
tion �13� is useful for small D12=2xs, where mpeak�1. Note
that a small inter-resonance distance also implies that the
difference between the magnetic shears s1 and s2 is small.
Hence, due to the weak shear dependence it is not so impor-
tant whether mpeak is evaluated using s1 or s2.

The poloidal mode number of the fastest growing linear
mode, mpeak, is useful for the interpretation of the nonlinear
dynamics, since it determines the size of the magnetic island
structures. Numerically computed values for the profiles
used in this study are given in Table II.

V. NONLINEAR RESULTS

Starting from an unstable equilibrium, the instability
growth is excited by applying an initial perturbation of the
form

�˜�t = 0� =
1

2�
m

�0mr�r − 1�ei�m�*+�0m� + c.c., �14�

where �0m is the perturbation amplitude �typically 10−7�,
�*��−qs

−1� is a helical angle coordinate and �0m is an ini-
tial phase shift. The values �0m=0 and � are assigned to
each m in a random manner. This introduces some degree of
incoherence while retaining mirror symmetry about the x
axis �due to parity conservation in RMHD�. This restriction
improves numerical accuracy, simplifies visualization and
has no significant effect on the central claims of this paper.

We begin with a description of the magnetic reconnec-
tion dynamics in Sec. V A where the system as a whole is
considered. In Sec. V B the evolution of individual modes is
analyzed in detail.

A. Magnetic reconnection dynamics

First, consider case �D-1� where two qs=3 resonances
are located a small distance D12=0.06 apart. A nonlinear
simulation was carried out using �0,m�0=10−7, SHp=106 and
ReHp=108, and including 32 modes �m=0,3 , . . . ,93�. Snap-
shots showing contour plots of the helical flux function
�*=�+r2 / �2qs� and the electrostatic potential �, as well as
instantaneous profiles of q�r� and �j*���−��

2 �*�0,0

= j0,0−2/qs, are presented in Fig. 5. We observe that, in re-
sponse to the random broadband perturbation applied, mag-
netic reconnection occurs simultaneously at many locations,
giving rise to a multitude of small magnetic islands. In
Figs. 5�a� and 5�b� it can be seen that the dominant island
sizes correspond to the mode numbers m=6 and 9 �disper-
sion relation: mpeak=9�. The onset of the reconnection is de-
termined by the growth rate of the �9,3� mode, which is
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about 1.6 times that of the �3,1� mode �cf. Fig. 2�. The re-
connection leaves behind an annularly flattened q profile, as
can be seen in Fig. 5�c�.

Next, let us investigate the response of qs=1 DTMs in
case �D-2�. The calculation was performed with
�0,m�0=10−7, SHp=106 and ReHp=108, and 128 modes

�m=0,1 , . . . ,127� were included. As can be seen in
Fig. 6�A�, the reconnection dynamics begin with an annular
collapse with more or less turbulent patterns dominated by
mode numbers around m�7–9, in accordance with the peak
of the linear dispersion relation �mpeak=8�. Note in Fig. 6�A�
that the q profile has been flattened in the inter-resonance
region and that the resistive m=1 internal kink mode is not
yet involved in the dynamics. The kink appears at a later
time, leading to a growing core displacement inside the tur-

FIG. 5. �Color online� Reconnection dynamics with qs=3 DTMs for small
inter-resonance distance D12=0.06 �case �D-1��. The snapshots were taken at
�a� t=1300, �b� t=2000, and �c� t=2500. Each snapshot consists of contour
plots of the helical flux �* �top� and the electrostatic potential � �bottom�.
Arrows indicate the flow directions. On the right-hand side, the instanta-
neous profiles q�r , t� and �j*���j*�r , t��0,0 are shown. SHp=106, ReHp=108.

FIG. 6. �Color online� Reconnection dynamics with qs=1 DTMs for small
inter-resonance distance D12=0.06 �case �D-2��. Arranged as Fig. 5.
SHp=106, ReHp=108.

022107-6 Bierwage et al. Phys. Plasmas 14, 022107 �2007�



bulent region, as can be seen in Fig. 6�B�. After all recon-
nectable flux surfaces have been reconnected a rebound oc-
curs and the core displacement decays as indicated by the
arrows in Fig. 6�C�. The further evolution was not investi-
gated, but continuing oscillation of the core is to be
expected.

Finally, in Fig. 7 simulation results are presented for case
�D-3�. The calculation was performed with �0,m�0=10−7,
SHp=106 and ReHp=107, including 128 modes

�m=0,1 , . . . ,127�. Case �D-3� is a realization of the interme-
diate regime where two qs=1 resonances are located so far
apart that the fastest growing mode is m=2, closely followed
by m=1. It can be seen that magnetic islands with dominant
mode numbers m=2 and m=1 largely determine the struc-
ture of the magnetic surfaces �Figs. 7�A� and 7�B��. In the
present case, the m=1 mode tends to dominate on the outer
resonance and m=2 on the inner one, which leads to a strong
deformation of the inter-resonance region into a D-shape
�Fig. 7�C��. This calculation had to be terminated soon after
snapshot �C� due to a continuing increase in the energies of
high-m modes. An island separatrix is approaching the coor-
dinate origin, r=0, and our numerical code is not suitable for
further following dynamics with such kind of asymmetry.

Equilibria with larger inter-resonance distance D12 than
in case �D-3� have a dominant m=1 mode and the dynamics
proceed as described in earlier studies �e.g., Refs. 9 and 18�.

B. Detailed evolution of individual modes

For the discussion of the evolution of individual Fourier
modes we focus on case �D-2�, where two qs=1 resonant
surfaces are located a small distance apart. The results are
similar in other cases with different qs, provided that mpeak is
several times larger than the lowest possible mode number
m. The evolution of the individual Fourier modes is de-
scribed in terms of the kinetic and magnetic energies of their
perturbation components,

Em,n
kin = 
��˜m,n
2 and Em,n

mag = 
��˜m,n
2, �15�

and the corresponding nonlinear growth rates,

�m,n
kin �t� =

d ln Em,n
kin

2dt
and �m,n

mag�t� =
d ln Em,n

mag

2dt
�16�

�these are amplitude growth rates, hence the factor 1 /2�. In
Eq. �15�, 
fm,n
2��0

1dr r Cm 
 fm,n�r�
2, with Cm=0=4� and
Cm�0=2�.

In Fig. 8 the evolution of �a� the energies and �b� growth
rates of the m=1 and m=0 modes in case �D-2� is shown.
Note that the m=0 mode considered here measures only the
profile perturbation, excluding the equilibrium profile. Dur-
ing phase �i� the linear mode structure of the m=1 mode is
gradually established. In the present case, this process is not
fully completed by the time the nonlinear drive �ii� sets in, as
can be inferred from the fact that �1,1

kin and �1,1
mag are not equal

and still vary in time.
The nonlinear driving phase �ii� begins when the fastest

growing modes �not shown� reach sufficiently large ampli-
tudes so that they start to drive slower modes through non-
linear coupling. For instance, a typical driving term in the
convective nonlinearity �� ,�� in Eq. �1� is

�a��r�sin�ma�*�e�at � �b�r�sin�mb�*�e�bt

= ��a��b/2��cos�m−�*� − cos�m+�*��e��a+�b�t, �17�

where ma and mb are the two driving modes with linear
growth rates �a and �b, and m±=ma±mb are the mode num-
bers of driven modes. The growth rate of the driving term is
�drive�m±�=�a+�b.

FIG. 7. �Color online� Reconnection dynamics for qs=1 DTMs with larger
inter-resonance distance D12=0.21 �case �D-3��. Arranged as Fig. 5.
SHp=106, ReHp=107.
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In Fig. 8 the m=1 mode switches between �almost� lin-
ear and nonlinearly driven exponential growth around
t�300. Here, the driving is primarily due to the coupling
between the modes m=8 and m=7. Consequently, according
to Eq. �17�, the expected enhanced growth rate is
�drive�m=1���drive�m=0�=2�lin�m=8�=17.5�10−3. The
level of nonlinear driving can conveniently be inferred from
the growth rate of the m=0 mode �only magnetic energy�.
The m=0 mode is not an unstable eigenmode and its evolu-
tion is entirely a result of nonlinear driving by higher-m
modes.

The annular collapse, labeled by �iii� in Fig. 8, begins
already during the driving phase and continues beyond it.
The dynamics during this stage were described above in
Sec. V A.

In Fig. 8 neither the m=0 nor the m=1 mode reach the
expected growth rate, �drive=17.5�10−3. The reason for this
lies in the initial perturbation. We have determined two fac-
tors that need to be considered: �A� the perturbation ampli-
tude, and �B� the phase relations between the driving modes.

The effect of �A� can be seen by comparing Fig. 8�b�
with Fig. 9�a�. Figure 9 shows results for case �D-2� that
were obtained with a lower perturbation amplitude
�0=10−12 �in Fig. 8: �0=10−7�. Now, there is more time for

all modes to establish the linear mode structures. Clearly, the
nonlinear driving in Fig. 9�a� reaches a higher level than in
Fig. 8�b�.

Factor �B� implies that the growth rate �drive may also
stay below 2�peak when there are several higher-m modes
with growth rates approximately equal to �peak and when the
phase relations between these modes are “unfavorable.”
Thus, �drive can be increased by “aligning” the phases of the
fastest growing modes in the spectrum. The result of aligning
the five modes m=6–10 is shown in Fig. 9�b�. Clearly, the
driving of the m=1 mode is now much more effective.

Strictly speaking, the effect of aligning the relative
phases is merely to reduce the time needed to establish the
nonlinear driving. Its effect on the growth rate is only tem-
porary. Note that the growth of the m=0 mode is not affected
by phase relations between the driving modes, as is to be
expected.

The effect of the nonlinear driving on the m=1 mode
structures can be observed in Fig. 10. Note in particular
that despite the radial localization of the driving terms
�Figs. 10�b� and 10�c��, the m=1 mode �Fig. 10�a�� as a
whole grows at an enhanced rate. Once the driving is estab-
lished the mode structure varies only minutely �Fig. 10�d��.
Thus, a new nonlinear mode structure is formed. One conse-
quence of this global effect of the localized driving is that in
cases where the driving term happens to have the opposite
sign, it induces a switching of the sign of the global m=1
mode structure at the onset of the nonlinear driving phase.
Such an event can be observed in Fig. 9�b�, where E2,1

mag

performs an under- and overshoot as a result of sign reversal.

FIG. 8. �Color online� Evolution of the m=1 and m=0 modes in case �D-2�.
In �a� the evolution of the magnetic and kinetic energies Emag and Ekin

�Eq. �15�� is shown. In �b� the magnetic and kinetic growth rates �mag and
�kin �Eq. �16�� are plotted. The main stages relevant to the evolution of the
m=1 mode are: �i� establishing the linear mode structure and linear growth,
�ii� nonlinearly driven growth, �iii� reconnection in the inter-resonance re-
gion �annular collapse�. In diagram �b�, the dashed horizontal line in phase
�i� indicates the linear growth rate �lin�m=1�=4.0�10−3 from Fig. 2. The
dashed horizontal line during stage �ii� indicates the expected growth rate
due to nonlinear driving. SHp=106, ReHp=108, �0,m�0=10−7, and the initial
phases for modes m=6–10 are �0m= �0,0 ,� ,� ,0	. Similar behavior is also
found for cases with qs�1, such as �D-1�.

FIG. 9. �Color online� Evolution of the growth rates of the m=1 and
m=0 modes in case �D-2�. As in Fig. 8�b�, but with different initial condi-
tions: �a� The perturbation amplitude is �0=10−12 for all modes, and the
initial phases for the five dominant modes m=6–10 are
�0m= �0,0 ,� ,� ,0	. �b� The perturbation amplitude is �0=10−12 for all
modes, and the initial phases for the dominant modes m=6–10 are
�0m= �0,0 ,0 ,0 ,0	. These results were obtained with a reduced number of
modes, m=0–31, and are not valid far beyond t�1700 �Hp. SHp=106,
ReHp=108.
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VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied the linear instability and
nonlinear dynamics of resistive DTMs for small inter-
resonance distance D12. The results may be summarized as
follows.

The linear growth rates �lin�m� of low-m modes were
found to increase with m. The power law �lin�m2/3 predicted
by the linear theory developed in Ref. 14 agrees with nu-
merical results. The linear growth rates of high-m modes
decrease with m. These modes seem to be outside the scope
of the existing theory. A semiempirical formula for the mode
number of the fastest growing mode mpeak was proposed
�Eq. �13��, based on results of Ref. 14. The estimate for mpeak

is valid only for resistive DTMs. Nevertheless, broad spectra
and high values mpeak are also found when reconnection is
mediated by electron inertia instead of resistivity, as is shown
in a separate paper.21 Also, Eq. �13� does not apply to cases
with more than two resonant surfaces. For instance, for triple
tearing modes �TTMs� both mpeak and the number of unstable
modes are larger than for DTMs under comparable condi-
tions, indicating that a TTM tends to be an even stronger
instability.22

The dominance of several high-m DTMs in configura-
tions with small D12 leads to an annular collapse with small
island structures. This turbulent annular collapse shows that
the nonlinear DTM dynamics in cases with small inter-
resonance distances �dominant high-m modes� are different
from those studied previously by other authors using large
inter-resonance distances �dominant lowest-m mode�. Our re-
sults may be of interest for scenarios, where qmin is gradually
lowered by increasing the off-axis current. Experimentally,
an apparently quiescent passage through low-order resonant
surfaces and thus access to regimes with larger inter-
resonance distance, was found to be possible by applying
additional external drive �e.g., Ref. 7�. MHD activity was

reported after the inter-resonance distance had grown sub-
stantially and the dynamics seem to be dominated by low-m
modes. It is possible that earlier high-m activity predicted by
our simulations is either prevented by the external drive �not
included in our model� or has escaped detection. Through
recent progress in plasma diagnostics, which allows us to
detect high-m magnetic islands on low-order resonant
surfaces,23 experimental checks of our simulation results
may be feasible in the near future.

Before entering the fully nonlinear regime, the fastest
growing modes drive slower modes. For qs=1, this includes
the global m=1 resistive internal kink mode, despite the fact
that the driving is radially localized between the resonant
surfaces. This nonlinear driving experienced by slower
modes is of particular interest for the m=1 internal kink
mode. The nonlinear driving implies that the m=1 mode ap-
pears significantly earlier than would be expected from its
linear growth rate. Hence, the fast growing high-m DTMs
effectively provide a trigger mechanism for the m=1 mode,
similar to the TTM case described in detail in Ref. 15. Note
that, by the time the m=1 mode becomes observable, the
inter-resonance region has already undergone reconnection.
The lack of magnetic shear allows the m=1 mode to grow as
an ideal internal kink instability. In contrast to the TTM case,
there is no sawtooth crash associated with the activity of the
m=1 mode when the inter-resonance distance is small. How-
ever, the rapid excitation of m=1 oscillations observed in our
simulations may be useful in experiments to determine the
instant in time when qmin passes through the qs=1 resonant
surface.

It is important to note that the instability of a broad
spectrum of modes implies that the details of the nonlinear
dynamics depend on the initial conditions used in the simu-
lation. For instance, the efficiency of the nonlinear driving
was shown to depend on the phase relations between the
fastest growing modes �cf. Fig. 9�. Furthermore, the phase
relations determine where the first magnetic islands form. In
principle, it is possible to produce the first magnetic islands
in a poloidally localized region. Although, this discussion of
initial perturbations may seem rather academic, we believe
that it may bear practical importance. For instance, pellet or
neutral beam injection may provide a localized magnetic per-
turbation and possibly form robust helical structures such as
“snakes.”24 Furthermore, if the DTMs are excited by micro-
turbulence, modes with m�mpeak may dominate the annular
collapse, in contrast to the present study, where all modes
were perturbed with similar amplitude so that mpeak became
dominant.

In conclusion, the results presented in this paper may be
relevant to the understanding of the MHD activity near qmin

and may thus be of interest for studies on stability and con-
finement of advanced tokamaks. The results motivate further
research in this direction with more realistic models.
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