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The nonlinear evolution of the m=1 internal kink mode is studied numerically in a setting where the
tokamak core plasma is surrounded by a turbulent region with low magnetic shear. As a starting
point, we choose configurations with three nearby q=1 surfaces where triple tearing modes �TTMs�
with high poloidal mode numbers m are unstable. While the amplitudes are still small, the
fast-growing high-m TTMs enhance the growth of the m=1 instability. This is interpreted as a fast
sawtooth trigger mechanism. The TTMs lead to a partial collapse, leaving behind a turbulent belt
with q�1 around the unreconnected core plasma. Although, full reconnection can occur if the core
displacement grows large enough, it is shown that the turbulence may actively prevent further
reconnection. This is qualitatively similar to experimentally observed partial sawtooth crashes with
post-cursor oscillations due to a saturated internal kink. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2179772�

I. INTRODUCTION

Abrupt ejection of thermal energy and particles from a
magnetized high-temperature plasma is frequently observed
in astrophysical and laboratory plasmas. In the case of toka-
mak experiments, internal disruption events known as saw-
teeth bring about a sudden collapse of the core temperature
through an internal kink instability. A thorough understand-
ing of the underlying physical processes is important for the
efficient operation of a tokamak device and the prospective
application of the tokamak concept for thermonuclear fusion
reactors.

The aim of this paper is to demonstrate the effect of
magnetohydrodynamic �MHD� turbulence on the evolution
of the m=1 internal kink mode. Motivated by recent results
on the instability of current-driven high-m multiple tearing
modes,1,2 we choose configurations with three q=1 resonant
surfaces located a small distance apart. Here, q is the toka-
mak safety factor �measuring the field line pitch� and its
central value is taken to be well below unity �q0�1�. The
plasma is taken to have a finite resistivity to enable magnetic
reconnection. This system is, in addition to the resistive m
=1 internal kink mode, unstable to a broad spectrum of triple
tearing modes �TTMs� with helicity qres=m /n=1. At present,

we neglect two-fluid and kinetic effects and also ignore the
roles of finite pressure and toroidal curvature.

In this setting, we address some open questions with
regard to internal disruptions in tokamaks.3–6 These include
the issue of the rapid onset of a sawtooth crash, known as the
trigger problem, and the possibility of partial reconnection
and compound sawtooth crashes �e.g., Refs. 7–9�. The fast
sawtooth trigger is defined as a sudden transition from slow
growth or stability to rapid growth of the m=1 mode �e.g.,
Refs. 10 and 11�. The partial collapse is defined as a saw-
tooth crash during which the central core region remains in-
tact, so that q0 remains below unity �e.g., Refs. 12 and 13�. It
is clear that explanations for the sawtooth trigger and partial
reconnection events require nonlinear effects. Several pos-
sible mechanisms have been proposed in the past �see, e.g.,
Ref. 5 for a review�. Of particular interest here are scenarios
that consider dynamics related to plasma turbulence.

In regimes where the m=1 mode amplitude is still small,
high-m modes were previously shown to affect the growth of
the m=1 instability. Microturbulence14,15 �oscillating modes�
and TTMs1 �purely growing modes� were found to enhance
the m=1 growth rate. In other related studies, it was shown
that the m=1 mode can be stabilized by local oscillations at
the resonant surface16,17 and microturbulence in the region of
the thin current layer may lead to enhanced effective resis-
tivity and thus faster reconnection.18–21 Conversely, viscosity
may be increased, which reduces the reconnection rate.22 In a
broader sense, magnetic braiding and field line stochasticity
may also be viewed as “turbulent” dynamics, and these were
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also shown to yield enhanced growth rates for reconnecting
modes.23,24 With regard to the long-time nonlinear evolution,
pressure-driven instabilities �e.g., ballooning� were shown to
be able to lead to a saturation of the internal kink at finite
amplitude �partial collapse�.25–27

The scenario considered here is comparatively simple
and includes only a minimum of physical effects. In the first
part of this paper, the case of a TTM-driven internal kink
mode1 is examined and two new results are presented: estab-
lishment of a fast growing m=1 mode structure at low am-
plitudes and, in regimes with high viscosity �Pr�10�, explo-
sive growth during the transition to the turbulent regime.

The transition to turbulence occurs via a partial �annular�
collapse, whereupon a turbulent belt forms around the central
core. Indeed, in Ref. 28 the conjecture was made that partial
sawtooth crashes may be associated with widespread MHD
turbulence in the reconnected region. In Ref. 1 the possibility
for the m=1 mode to saturate in such a state was demon-
strated using a numerical simulation where the core was con-
strained to a linear motion in the poloidal plane.

The second part of this paper deals with the long-term
evolution of the internal kink, while surrounded by a low-
shear region with q�1, governed by MHD turbulence. The
scenario considered here is more generic than that in Ref. 1
since we apply a fully random perturbation and allow each
Fourier mode to alter its poloidal phase angle through inter-
action with other modes. The resulting changes in the kink
flow lead to an irregular or “meandering” motion of the core.
One case is presented where full reconnection occurs even-
tually. In another case, the kink is found to saturate and de-
cay, which shows that the MHD turbulence may prevent full
reconnection.

A reduced model is used for the simulations in order to
obtain first insights on a fundamental level and to lay the
foundations for further investigations with more realistic
models. Physical effects ignored in this work, such as two-
fluid, curvature, and finite-beta effects, may play a significant
role. In future work, it would be interesting to see under
which conditions and in which way these effects alter certain
quantitative and qualitative features of the results presented
here, including the linear and nonlinear instability growth,
the dominant mode numbers in the inter-resonance region,
and the evolution of the internal kink.

This paper is organized as follows. The physical model
is introduced in Sec. II and the numerical method is de-
scribed in Sec. III. The equilibrium used, its linear instability
characteristics, and the initial perturbation applied are given
in Sec. IV. In Sec. V, we present results on the early evolu-
tion of the m=1 mode in the presence of fast-growing high-
m TTMs. The transition to turbulence is treated in Sec. VI
and the long-term evolution is described in Sec. VII. A sum-
mary, further discussions, and conclusions are given in Sec.
VIII.

II. MODEL

We use the reduced set of magnetohydrodynamic
�RMHD� equations in a cylindrical geometry in the limit of
zero beta.29,30 This model has proven to be useful in studies

of MHD instabilities when the focus is on a qualitative de-
scription of fundamental aspects of the magnetized plasma
system, as is the case here. The RMHD model governs the
evolution of the magnetic flux function � and the electro-
static potential �, as described in Ref. 2. The normalized
RMHD equations are

�t� = ��,�� − ��� − SHp
−1��̂j − E0� , �1�

�tu = �u,�� + �j,�� + ��j + ReHp
−1��

2 u . �2�

The time is measured in units of the poloidal Alfvén time
�Hp=��0	ma /B0 and the radial coordinate is normalized by
the minor radius a of the plasma. Here, 	m is the mass den-
sity and B0 the strong axial magnetic field. The current den-
sity j and the vorticity u are related to � and � through j=
−��

2 � and u=��
2 �, respectively.

In order to provide a simple mechanism for magnetic
reconnection, a resistive diffusion term is included in Eq. �1�.
Its strength is measured by the magnetic Reynolds number
SHp=�� /�Hp, with ��=a2�0 /�0 being the resistive diffusion
time and �0=��r=0� the electrical resistivity in the plasma
core. We use SHp=106, which is numerically efficient and
physically reasonable in the framework of the model used.
Flow damping is provided by an ion viscosity term in Eq.
�2�. Viscous dissipation is measured by the kinematic Rey-
nolds number ReHp=a2 /
�Hp, where 
 is the ion viscosity.
Long-time calculations are performed for ReHp=106 and 108,
as will be specified case by case.

In order to ensure that, in the absence of magnetic re-
connection, the equilibrium remains unchanged, the source
term SHp

−1E0 is included in Eq. �1�. With E0= �̂ j̄, it compen-
sates the resistive dissipation of the equilibrium current. The
loop voltage measured by E0 is taken to be constant, so the
resistivity profile is given in terms of the equilibrium current
density distribution as �̂�r�= j̄�r=0� / j̄�r�. For simplicity, the
temporal variation of the resistivity profile �̂ is neglected.

As in Ref. 2, each field variable f is decomposed into an

equilibrium part f̄ and a perturbation f̃ as

f�r,�,�,t� = f̄�r� + f̃�r,�,�,t� . �3�

The system is described in terms of the Fourier modes, �m,n

and �m,n, obtained from the expansion

f�r,�,�,t� =
1

2�
m,n

fm,n�r,t�ei�m�−n�� + c.c., �4�

with m being the poloidal mode number and n the toroidal
mode number. In the following, the �m ,n� subscripts will
often be omitted for convenience. We consider only the dy-
namics within a given helicity h=m /n=const, so the prob-
lem is reduced to two dimensions.

For the description of the dynamics in this system, it is
useful to define the helical flux function �* with correspond-
ing current density j* as
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�* = � +
n

2m
r2 and j* = − ��

2 �* = j −
2n

m
. �5�

The evolution of the individual Fourier modes is described in
terms of their kinetic and magnetic energies,

Em,n
kin = ���m,n�2 and Em,n

mag = ���m,n�2, �6�

and the corresponding nonlinear growth rates,

�m,n
kin �t� =

d ln Em,n
kin

2dt
and �m,n

mag�t� =
d ln Em,n

mag

2dt
�7�

�these are amplitude growth rates, hence the factor 1 /2�. In
Eq. �6�, �fm,n�2	
0

1drrCm�fm,n�r��2, with Cm=0=4 and
Cm�0=2.

III. NUMERICAL METHOD

For the numerical solution of the model equations �1�
and �2�, a two-step predictor-corrector method is applied. In
the first time step, the dissipation terms are treated implicitly,
all others explicitly, and the field variables are estimated at
an intermediate time step t+�t /2. The second is a full time
step, t→ t+�t, with the right-hand sides of Eqs. �1� and �2�
evaluated at the intermediate time step t+�t /2 estimated be-
fore. In the nonlinear regime, the time step size is of the
order �t�10−3.

A total of 128 Fourier modes �including m=0� are car-
ried. The Poisson brackets �f ,g�=1/r��rf��g−�rg��f� are
evaluated in real space. This pseudospectral method has been
applied together with an appropriate dealiasing technique.
The outcomes of the long-term evolution in both cases stud-
ied, full reconnection and kink saturation, were also con-
firmed using 256 Fourier modes.

The radial coordinate is discretized using a nonuni-
formly spaced grid, with a grid density of up to Nr

−1

�1/2000 �1/5000 for numerical checks� in regions where
sharp current density peaks occur. A fourth-order centered-
finite-difference method is applied for the �r terms in the
Poisson brackets. The Laplacians ���m,n�

2 =1/r�rr�r−m2 /r2

are evaluated at second-order accuracy �tridiagonal matrix
equations�.

Periodic boundary conditions are applied in the azi-
muthal and axial directions. At r=1, an ideally conducting
wall is assumed, requiring all perturbations to be identical to

zero at that location, f̃�r=1�=0 �fixed boundary, no vacuum
region�. At r=0, extraneous boundary conditions are applied

to ensure smoothness, �r f̃m=0�r=0�=0 and f̃m�0�r=0�=0.

IV. EQUILIBRIUM, LINEAR INSTABILITY, AND INITIAL
PERTURBATION

The equilibrium state is taken to be axisymmetric �only
m=n=0 components� and free of flows, i.e.,

�̄ = ū = 0. �8�

The equilibrium magnetic configuration is uniquely defined
in terms of the safety factor q�r�, and the magnetic flux func-
tion and current density profiles are obtained though the re-
lations

q−1 = −
1

r

d

dr
�0,0 and j0,0 =

1

r

d

dr

r2

q
. �9�

In this paper, configurations with three resonant surfaces
with qs	q�rsi�=m /n=1, which are located at radii rsi �i
=1,2 ,3�, are considered. The distances between the reso-
nances, Dij = �rsj −rsi�, are chosen sufficiently small, so that
the spectra of unstable TTMs are broad and the dominant
modes have m�O�10�. The equilibrium q�r� profiles used
are shown in Fig. 1. They are obtained using the model for-
mula given by Eq. �11� in Ref. 2 with the parameters in Table
I. The two cases studied are labeled �T-1� and �T-2�.

The dispersion relations �spectra of linear growth rates�
�lin�m� for all unstable eigenmodes are given in Fig. 2 for
case �T-1� and in Fig. 3 for case �T-2�. The linear eigenmode
structures for case �T-1� were shown in Ref. 1 and are similar
for case �T-2�. Let us recall that eigenmode M�1� �with
growth rate �lin

�1�� is associated with the resonant surface r
=rs1 and is an ordinary �single� m=1 internal kink-tearing
mode �stable for m�1�. M�2� �with �lin

�2�� is associated with
rs2 in the sense that it is active in the region 0�r�rs2 for
m=1 and rs1�r�rs2 for m�1. Thus, it may be regarded as
a double tearing mode �DTM�. Finally, M�3� �with �lin

�3�� is
associated with rs3 and may be regarded as the actual TTM
eigenmode. In Figs. 2 and 3, the dominant eigenmodes and
the m=1 mode are indicated by arrows labeled with the cor-
responding mode numbers.

FIG. 1. �Color online�. Safety factor profiles q�r�. Resonant surfaces are
indicated by circles. Model parameters for both cases, labeled �T-1� and
�T-2�, are given in Table I. The profile properties are listed in Table II and
the dispersion relations are shown in Figs. 2 and 3.

TABLE I. Parameter values for the q profiles shown in Fig. 1, using model
formula �11� in Ref. 2.

Case q0 rA �0 �1 m n f1 r11 r12

�T-1� 0.73 0.455 0.93 1.45 1 1 −0.09 0.5406 0.039

�T-2� 0.73 0.455 0.93 1.45 1 1 −0.098 0.5666 0.064

032506-3 Nonlinear evolution of the m=1 internal kink mode¼ Phys. Plasmas 13, 032506 �2006�



The characteristics of the equilibrium configurations are
summarized in Table II, including the values of the resistivity
profile �̂ at the resonances and the poloidal mode number
mpeak of the dominant TTM eigenmode obtained from Figs. 2
and 3. We will see that the value of mpeak is an important clue
for the interpretation of the nonlinear dynamics since it dic-
tates a structure size that is most likely to be encountered in
the poloidal direction.

Starting from an unstable equilibrium, the instability is
excited by applying an initial perturbation of the form

�̃�t = 0� =
1

2 �
m=1

31

�0,mr�r − 1�eim��*+�0,m� + c.c., �10�

where �0,m=10−11 is the perturbation amplitude and �*

	�−qs
−1� is a helical angle coordinate. Each mode has an

initial poloidal phase shift �0,m with a randomly assigned
value in the range �0,m� �0,�.

V. EARLY DYNAMICS: ESTABLISHMENT OF
NONLINEAR MODE STRUCTURE AND FAST GROWTH
OF THE m=1 MODE

Due to the disparate growth rates between the m=1
mode and the fastest growing TTMs �here, �peak�5
��lin�m=1�; cf. Figs. 2 and 3� nonlinear interactions begin
already in regimes where mode amplitudes are still small. In
this section, we focus on these early stages of evolution
where turbulence has not yet developed. They are most con-
veniently studied by considering the dynamics of individual
Fourier modes. Results are presented only for case �T-1�,
using SHp=106 and ReHp=106. Similar behavior is observed
in case �T-2�.

Figure 4�a� shows the evolution of the kinetic energies of
the m=1 mode and the two fastest growing modes mpeak

=13 and m=14 �cf. Fig. 2�. The corresponding growth rates
are shown in Figs. 4�b� and 4�c�. It can be seen that the m
=13 and 14 modes grow at their linear growth rates until t
�170 and saturate during 170� t�200. The m=1 mode
grows linearly until t�100 �phase �i� in Fig. 4�. Subse-
quently, its growth rate increases and exponential growth
continues at an enhanced rate during 100� t�170 �phase
�ii��. Upon entering the nonlinear regime, the m=1 growth
rate drops �phase �iii��.

The enhanced growth during phase �ii� is due to nonlin-
ear driving by the fastest growing modes, predominantly
mpeak=13 and mpeak±1. Since �lin�mpeak���lin�mpeak±1�, the
driven growth rate of the m=1 mode is �drive�2�lin�mpeak�
�16�10−2. The purely nonlinearly driven m=0 mode
grows at the same rate, as can be seen in Fig. 4�b� �phases �i�
and �ii��. Note that in the present case �drive, this is almost
one order of magnitude higher than the linear growth rate of
the m=1 mode, �lin�m=1�=1.7�10−2.

The effect of the nonlinear driving on the m=1 mode
structure can be seen in Fig. 5. In Fig. 5�a�, the linear mode
structure of the TTM-type eigenmode is plotted, specifically
the flux function �lin

�3��m=1�. The shapes of the driving terms
arising from the convective nonlinearity �� ,�� in Eq. �1� are
plotted in Figs. 5�b� and 5�c�. In Fig. 5�d�, it can be seen how
this radially localized driving appears in the nonlinear m=1
mode structure �drive�m=1� in the form of “spikes” located
near the resonant surfaces. It is particularly remarkable that,
after a certain ratio between the amplitudes of the driving
component �around rs3� and the component remaining from
the linear eigenmode structure �in the region 0�r�rs1� is
reached, the mode structure does not change further � Fig.

TABLE II. Properties of the q profiles shown in Fig. 1. The mode number of
the fastest growing mode, mpeak �cf. Figs. 2 and 3�, is valid for SHp=106 and
ReHp=106 �case �T-1��, ReHp=108 �case �T-2��.

Case D12 D23 s1 s2 s3 �1 �2 �3 mpeak

�T-1� 0.053 0.043 0.35 −0.56 1.20 1.7 1.1 3.5 13

�T-2� 0.052 0.052 0.23 −0.23 0.59 1.6 1.2 1.9 13

FIG. 2. �Color online�. Spectra �lin�m� of unstable eigenmodes in case �T-1�
for SHp=106 and ReHp=106. The growth rates �lin

�1�, �lin
�2�, and �lin

�3� of the three
eigenmodes M�1�, M�2�, and M�3� �cf. Fig. 4 in Ref. 2� are shown.

FIG. 3. �Color online�. Spectra �lin�m� of unstable eigenmodes in case �T-2�
for SHp=106 and ReHp=108. The growth rates �lin

�1�, �lin
�2�, and �lin

�3� of the three
eigenmodes M�1�, M�2�, and M�3� �cf. Fig. 4 in Ref. 2� are shown.
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5�d�, t=140–160� and grows as a whole at the enhanced rate
�drive. Thus, a new fast growing global m=1 mode is created
through radially localized driving. Comparisons made with
other simulation runs indicate that the relative size of the
driving component and the peak in the region 0�r�rs1 in
the established nonlinear mode structure depends on the ratio
between �drive and �lin�m=1�: If �drive /�lin�m=1� is large, the
driving component �around rs3� has a large amplitude com-
pared to the kink component �0�r�rs1�, and vice versa.

VI. BEHAVIOR OF THE m=1 MODE DURING THE
TRANSITION TO TURBULENCE

Let us now consider the transition to the fully nonlinear,
turbulent regime. In Fig. 4, this transition takes place via a
gradual decrease in the growth rates during phase �iii�. How-
ever, it turns out that this is only the case in regimes where
the effect of viscosity is negligible. In Fig. 6, the evolution of
the nonlinear growth rates �1,1

mag, �1,1
kin, and �0,0

mag is shown for
magnetic Reynolds numbers SHp=106 ,107 ,108 �from left to
right� and the kinematic Reynolds numbers ReHp

=105 ,106 ,107 �from top to bottom�. Thus, the Prandtl num-
ber Pr, which measures the relative strengths of viscosity and
�resistive� diffusion �Pr=SHp/ReHp�
 /�0� varies over the
range 10−1�Pr�103 �bottom left to top right�. The growth
rate of the m=0 mode, �0,0

mag, is shown since it clearly reflects
the level of nonlinear driving at all times. Qualitatively, the
results in Fig. 6 may be summarized as follows:

1. Pr�0.1 � Fig. 6�g��: During the transition to the nonlin-
ear regime, �1,1

kin first decreases slowly �t�150–180� and
then drops rapidly. Similar behavior is observed for Pr
=10−2 and is also expected for Pr�10−2.

2. Pr�1 � Figs. 6�d� and 6�h��: Compared to the results
obtained with lower Pr, �drive is now reduced due to the
stabilizing effect of the viscosity on �lin�m� �cf. Fig. 5 in
Ref. 2�. During the transition to the fully nonlinear re-
gime, �1,1

kin remains high for a certain period of time and
may exhibit oscillatory behavior as in Fig. 6�h� before
dropping.

3. Pr�10,102 ,103 � Figs. 6�a�–6�c�, 6�e�, 6�f�, and 6�i��:
The growth rate �drive is further decreased due to higher
viscosity. However, at the end of the driving phase a
significant increase in the growth rate from �drive

�2�peak to a value �max �indicated in Fig. 6�b�� is ob-
served. This effect is most pronounced in the kinetic
growth rate �1,1

kin. Note in particular that �max can get
close to the value of �drive obtained for Pr�1 �compare,
e.g., Figs. 6�b�, 6�e�, and 6�h��. It is likely that this be-
havior can also be observed for Pr�103.
Let us note that during this rapid growth, the nonlinear

interactions already include many Fourier modes. We suspect
that the explosive growth phase observed here for Pr�10 is

FIG. 4. �Color online�. Early evolution in case �T-1�. �a� Kinetic energies
Em,n

kin �Eq. �6�� of the m=1 mode and the two fastest growing modes m=13
and 14. �b� and �c� Magnetic and kinetic growth rates �m,n

mag and �m,n
kin �Eq.

�7��. The main stages to be distinguished are �i� linear growth, �ii� nonlin-
early driven growth, and �iii� transition to the fully nonlinear �turbulent�
regime. The value of the driven growth rate expected during stage �ii� is
�drive�2�lin�mpeak��16�10−3, as indicated in �b�. SHp=106, ReHp=106.

FIG. 5. �Color online�. Effect of the nonlinear driving on the m=1 mode
structure. In �a� the linear mode structure of the fastest growing m=1 eigen-
mode, �lin

�3��m=1�, is shown. The two fastest growing modes, mpeak=13 and
mpeak+1=14 �cf. Fig. 2�, give rise to a rapidly growing radially localized
m=1 component through the convective nonlinearity �� ,�� in Eq. �1�. In �b�
and �d�, the structures of the two main terms are plotted ��b� dominates�. In
�d� we show the situation before �t=120� and after the new fast growing
m=1 mode structure is established �t=140 and 180�. The curves in �a� and
�d� are scaled such that the amplitude of the internal kink component �0
�r�rs1� is the same at all times. Resonant surfaces are indicated by dotted
vertical lines.
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due to these nonlinear interactions becoming more important
than viscous damping. The latter had reduced �drive through a
reduction of the linear growth rates �lin�m�.

VII. ANNULAR COLLAPSE AND EFFECT OF MHD
TURBULENCE ON THE INTERNAL KINK

In this section, we investigate the long-term evolution in
cases �T-1� and �T-2� �Fig. 1�. We describe the magnetic and
E�B flow structures generated through TTM reconnection
and analyze the evolution of the m=1 internal kink mode
while it is surrounded by MHD turbulence. The values for
the dissipation parameters in case �T-1� are SHp=106 and
ReHp=106, as in Sec. V. For case �T-2�, we choose SHp

=106 and ReHp=108.

A. Case „T-1…: Annular collapse and full reconnection

We begin with a discussion of snapshots taken in case
�T-1�, which are shown in Figs. 7 and 8 and labeled �A�–�F�.
The initial perturbation is sufficiently random so that recon-
nection occurs all around the core �Fig. 7�a��. However, it is
not isotropic, so that some magnetic islands grow faster than
others. The sizes of the islands reflect the shape of the spec-
trum of linear growth rates �lin�m� with dominant modes
having m�mpeak=13 �cf. Fig. 2�. During this annular col-
lapse, the amplitude of the m=1 mode is still small and the
q�r� profile is flattened annularly �Fig. 7�a��. The magnetic
islands in the inter-resonance region exhibit complicated

coalescence dynamics and a turbulent annular region is cre-
ated around the core �Figs. 7�b� and 7�c��. In the meantime,
the core displacement becomes observable. The core
traverses the turbulent belt �Figs. 8�d� and 8�e�� and upon
making contact with the flux surfaces beyond the outermost
resonant radius �r=rs3� core reconnection begins �Figs. 8�e�
and 8�f��. In the present case, �T-1�, core reconnection is
likely to proceed to completion, i.e., full reconnection is ex-
pected. For completeness, the evolution of the m=1 energies
and growth rates is shown in Figs. 9�a� and 9�b�, respec-
tively.

An important observation is the following. While the
m=1 mode was originally perturbed with �0,m=1=0 �i.e.,
core motion in the positive x direction�, the kink flow con-
tinuously changes its direction, as is obvious from the arrows
drawn along with the � contours in Figs. 7 and 8. Note that
the core does not rotate; merely the direction of its transla-
tional motion alters �in RMHD, �0,0=0 at all times if it is
zero initially�. The core’s motion is quantified and shown in
more detail in Fig. 9�c�, using the angles �mag

kink and �kin
kink.

These are defined as

�mag
kink = tan−1� drr Im��1,1�r��

� drr Re��1,1�r��� , �11a�

FIG. 6. �Color online�. Effect of varying SHp and ReHp on the evolution of the m=1 mode, described in terms of �1,1
kin �dashed line� and �1,1

mag �solid line�. The
growth rate of the m=0 mode is plotted as well �dash-dotted line�, showing the level of nonlinear driving starting at t=0. We distinguish between linear growth
��lin� and nonlinearly driven growth due to the fastest growing modes ��drive�. For Pr�10, explosive growth follows, up to a maximum growth rate �max, as
indicated in �b�. The time interval shown is from t=50 �after the transient relaxation� until the annular collapse and onset of MHD turbulence. The
configuration used is case �T-1�. The data for Pr=1 in �d� are the same as in Fig. 4�b� above and in Fig. 5 of Ref. 1.
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FIG. 7. �Color online�. Annular collapse and long-term evolution in case �T-1�. The first three snapshots taken at �a� t=200, �b� t=240, and �c� t=280 are
shown �continued in Fig. 8�. Each snapshot consists of contour plots of the helical flux �* �left� and the electrostatic potential � �right�. Arrows indicate the
flow directions. The dashed circles indicate the outermost � contour of the core and have been superimposed on the � contours for clarity. The small diagrams
in the middle show the instantaneous profiles q�r , t� and �j*�	�j*�r , t��0,0. SHp=106, ReHp=106.
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FIG. 8. �Color online�. Long-term evolution in case �T-1�. Continuing Fig. 7, snapshots were taken at �d� t=400, �e� t=650, and �f� t=730. Arranged as Fig.
7. SHp=106, ReHp=106.
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�kin
kink = − tan−1� drr Re��1,1�r��

� drr Im��1,1�r��� �11b�

�integration interval: 0�r�0.07� and give an approximate
image of the core’s motion when the kink amplitude is not
too large. During the linear phase �i� both angles are zero, in
agreement with the initial perturbation. During the driving
phase �ii� the angles switch to �mag

kink��kin
kink�3° �determined

by the driving modes�. After the transition to turbulence in
phase �iii�, the direction of the kink flow varies frequently, so
that the core’s motion becomes rather complicated.

B. Case „T-2…: Kink saturation and partial reconnection

Here we discuss the long-term evolution in case �T-2�.
Snapshots are presented in Figs. 10 and 11. In Fig. 12, the
evolution of �a� the m=1 energies, �b� corresponding growth

rates, and �c� the core’s location and kink flow direction are
shown. Note that the early evolution is very similar to that of
case �T-1� described in Sec. V: It consists of �i� linear
growth, �ii� nonlinearly driven fast growth, and �iii� transi-
tion to the turbulent regime with gradually decreasing
growth rates �here Pr=0.01�. We may thus omit the further
discussion of these stages, referring to Sec. V above.

Similarly to case �T-1�, the first macroscopically observ-
able event is an annular collapse due to high-m TTMs with-
out significant displacement of the core � Fig. 10�a��. Again,
the q�r� profile is flattened in the inter-resonance region.
Subsequently, the m=1 mode grows inside the turbulent belt
�Fig. 10�b��. However, in contrast to case �T-1�, here the m
=1 mode saturates after reaching a relatively large amplitude
�Fig. 10�c��. This occurs at t=962, as can clearly be seen in
the m=1 magnetic energy, E1,1

mag, and the associated growth
rate, �1,1

mag �Figs. 12�a� and 12�b��. The direction of the kink
flow reverses, as is obvious from snapshots �C�–�E� �Figs. 10
and 11� and from the 180-degree jump in �kin

kink in Fig. 12�c�.
Afterwards, the kink amplitude decays �Fig. 11�e��, over-
shoots, and grows again in a different direction �Fig. 11�f��.

The saturation of the m=1 mode observed here seems to
be due to an island-like structure developing “in front” of the
displaced core, when the latter approaches the periphery. The
island remains trapped, i.e., it is not expelled in the poloidal
direction. Consequently, core reconnection takes place at two
separate points which in the present case are located an angle
���116° apart, as indicated in Fig. 10�c�. Since each re-
connected flux surface adds to the island’s width, this struc-
ture can counter the internal kink, induce a rebound, and
send the core back into the center. This scenario is realized in
the present case.

C. Modulation of the kink flow

In addition to the kink flow changing its direction, at
certain times we observe an m=1 modulation of the � con-
tours in the core’s interior. In case �T-1�, this occurs around
t=400, snapshot �D� �Fig. 8�. This modulation of the E�B
drift velocity is not strong enough to visibly alter the � con-
tours in the core, which therefore remain circular �not
shown�. Further details can be seen in Fig. 13, where the
profile of the radial velocity vr�� /r is shown at several
times in the interval 360� t�510. Some peaks in vr, like
those near the magnetic axis, perform oscillations in the
manner of a standing wave �left-hand side in Fig. 13�b��.
Other peaks, like those in the region 0.2�r�0.35, do not
change their signs until about t�500 �Fig. 13�c��. The radial
wavelength of the modulation is observed to change rela-
tively slowly. Typically, it measures between 1/2 and 1/5 of
the core’s radius. Realizations of this m=1 modulation can
also be observed in case �T-2� �Figs. 10 and 11�.

VIII. DISCUSSION AND CONCLUSIONS

We have studied the nonlinear evolution of the m=1
internal kink mode in a configuration with three q=1 reso-
nant surfaces where high-m TTMs are strongly unstable and
lead to an annular collapse. The latter leaves behind a turbu-
lent belt around the unreconnected core plasma. The simula-

FIG. 9. �Color online�. Long-term evolution of the m=1 mode in case �T-1�.
�a� Magnetic and kinetic energies E1,1

mag and E1,1
kin. �b� Magnetic and kinetic

growth rates �1,1
mag and �1,1

kin. �c� Motion of the core in the kink flow with
dominant mode number m=1. The magnetic axis is located at the poloidal
angle �mag

kink and is moving in the direction �kin
kink �in the poloidal plane at �

=0� �see definitions in Eq. �11��. In �a�, �b�, and �c�, the times at which
snapshots were taken are indicated by circles and labeled �A�-�F� �cf. Figs.
7 and 8�.
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tion results show that high-m TTMs and MHD turbulence,
which are localized in an annular region, are able to strongly
affect the evolution of the m=1 internal kink mode, which is

a global instability. We conclude that multiple tearing modes
�here, TTMs� and MHD turbulence may play a significant
role during partial, compound, or full sawtooth crashes in

FIG. 10. �Color online�. Annular collapse and long-term evolution in case �T-2�. The first three snapshots taken at �a� t=500, �b� t=750, and �c� t=950 are
shown �continued in Fig. 11�. SHp=106, ReHp=108.
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tokamak plasmas, as will be discussed in the following.
In the beginning, a fast sawtooth trigger, defined as a

sudden transition from slow to rapid growth, was realized:

after a phase of slow linear growth, rapidly growing q=1
TTMs give rise to a new fast growing nonlinear m=1 mode.
This instability reaches an observable amplitude within a

FIG. 11. �Color online�. Long-term evolution in case �T-2�. Continuing Fig. 10, snapshots were taken at �d� t=1000, �e� t=1200, and �f� t=1500. Arranged
as Fig. 7. SHp=106, ReHp=108.
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time much shorter than expected from the linear growth rate.
Moreover, the transition to the fully nonlinear �turbulent� re-
gime occurs via a phase of explosive growth when the
Prandtl number is large �Pr�10�. As proposed in Ref. 1, this
enhancement of the m=1 mode due to high-m TTMs is a
possible mechanism for the fast sawtooth trigger, provided
that multiple q=1 resonant surfaces are formed during the
sawtooth ramp.

During the further evolution, the turbulence in the col-
lapsed annular region was seen to alter the direction of the
kink flow responsible for the core displacement. Both con-
tinuing growth �case �T-1�� and saturation of the kink �case
�T-2�� were observed, which shows that full as well as partial
reconnection may occur in this setting. It was also found that
the effect of the turbulence was not limited to the collapsed
annular region and the overall motion of the core inside this
turbulent belt: Perturbations of the electrostatic potential
were even found to penetrate into the central core region in
the form of an m=1 modulation on top of the kink flow.

The converse effect, i.e., the influence of the core dis-
placement on the surrounding turbulence, has not been ad-
dressed and is left for future study. This is expected to be
important since �a� the core displacement changes the geom-

etry of the turbulent region and �b� the return flows of the
internal kink are likely to interact with the turbulence. One
particular question to be addressed is whether and how the
core contributes to the formation of the trapped island that
prevents further reconnection in case �T-2� �cf. Fig. 10�c��.

Our results agree with some aspects of the partial saw-
tooth crash scenario suggested in earlier studies: A “shoul-
der” on the q�r� profile forms where q�1, and this region is
governed by electromagnetic turbulence �e.g., Refs. 28, 31,
and 32�. Indeed, the conjectures made by these authors imply
that continued growth of the m=1 mode �as in case �T-1��
must be prevented by some means, so that the partial col-
lapse remains partial. We have demonstrated that MHD tur-
bulence is one possible mechanism leading to a saturation of
the internal kink �as in case �T-2��. The residual core dis-
placement may then account for the post-cursor oscillation

FIG. 12. �Color online�. Long-term evolution of the m=1 mode in case
�T-2�. Arranged as Fig. 9. In �a�, �b�, and �c�, the times at which snapshots
were taken are indicated by circles and labeled �A�-�F� �cf. Figs. 10 and 11�.

FIG. 13. �Color online�. Evolution of the m=1 modulation on the radial
displacement velocity profile vr�� /r in case �T-1�. �a� Complete vr profile
along the poloidal angle �=15°, i.e., roughly where the magnetic axis is
located. The time is t=400 and coincides with snapshot �d� in Fig. 8. �b�
Temporal evolution of the m=1 modulation in the interval 360� t�510
�from top to bottom�. The radial location of the magnetic axis varies as
indicated by the circles �e.g., raxis�t=360�=1.6�10−2 and raxis�t=510�
=2.7�10−2�. The average radial velocity of the core is about v̄r�0.7
�10−2 �in a /�Hp�. �c� Same data as in �b� but in the radial interval 0.1�r
�0.5 and scaled up for clarity.
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observed experimentally after partial reconnection events
�e.g., Refs. 33 and 34�.

The fact that the long-term calculations in the two cases
considered here have different outcomes, namely full recon-
nection in case �T-1� and partial reconnection in case �T-2�,
requires commenting on. Note that the initial conditions do
not differ largely, except for the linear growth rates in case
�T-1� being twice as high as in case �T-2� due to a higher
magnetic shear �cf. Figs. 2 and 3�. While we were able to
demonstrate that MHD turbulence provides prerequisites for
a saturation of the internal kink, the ultimate goal of deter-
mining quantitative criteria for partial reconnection requires
further investigations using more realistic physical models.
As mentioned in the Introduction, potentially important ef-
fects to be considered include two-fluid, curvature, and
finite-beta effects. In particular, if some of these would be
found to have a stabilizing influence on the high-m modes,
which are essential in the present work, the results may be
altered. To our knowledge, such studies have not been con-
ducted for a comparable scenario, i.e., strongly coupled mul-
tiple tearing modes such as DTMs or TTMs.

In this study, MHD turbulence was generated through
current-driven resistive TTMs, requiring multiple q=1 reso-
nant surfaces. The inclusion of a collisionless reconnection
mechanism is expected to yield higher kinetic energies35 and
thus stronger turbulence interacting with the internal kink.
Furthermore, we conjecture that our principal result, namely
that the internal kink mode can be strongly affected by
tearing-mode-driven MHD turbulence, will also apply when
the latter is generated by some other means, such as
pressure-driven MHD or micro-instabilities.36

Let us note that there are several other mechanisms that
were proposed as possible explanations for the rapid collapse
and partial crash phenomena, which were discovered assum-
ing different precrash conditions �e.g., Ref. 5 and references
therein�. However, the currently available experimental data
are not yet conclusive enough to rule out one proposed saw-
tooth crash scenario or another. Moreover, the detailed evo-
lution may vary between different machines, shots, and even
between sawtooth crashes of a single discharge.

Through recent progress in plasma diagnostics, it has
become possible to detect high-m magnetic islands associ-
ated with low-order q=m /n resonant surfaces.37 Thus, ex-
perimental checks of our simulation results seem feasible in
the near future.
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