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Nusselt number scaling in tokamak plasma turbulence
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Anomalous heat transport caused by ion temperature gradiggj driven turbulence in tokamak
plasmas is evaluated from numerical simulations of the two-dimensi@mal partial-differential
equations of the ITG model and of a reduced 1D version derived from a quasilinear approximation.
In the strongly turbulent state, intermittent bursts of thermal transport are observed in both cases. In
the strongly turbulent regime, the reduced model as well as the direct numerical simulation show
that the Nusselt number Nmormalized heat fluxscales with the normalized ion pressure gradient

Ki as Nux Ki”g. Since the Rayleigh number for ITG turbulence is proportionaKiothe Nusselt
number scaling for ITG turbulence is thus similar to the classical thermal transport scaling for
Rayleigh—Bénard convections in neutral fluids.2@805 American Institute of Physics

[DOI: 10.1063/1.1895165

. INTRODUCTION In the previous work$'? the authors presented a low
degree-of-freedoni.e., low dimensional model with the

Turbulence driven by microinstabilities in magnetically first 18 lowest order components for the toroidal ITG mode,
confined fusion experimental devices such as tokamaks anghich consists of the 18 ordinary differential equations
stellarators has been extensively studied in an attempt to COODES. In numerical simulations based on this model, inter-
trol and suppress anomalously large heat and particle trangnittent bursts of thermal transport are observed when the
port observed in those devices. Understanding the nature @fstem becomes sufficiently unstable. The intermittency is
such microturbulence is generally considered to be one of theaused by the competition among three mechanisms(ie.,
most important issues for confinement studies of fusion rethe onset of ITG instability(2) the generation of sheared
actors. flows, and(3) viscous damping of the sheared flows, as sum-

The ion temperature gradieffTG) mode (also known  marized in Ref. 10. To the best of the authors’ knowledge,
as thez; mode is an electrostatic microinstability with low the 18 ODE model is the lowest order model derived from
frequencies. It is a modified ion acoustic wave coupled withthe full ITG fluid model that exhibits intermittent transport,
the drift wave, which becomes unstable due to the free ensimilar to what is observed in more complete modéts
ergy carried by an ion acoustic wave along the magnetic fielgtor example, Liret al1* have shown intermittent oscillations
lines when the ratio of the ion temperature gradient to denpf jon thermal transport in large-scale gyrokinetic simula-
sity gradient becomes sufficiently larg&he ITG driven tur-  tions for ITG driven turbulence. In another work using also
bulence is generally regarded as the main cause of anomggrokinetic simulations, a period-doubling route to chaos
lous ion thermal transport in the hot core regions Ofyth nonlinear oscillations has been observed close to the
tokamaks and stellarators. _ ~ marginal stability during the nonlinear evolution of the

The ITG mode has two branches, i.e., §rdlmnd toroi-  modulation instability with monochromatic pump wae.
dal modes™'® The toroidal ITG mode is driven by the Using a spectral predator-pray model which couples drift
Rayleigh—Taylor interchange mechanism and has essentiallyayes with zonal flow excitations, a bursty behavior was
two-dimensional fluid instability characteristi®8The toroi-  41c0 found near marginal stabilit§:X’
dal ITG mode is localized in the outer region of the torus and  The solutions obtained from tﬁe 18 ODEs, however, usu-
generally has a higher growth rate than the slab mode iny gitfer from those of the original partial differential equa-
toroidal magnetic ge_ometry. In the present work, thereforetions(PDEs} governing the toroidal ITG mode. In this paper,
we focus on the toroidal ITG mode. we first solve the original PDEs numerically and compare the
y S : thermal transport scaling obtained from these equations with
i ectronic mail: takeda@up.univ-mrs.fr that from the 18 ODE models It is shown that there is a
Electronic mail: benkadda@up.univ-mrs.fr L S . .

significant quantitative difference in thermal transport scal-

®Electronic mail: hamaguch@ppl.eng.osaka-u.ac.jp : :
YDeceased. ing between these two models. We also solve numerically a
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one-dimensiona(1D) model for the ITG mode, which is a scale lengths for the equilibrium density and ion temperature
quasilinear version of the PDE model mentioned above bugradients.
has more mode structures in the radial directiom., the The toroidal ITG mode is driven by the Rayleigh—Taylor
direction of the ion temperature gradigtihan those of the interchange mechanism. This mechanism is essentially the
18 ODE model. The 1D simulation results are compared wittsame as those of the Rayleigh—Bénard convection in neutral
those obtained from the full PDE and 18 ODE models. Leffluids and the resistive interchange instability in the edge
us note that similar 1D models were derived for resistiveplasmas. Based on this fact, we can define the following
interchange turbulence as well as for resistive ballooning turRayleigh number Ra for ITG mode similar to those of the
bulence in previous work€*®where it was also shown that above two instabilities as
intermittent bursts(so-called avalanchgsoccur when the Ra= gK-L3/( «)
system is in the strongly turbulent state. X WA
In this work, based on both 1D and full PDE models of whereL, is the domain size in the direction. The Rayleigh
ITG turbulence, we shall present the anomalous thermahumber is the ratio of the buoyancy force to viscous force,
transport scalings in the hot core region of a tokamak plasmand characterizes the effect of driving force which generates
as the Nusselt number dependence on the normalized ighermal convections in the system. We note that the Rayleigh
pressure gradient. In the edge region of a tokamak plasmaumber is proportional to the ion pressure gradient, i.e., Ra
on the other hand, other types of instabilities such as resistive K;.
interchange modes play more significant roles in determining
the thermal transpo?‘ﬁ
The rest of this paper is organized as follows. In Sec. Il,
the PDEs governing the toroidal ITG mode are presented. Let us now discuss the linear growth rates of toroidal
The linear analysis of these equations as well as the numenrdTG modes given by the equations above. Assuming fluctua-
cal algorithm to solve them are also discussed briefly theretions depend on the positiofx,y) and timet in the form
In Secs. Ill and IV, simulation results are shown for both full exp(ikx+iky—iwt), we linearize Eqs(1) and(2) and obtain
PDE and 1D models. Discussion and conclusions are givethe dispersion relation as follows:

B. Linear analysis

in Sec. V. [ (1 +K ) + k(1 — g~ KiK) + uk 1(= o + k)
Il. MODELS - gKik;=0.
A. Toroidal ITG equations By solving this quadratic equation for the complex wave

The following vorticity and ion pressure equations arefrequencyw, we obtain

known to describe the toroidal ITG mofe: LY (1 g-K; k |[Kk2 1 +12 2)

o= 2
d 2(1+k7)
Ao+ [T al= (g kT g :
(9y + Mki] + \e“Dk}
+uvivie D with
and Dy = {ky(1 =g = Kik?) + [k (1 +K5) = uk 12
P i (o) =-K 2+ T2, @ -4 +kgk.
at p oy 1P
From the linear growth rate/=Im(w) estimated from the
where above expression, one readily finds that the growth rate be-
g saib comes the largest when the wave numbgrandk, satisfy
[a,b]= -——
X X 1-g
au N k>2< < k32, ~ kﬁ_ = T

are Poisson brackets. Hegeis the electrostatic potentigp, !

is the ion pressurg is the effective gravity due to the mag- In what follows, we select the mode satisfying
netic curvaturekK; is the ion pressure gradient, is the vis- _ _ 12

cosity, andk is the thermal conductivity. The position in the = ky/2 =[(1 = 0)/5K]] ®

slab is given by(x,y) with thex andy directions correspond- as the fundamental mode and solve the nonlinear dynamics
ing to the radial and poloidal directions in a toroidal geom-of it and its harmonics numerically.

etry andt represents time. Note that the gradients of mean

guantities(such as mean ion temperature and density gradi-
ent9 are present in th& direction only. The quantities used
in the equations above follow the standard normalizatfons. Equations(1) and (2) are solved in the domain <9x
The normalized ion pressure gradigdt is defined asK; <L, and Osy=L,, where we set,=m/k, andL,=2m/k,
=(1+7)Ti/Tewith 5 =L,/Ly=dIn T;/dIn ny, whereT;, T,  for k, andk, given by Eq.(3). We use the spectrum method
andng denote the equilibrium ion and electron temperaturesn thex andy directions and expang andp into the Fourier
and plasma density, respectively, andandLy; denote the series as follows:

C. Numerical procedures
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Ny N 0.001

P(txy) = 2 2 [¢f (Dsin(tkx)cosmky) @

€=1m=0

+ %?,m(t)Sin(ekXX)Sin(mls,y)], (4) ¥ 0.0005 |
Ne Ny

ptxy) = 2 2 [ (Dsin(tkx)cogmky) 0
(=1 m=0

(=1m= - —
+ ﬁ?vm(t)sinwkxx)sin(mK,y)], (5) 2 10 ll‘ |

where¢ andm are the mode numbers akg andk, are the 2000 4000 6000 8000 10000
minimum wave numbers in theandy directions. Note that !
we haveN, andNy+1 modes in the the& andy directions.  giG. 1. Time evolutions ofa) kinetic energie™™@, Ko, K, 1, K5 1, andKs
By substituting Egs(4) and (5) into Egs.(1) and (2), we  and(b) the Nusselt number Nu obtained from full PDE simulations Ker
obtain ODES for the Fourier coefficiens’s, andp¢s, Note =91
that the 18 ODE model presented in Ref. 10 is reproduced if
one setdN,=3 andN,=1.

Each Fourier component is numerically solved in timegiven byK;.=0.045. In actual simulations for full PDEs, we
with the fifth-order Runge—Kutta method. From the solu-employ N,=32 andN,=15, which we have confirmed are
tions, we evaluate the total kinetic energy of the system delarge enough to represent the solutions of PDEs, Bgsnd

fined as (2), correctly for the parameters used here.
WhenK;=0.1, which is slightly above the threshold, the
Ktotal = 1 f [¢°+(V, p)?ldVIV = l<¢,2 +(V, )y system reaches a steady state after nonlinear saturation with
2 2 almost no sheared flow. Figure 1 presents time evolutions of

as a function of time, whergdV/V=( ), denotes the volume the kinetic energies and Nusselt number under such condi-

average. The mean poloidal flow is the=0 component of tions. In this case, the total kinetic energ{?®® is essentially
flow in the y direction, ie., V,=[(-d/)dylL, equal to that of thé¢,m)=(1,1) mode and the kinetic ener-

=—(a/ x),, and its kinetic energy is given by gies of other fluctuation components suchigs K, ;, and
Ny Ks,1 are negligibly small. The trajectory in the phase space

B 9 2 e 2 for “the kinetic energy of sheared mean fld vs Nusselt
Ko= 4212(1 + KD (hr.0)° number Nu” and the power spectrum density of kinetic en-
h ergy K, ; are shown in Figs. (@) and 2b), which indicate
Similarly the kinetic energy of théf,m) component of fluc- that the system converges to a fixed point, i.e., a fixed steady
tuations(m# 0) may be evaluated through the relatians state.

=d¢l dy andvy=—d¢/Ix as Figure 3 shows time evolutions of the kinetic energies
1 and Nusselt number, Fig.(@ the trajectory in the phase
Kem= é(l +0AC + n12k§)[(¢§qm)2+ (7 m?1, space Kq-Nu,” and Fig. 4_b) the power spectrum density of
K1 for Ki=0.2. Unlike Fig. 1, the system first reaches and
for ¢=1,---,N, andm=1,---,N stays in a steady state with higher anomalous transpert

y*
Anoma'ous heat transport is characterized by the ConNU) for a while and then moves to another Steady state with

vective heat flux” and Nusselt number Nu, which are de- lower anomalous transport and a larger sheared mean flow
fined as (i.e., Ko). This transition from a high Nu state to a low Nu

state with the increase of sheared mean flows may remind
T(x,t) _J pu,dy/L, = <pvx>y one of anL-H trans_ition(i.e._, transition from a low _confine-
ment mode to a high confinement modshserved in toka-
maks. SimilarL-H-like transitions are also seen in the solu-
tions of the low-degree-of-freedom modéfs.
<pvx>v Figure 5 shows that, with the increase Kf up to K;
Nu() f(KK * pvx) /(KK) 1+ K =0.3, the system bifurcates to a periodic oscillatory state.
The trajectory in the phase spa€g-Nu is attracted to a limit
cycle, as shown in Fig. (6). The power spectrum density
IIl. DIRECT NUMERICAL SIMULATIONS OF ITG shown in Fig. 6 also indicates such periodicities.
MODEL WhenK; is further increased, chaotic oscillations appear.
Figure 7 shows time evolutions of the kinetic energies and
In this section, direct numerical solutions of E¢F.and  Nusselt number foK;=0.9. Figures &) and 8b) give the
(2) are presented and anomalous transport arising from IT@ajectory in the phase spa&g-Nu and the power spectrum
turbulence is discussed. The parameters used for the simuldensity forK;=0.9. The trajectory follows a complex path
tions areg=5%x1072, u=4x1073, and k=1x 102 Under and the power spectrum exhibits continuous components.
these parameters, the instability threshold for paranéter In strongly turbulent regime df; = 3, intermittent bursts

and
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FIG. 2. (a) Trajectory in the phase space “Ndy" and (b) power spectrum  FIG. 4. (a) Trajectory in the phase space My-and (b) power spectrum
density ofK, ; obtained from full PDE simulations fd;=0.1. density ofK, ; obtained from full PDE simulations fd;=0.2.

are observed. Figures 9 and 10 show time evolutions of thgnhronize with the growth of fluctuations representedky,
kinetic energy and Nusselt number fr=5. Similar to the in Fig. 9. The power spectrum density of kinetic enekgy;

case discussed in Ref. 10 for the low-degree-of-freedon given in Fig. 11, which shows larger low frequency com-
model, intermittent bursts are caused by nonlinear interacponents at arounéi~0.03 and 0.08.

tions between the ITG modes and sheared flows also in the we have also evaluated time averaged Nusselt number

case of the full PDE model. As the ITG modes grow, shearegs in Ref. 10. Dependence of the time averaged Nusselt num-
flows are generated by nonlinear coupling of ITG modesper Nu on the normalized ion pressure gradi€nis given in

The generated sheared flows then quickly suppress the IT@ig. 12. It is readily seen that there are three transport re-
fluctuations, as indicated by the timing of burstXip; (i.e.,  gimes depending oK.

ITG fluctuation kinetic energyand K (i.e., mean flow en-

ergy) shown in Fig. 9. After the ITG modes are suppressed, (1) NuxK? for K;<0.1, where the system converges to a
the sheared flows gradually decay due to viscous dampindixed steady state.

The time evolution of Nusselt number shown in Fig. 10 also  (2) NuxK[? for 0.4<K; <3, where the system is in the
indicates that intermittent bursts of thermal transport synbifurcation stages from periodic to chaotic oscillations.
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0.001 b -
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t t

FIG. 3. Time evolutions ofa) kinetic energiek™?, Ko, Kj 3, K, 3, andKs ; FIG. 5. Time evolution ofa) kinetic energy folKo, K; 3, K, 5, andK3; and
and (b) the Nusselt number Nu obtained from full PDE simulationsKor  (b) the Nusselt number Nu as a result of full PDE simulations. Hére
=0.2. =0.3.
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FIG. 6. (a) Trajectory in the phase space Xiy-and (b) power spectrum density ofK, , for the full PDE system. Her;=0.9.

density ofK, ; obtained from full PDE simulations fd;=0.3.
IV. ONE-DIMENSIONAL SIMULATIONS

As shown in the preceding section, the anomalous ther-
(3 NuxK!® for K;=3, where intermittent bursting mal transport scalings differ significantly between the full
transport occurs. PDE model and the 18 ODE model. The lack of high wave
It is interesting to note that the scaling MK in the  number components in the 18 ODE model must be the rea-
strongly unstable regime shown here is similar to those obson for this discrepancy. In the real space, this means that the
served for Rayleigh-Bénard convectifh& and resistive in-  system needs sufficiently fine structures of the modes to cor-
terchange turbulencé.We also note that, in the 18 ODE rectly represent the amount of heat transport carried by tur-
model presented in Ref. 10, the anomalous thermal transpoiylent convection cells. In this section, we therefore examine
scales as NuK? in the strongly unstable regime, which is where the essential structures of the modes need to be kept
different from the scaling above. Although the low-degree-for a better description of turbulent thermal transport in sim-
of-freedom model seems to capture the essential mechanismfified equations. To this end, we solve a simpler nonlinear

of turbulence intermittency, it fails to reproduce the quanti-system derived from Eq$l) and(2), which retains only the
tatively correct anomalous thermal transport.

40 r(a)
k=
o
* 20 | ]
0 t t t
40 [ (b) ]
b4 (=]
X 99 /_/\/\/\/"\/\/\/\/\/\/\/
0 t t t
40 1 (c) ]
Z 2 AN AANANANNA
2 0 0 N N .
0 100000 200000 300000
-20 ; ; ; ;
64500 64600 64700 64800 64900 65000 t

t
FIG. 9. Time evolution of the total kinetic enerd§/®® and kinetic energy
FIG. 7. Time evolution ofa) kinetic energy foiKy, K; ;, K5 ;, andK; ; and componentsK, and K; ; obtained from full PDE simulations foK;=5.
(b) the Nusselt number Nu as a result of full PDE simulations. Here  Other Fourier components are negligibly small compared with those listed
=0.9. here.
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! t

FIG. 10. Time evolution of the Nusselt number Nu obtained from full PDE FIG. 13. Time evolutions of

! ) a) kinetic energiek®®, Ko, K, 4, K, ;, and
simulations forK;=5. i .

K31 and (b) the Nusselt number Nu obtained from 1D simulations Kor
=0.1.

fundamental andn=0 modes in the poloidal direction and a ) )
large number of harmonics in the radial direction. We callSmall. The trajectory in the phase sp&geNu and the power
this system 1D model and, in actual simulations, weNsgt SPectrum density in this case are shown in Figgajland
=64 andN,=1 for Egs.(4) and (5). 14(b), which show that the system converges to a fixed
As in t%e case of the full PDE model, when the normal-Steady state. Indeed Figs. 13 and 14 are almost identical to
ized ion pressure gradielt is slightly larger than the insta- and visually indistinguishable from Figs. 1 and 2 for the full
bility thresholdK;,=0.045, initial perturbations given to the PDE model. _ _ o
1D system grow and nonlinearly saturate with almost no The similarity in the nonlinear evolution of the kinetic
sheared flow. Figure 13 shows time evolutions of the kinetic€nergy components and Nusselt number between the full
energies and Nusselt number f§r=0.1. As in Fig. 1, the PDE model and 1D model persists for even larigevalues.
total kinetic energyK®@ is essentially equal to that of the We have confirmed that the nonlinear evolution of these
(¢,m)=(1,1) mode and the kinetic energies of other fluctua-guantities for the 1D model foK;=0.2, 0.3, and 0.9 are

tion components such as,, K, 4, andKs, are negligibly ~ 9iven by figures visually indistinguishable from Figs. 3-8.
' ’ As in the case of the full PDE model, whég= 3, in-

termittent bursts appear for the 1D model. For langeval-
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% -3 15
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FIG. 11. Power spectrum density i§f ; obtained from full PDE simulations 0 L . L L
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FIG. 12. Time averaged Nusselt number Nu as a functioK;abbtained FIG. 14. (a) Trajectory in the phase space Ni-and (b) power spectrum
from full PDE simulations. density ofK, ; obtained from 1D simulations fd;=0.1.
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Fourier components are negligibly small compared with those listed here.

0.2

0.1

intermittent oscillations for nonlinear

0.3 0.4
f

0.5

FIG. 17. Power spectrum density i ; obtained from 1D simulations for

ITG modes

strongly depends on the mode structures inxfirections.

ues, however, one notices some quantitative differences . DISCUSSION
the nonlinear solutions of the full PDE model and 1D model.

Figure 15 shows time evolutions of the kinetic energy com
ponents forK;=5, which exhibits intermittent bursts similar,
but not identical, to those in Fig. 9. The time evolution of
Nusselt number Nu is illustrated in Fig. 16, which shows
intermittent bursts that synchronize with the growth of fluc-
tuationsK, ;, as in Figs. 9 and 10. Note that the amplitudes
of Nu bursts are generally larger in the case of the 1D mode
and also that the time scales of Figs. 10 and 16 are differen
The power spectrum density of kinetic eneilgy is shown

in Fig. 17. The spectrum has large components at ardund
~0.14 and 0.42, which indicates that the frequencies of in
termittent bursts are also different between the full PDE
model and 1D model.

Figure 18 gives the time averaged Nusselt number as
function of K;. The scaling of the time averaged Nusselt
number obtained from the 1D model is surprisingly similar
to that from the full PDE model, given the fact that a large
number of the higher harmonics in the poloidal direction ar
ignored in the 1D model. On the other hand, the 18 OD
low-degree-of-freedom model, which has the same mod
numbers in the poloidali.e., y) directions and only three
mode components in the radidle., x) directions, shows a
different scaling for the Nusselt numb@rThese facts indi-
cate that the bifurcation dynamics associated with chaoti

appear.

e

In this work, we have studied anomalous thermal trans-
port due to toroidal ITG driven turbulence using numerical
simulation of two different fluid models for toroidal ITG
modes, i.e., the full PDE model given by E¢$) and(2) and
the 1D model reduced from these equations. In both models,
when the normalized ion pressure gradiéhtis slightly
Iprger than the threshold value of instability, the kinetic en-
ergy and Nusselt number converge to steady-state values
with no sheared mean flow. A§ is increased, finite sheared
flows are generated by nonlinear mode coupling and trigger
an L-H-like transition, after which the Nusselt humber de-
creases with the further increase of the sheared mean flow. If
K; is further increased, periodic and chaotic oscillations are
aobserved. WhekK; becomes sufficiently large and turbulence
Becomes strong, intermittent bursts of fluctuating quantities

In both full PDE and 1D models, the Nusselt number Nu
scales in a very similar manner with the normalized ion pres-
gsure gradienK;, as shown in Figs. 12 and 18. The scaling
may be summarized as follow) Nu« Ki2 when the system
converges to a fixed steady staf@) NuxK!? when the
system is in bifurcation processes from periodic to chaotic
oscillations, and3) NuxK® when the system exhibits in-
(t:ermittent bursting transport.
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