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Anomalous heat transport caused by ion temperature gradientsITGd driven turbulence in tokamak
plasmas is evaluated from numerical simulations of the two-dimensionals2Dd partial-differential
equations of the ITG model and of a reduced 1D version derived from a quasilinear approximation.
In the strongly turbulent state, intermittent bursts of thermal transport are observed in both cases. In
the strongly turbulent regime, the reduced model as well as the direct numerical simulation show
that the Nusselt number Nusnormalized heat fluxd scales with the normalized ion pressure gradient
Ki as Nu~Ki

1/3. Since the Rayleigh number for ITG turbulence is proportional toKi, the Nusselt
number scaling for ITG turbulence is thus similar to the classical thermal transport scaling for
Rayleigh–Bénard convections in neutral fluids. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1895165g

I. INTRODUCTION

Turbulence driven by microinstabilities in magnetically
confined fusion experimental devices such as tokamaks and
stellarators has been extensively studied in an attempt to con-
trol and suppress anomalously large heat and particle trans-
port observed in those devices. Understanding the nature of
such microturbulence is generally considered to be one of the
most important issues for confinement studies of fusion re-
actors.

The ion temperature gradientsITGd mode salso known
as thehi moded is an electrostatic microinstability with low
frequencies. It is a modified ion acoustic wave coupled with
the drift wave, which becomes unstable due to the free en-
ergy carried by an ion acoustic wave along the magnetic field
lines when the ratio of the ion temperature gradient to den-
sity gradient becomes sufficiently large.1 The ITG driven tur-
bulence is generally regarded as the main cause of anoma-
lous ion thermal transport in the hot core regions of
tokamaks and stellarators.

The ITG mode has two branches, i.e., slab2–5 and toroi-
dal modes.6–10 The toroidal ITG mode is driven by the
Rayleigh–Taylor interchange mechanism and has essentially
two-dimensional fluid instability characteristics.6,9 The toroi-
dal ITG mode is localized in the outer region of the torus and
generally has a higher growth rate than the slab mode in
toroidal magnetic geometry. In the present work, therefore,
we focus on the toroidal ITG mode.

In the previous works,11,10 the authors presented a low
degree-of-freedomsi.e., low dimensionald model with the
first 18 lowest order components for the toroidal ITG mode,
which consists of the 18 ordinary differential equations
sODEsd. In numerical simulations based on this model, inter-
mittent bursts of thermal transport are observed when the
system becomes sufficiently unstable. The intermittency is
caused by the competition among three mechanisms, i.e.,s1d
the onset of ITG instability,s2d the generation of sheared
flows, ands3d viscous damping of the sheared flows, as sum-
marized in Ref. 10. To the best of the authors’ knowledge,
the 18 ODE model is the lowest order model derived from
the full ITG fluid model that exhibits intermittent transport,
similar to what is observed in more complete models.12,13

For example, Linet al.14 have shown intermittent oscillations
of ion thermal transport in large-scale gyrokinetic simula-
tions for ITG driven turbulence. In another work using also
gyrokinetic simulations, a period-doubling route to chaos
with nonlinear oscillations has been observed close to the
marginal stability during the nonlinear evolution of the
modulation instability with monochromatic pump wave.15

Using a spectral predator-pray model which couples drift
waves with zonal flow excitations, a bursty behavior was
also found near marginal stability.16,17

The solutions obtained from the 18 ODEs, however, usu-
ally differ from those of the original partial differential equa-
tions sPDEsd governing the toroidal ITG mode. In this paper,
we first solve the original PDEs numerically and compare the
thermal transport scaling obtained from these equations with
that from the 18 ODE models It is shown that there is a
significant quantitative difference in thermal transport scal-
ing between these two models. We also solve numerically a
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one-dimensionals1Dd model for the ITG mode, which is a
quasilinear version of the PDE model mentioned above but
has more mode structures in the radial directionsi.e., the
direction of the ion temperature gradientd than those of the
18 ODE model. The 1D simulation results are compared with
those obtained from the full PDE and 18 ODE models. Let
us note that similar 1D models were derived for resistive
interchange turbulence as well as for resistive ballooning tur-
bulence in previous works,12,18 where it was also shown that
intermittent burstssso-called avalanchesd occur when the
system is in the strongly turbulent state.

In this work, based on both 1D and full PDE models of
ITG turbulence, we shall present the anomalous thermal
transport scalings in the hot core region of a tokamak plasma
as the Nusselt number dependence on the normalized ion
pressure gradient. In the edge region of a tokamak plasma,
on the other hand, other types of instabilities such as resistive
interchange modes play more significant roles in determining
the thermal transport.19

The rest of this paper is organized as follows. In Sec. II,
the PDEs governing the toroidal ITG mode are presented.
The linear analysis of these equations as well as the numeri-
cal algorithm to solve them are also discussed briefly there.
In Secs. III and IV, simulation results are shown for both full
PDE and 1D models. Discussion and conclusions are given
in Sec. V.

II. MODELS

A. Toroidal ITG equations

The following vorticity and ion pressure equations are
known to describe the toroidal ITG mode:6

]
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are Poisson brackets. Heref is the electrostatic potential,p
is the ion pressure,g is the effective gravity due to the mag-
netic curvature,Ki is the ion pressure gradient,m is the vis-
cosity, andk is the thermal conductivity. The position in the
slab is given bysx,yd with thex andy directions correspond-
ing to the radial and poloidal directions in a toroidal geom-
etry andt represents time. Note that the gradients of mean
quantitiesssuch as mean ion temperature and density gradi-
entsd are present in thex direction only. The quantities used
in the equations above follow the standard normalizations.6

The normalized ion pressure gradientKi is defined asKi

=s1+hidTi /Te with hi ;Ln/LTi=d ln Ti /d ln n0, whereTi, Te,
andn0 denote the equilibrium ion and electron temperatures
and plasma density, respectively, andLn and LTi denote the

scale lengths for the equilibrium density and ion temperature
gradients.

The toroidal ITG mode is driven by the Rayleigh–Taylor
interchange mechanism. This mechanism is essentially the
same as those of the Rayleigh–Bénard convection in neutral
fluids and the resistive interchange instability in the edge
plasmas. Based on this fact, we can define the following
Rayleigh number Ra for ITG mode similar to those of the
above two instabilities as

Ra; gKiLx
3/smkd,

whereLx is the domain size in thex direction. The Rayleigh
number is the ratio of the buoyancy force to viscous force,
and characterizes the effect of driving force which generates
thermal convections in the system. We note that the Rayleigh
number is proportional to the ion pressure gradient, i.e., Ra
~Ki.

B. Linear analysis

Let us now discuss the linear growth rates of toroidal
ITG modes given by the equations above. Assuming fluctua-
tions depend on the positionsx,yd and time t in the form
expsikxx+ikyy−ivtd, we linearize Eqs.s1d ands2d and obtain
the dispersion relation as follows:

f− is1 + k'
2 dv + ikys1 − g − Kik'

2 d + mk'
4 gs− iv + kk'

2 d

− gKiky
2 = 0.

By solving this quadratic equation for the complex wave
frequencyv, we obtain

v =
1

2s1 + k'
2 d

hkys1 − g − Kik'
2 d − ifkk'

2 s1 + k'
2 d

+ mk'
4 g ± ÎDkj

with

Dk = hkys1 − g − Kik'
2 d + ifkk'

2 s1 + k'
2 d − mk'

4 gj2

− 4s1 + k'
2 dgKiky

2.

From the linear growth rateg=Imsvd estimated from the
above expression, one readily finds that the growth rate be-
comes the largest when the wave numberskx andky satisfy

kx
2 ! ky

2 , k'
2 =

1 − g

Ki
.

In what follows, we select the mode satisfying

kx = ky/2 = fs1 − gd/5Kig1/2 s3d

as the fundamental mode and solve the nonlinear dynamics
of it and its harmonics numerically.

C. Numerical procedures

Equationss1d and s2d are solved in the domain 0øx
øLx and 0øyøLy, where we setLx=p /kx and Ly=2p /ky

for kx andky given by Eq.s3d. We use the spectrum method
in thex andy directions and expandf andp into the Fourier
series as follows:
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fst,x,yd = o
,=1

Nx

o
m=0

Ny

ff̂,,m
c stdsins,kxxdcossmkyyd

+ f̂,,m
s stdsins,kxxdsinsmkyydg, s4d
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,=1

Nx
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m=0

Ny

fp̂,,m
c stdsins,kxxdcossmkyyd

+ p̂,,m
s stdsins,kxxdsinsmkyydg, s5d

where, andm are the mode numbers andkx andky are the
minimum wave numbers in thex andy directions. Note that
we haveNx andNy+1 modes in the thex and y directions.
By substituting Eqs.s4d and s5d into Eqs. s1d and s2d, we
obtain ODEs for the Fourier coefficientsf̂,,m

c,s and p̂,,m
c,s . Note

that the 18 ODE model presented in Ref. 10 is reproduced if
one setsNx=3 andNy=1.

Each Fourier component is numerically solved in time
with the fifth-order Runge–Kutta method. From the solu-
tions, we evaluate the total kinetic energy of the system de-
fined as

Ktotal =
1

2
E ff2 + s='fd2gdV/V =

1

2
kf2 + s='fd2lV

as a function of time, whereedV/V=k lV denotes the volume
average. The mean poloidal flow is them=0 component of
flow in the y direction, i.e., Vy=es−]f /]xddy/Ly

=−k]f /]xly, and its kinetic energy is given by

K0 = o
,=1

Nx 1

4
s1 + ,2kx

2dsf,,0
c d2.

Similarly the kinetic energy of thes, ,md component of fluc-
tuationssmÞ0d may be evaluated through the relationsvx

=]f /]y andvy=−]f /]x as

K,,m =
1

8
s1 + ,2kx

2 + m2ky
2dfsf,,m

c d2 + sf,,m
s d2g,

for ,=1,¯ ,Nx andm=1,¯ ,Ny.
Anomalous heat transport is characterized by the con-

vective heat fluxG and Nusselt number Nu, which are de-
fined as

Gsx,td =E pvxdy/Ly = kpvxly

and

Nustd =E skKi + pvxd
dV

V
/skKid = 1 +

kpvxlV

kKi
.

III. DIRECT NUMERICAL SIMULATIONS OF ITG
MODEL

In this section, direct numerical solutions of Eqs.s1d and
s2d are presented and anomalous transport arising from ITG
turbulence is discussed. The parameters used for the simula-
tions areg=5310−2, m=4310−3, and k=1310−3. Under
these parameters, the instability threshold for parameterKi is

given byKic=0.045. In actual simulations for full PDEs, we
employ Nx=32 andNy=15, which we have confirmed are
large enough to represent the solutions of PDEs, Eqs.s1d and
s2d, correctly for the parameters used here.

WhenKi =0.1, which is slightly above the threshold, the
system reaches a steady state after nonlinear saturation with
almost no sheared flow. Figure 1 presents time evolutions of
the kinetic energies and Nusselt number under such condi-
tions. In this case, the total kinetic energyKtotal is essentially
equal to that of thes, ,md=s1,1d mode and the kinetic ener-
gies of other fluctuation components such asK0, K2,1, and
K3,1 are negligibly small. The trajectory in the phase space
for “the kinetic energy of sheared mean flowK0 vs Nusselt
number Nu” and the power spectrum density of kinetic en-
ergy K1,1 are shown in Figs. 2sad and 2sbd, which indicate
that the system converges to a fixed point, i.e., a fixed steady
state.

Figure 3 shows time evolutions of the kinetic energies
and Nusselt number, Fig. 4sad the trajectory in the phase
space “K0-Nu,” and Fig. 4sbd the power spectrum density of
K1,1 for Ki =0.2. Unlike Fig. 1, the system first reaches and
stays in a steady state with higher anomalous transportsi.e.,
Nud for a while and then moves to another steady state with
lower anomalous transport and a larger sheared mean flow
si.e., K0d. This transition from a high Nu state to a low Nu
state with the increase of sheared mean flows may remind
one of anL-H transitionsi.e., transition from a low confine-
ment mode to a high confinement moded observed in toka-
maks. SimilarL-H-like transitions are also seen in the solu-
tions of the low-degree-of-freedom models.10

Figure 5 shows that, with the increase ofKi up to Ki

=0.3, the system bifurcates to a periodic oscillatory state.
The trajectory in the phase spaceK0-Nu is attracted to a limit
cycle, as shown in Fig. 6sad. The power spectrum density
shown in Fig. 6 also indicates such periodicities.

WhenKi is further increased, chaotic oscillations appear.
Figure 7 shows time evolutions of the kinetic energies and
Nusselt number forKi =0.9. Figures 8sad and 8sbd give the
trajectory in the phase spaceK0-Nu and the power spectrum
density for Ki =0.9. The trajectory follows a complex path
and the power spectrum exhibits continuous components.

In strongly turbulent regime ofKi *3, intermittent bursts

FIG. 1. Time evolutions ofsad kinetic energiesKtotal, K0, K1,1, K2,1, andK3,1

and sbd the Nusselt number Nu obtained from full PDE simulations forKi

=0.1.
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are observed. Figures 9 and 10 show time evolutions of the
kinetic energy and Nusselt number forKi =5. Similar to the
case discussed in Ref. 10 for the low-degree-of-freedom
model, intermittent bursts are caused by nonlinear interac-
tions between the ITG modes and sheared flows also in the
case of the full PDE model. As the ITG modes grow, sheared
flows are generated by nonlinear coupling of ITG modes.
The generated sheared flows then quickly suppress the ITG
fluctuations, as indicated by the timing of bursts inK1,1 si.e.,
ITG fluctuation kinetic energyd and K0 si.e., mean flow en-
ergyd shown in Fig. 9. After the ITG modes are suppressed,
the sheared flows gradually decay due to viscous damping.
The time evolution of Nusselt number shown in Fig. 10 also
indicates that intermittent bursts of thermal transport syn-

chronize with the growth of fluctuations represented byK1,1

in Fig. 9. The power spectrum density of kinetic energyK1,1

is given in Fig. 11, which shows larger low frequency com-
ponents at aroundf ,0.03 and 0.08.

We have also evaluated time averaged Nusselt number
as in Ref. 10. Dependence of the time averaged Nusselt num-
ber Nu on the normalized ion pressure gradientKi is given in
Fig. 12. It is readily seen that there are three transport re-
gimes depending onKi.

s1d Nu~Ki
2 for Ki &0.1, where the system converges to a

fixed steady state.
s2d Nu~Ki

1/2 for 0.4&Ki &3, where the system is in the
bifurcation stages from periodic to chaotic oscillations.

FIG. 2. sad Trajectory in the phase space “Nu-K0” and sbd power spectrum
density ofK1,1 obtained from full PDE simulations forKi =0.1.

FIG. 3. Time evolutions ofsad kinetic energiesKtotal, K0, K1,1, K2,1, andK3,1

and sbd the Nusselt number Nu obtained from full PDE simulations forKi

=0.2.

FIG. 4. sad Trajectory in the phase space Nu-K0 and sbd power spectrum
density ofK1,1 obtained from full PDE simulations forKi =0.2.

FIG. 5. Time evolution ofsad kinetic energy forK0, K1,1, K2,1, andK3,1 and
sbd the Nusselt number Nu as a result of full PDE simulations. HereKi

=0.3.
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s3d Nu~Ki
1/3 for Ki *3, where intermittent bursting

transport occurs.
It is interesting to note that the scaling Nu~Ki

1/3 in the
strongly unstable regime shown here is similar to those ob-
served for Rayleigh–Bénard convections20,21and resistive in-
terchange turbulence.22 We also note that, in the 18 ODE
model presented in Ref. 10, the anomalous thermal transport
scales as Nu~Ki

3 in the strongly unstable regime, which is
different from the scaling above. Although the low-degree-
of-freedom model seems to capture the essential mechanisms
of turbulence intermittency, it fails to reproduce the quanti-
tatively correct anomalous thermal transport.

IV. ONE-DIMENSIONAL SIMULATIONS

As shown in the preceding section, the anomalous ther-
mal transport scalings differ significantly between the full
PDE model and the 18 ODE model. The lack of high wave
number components in the 18 ODE model must be the rea-
son for this discrepancy. In the real space, this means that the
system needs sufficiently fine structures of the modes to cor-
rectly represent the amount of heat transport carried by tur-
bulent convection cells. In this section, we therefore examine
where the essential structures of the modes need to be kept
for a better description of turbulent thermal transport in sim-
plified equations. To this end, we solve a simpler nonlinear
system derived from Eqs.s1d ands2d, which retains only the

FIG. 6. sad Trajectory in the phase space Nu-K0 and sbd power spectrum
density ofK1,1 obtained from full PDE simulations forKi =0.3.

FIG. 7. Time evolution ofsad kinetic energy forK0, K1,1, K2,1, andK3,1 and
sbd the Nusselt number Nu as a result of full PDE simulations. HereKi

=0.9.

FIG. 8. sad Trajectory in a phase space Nu-K0 and sbd power spectrum
density ofK1,1 for the full PDE system. HereKi =0.9.

FIG. 9. Time evolution of the total kinetic energyKtotal and kinetic energy
componentsK0 and K1,1 obtained from full PDE simulations forKi =5.
Other Fourier components are negligibly small compared with those listed
here.
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fundamental andm=0 modes in the poloidal direction and a
large number of harmonics in the radial direction. We call
this system 1D model and, in actual simulations, we setNx

=64 andNy=1 for Eqs.s4d and s5d.
As in the case of the full PDE model, when the normal-

ized ion pressure gradientKi is slightly larger than the insta-
bility thresholdKic=0.045, initial perturbations given to the
1D system grow and nonlinearly saturate with almost no
sheared flow. Figure 13 shows time evolutions of the kinetic
energies and Nusselt number forKi =0.1. As in Fig. 1, the
total kinetic energyKtotal is essentially equal to that of the
s, ,md=s1,1d mode and the kinetic energies of other fluctua-
tion components such asK0, K2,1, and K3,1 are negligibly

small. The trajectory in the phase spaceK0-Nu and the power
spectrum density in this case are shown in Figs. 14sad and
14sbd, which show that the system converges to a fixed
steady state. Indeed Figs. 13 and 14 are almost identical to
and visually indistinguishable from Figs. 1 and 2 for the full
PDE model.

The similarity in the nonlinear evolution of the kinetic
energy components and Nusselt number between the full
PDE model and 1D model persists for even largerKi values.
We have confirmed that the nonlinear evolution of these
quantities for the 1D model forKi =0.2, 0.3, and 0.9 are
given by figures visually indistinguishable from Figs. 3–8.

As in the case of the full PDE model, whenKi *3, in-
termittent bursts appear for the 1D model. For largerKi val-

FIG. 10. Time evolution of the Nusselt number Nu obtained from full PDE
simulations forKi =5.

FIG. 11. Power spectrum density ofK1,1 obtained from full PDE simulations
for Ki =5.

FIG. 12. Time averaged Nusselt number Nu as a function ofKi obtained
from full PDE simulations.

FIG. 13. Time evolutions ofsad kinetic energiesKtotal, K0, K1,1, K2,1, and
K3,1 and sbd the Nusselt number Nu obtained from 1D simulations forKi

=0.1.

FIG. 14. sad Trajectory in the phase space Nu-K0 and sbd power spectrum
density ofK1,1 obtained from 1D simulations forKi =0.1.
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ues, however, one notices some quantitative differences in
the nonlinear solutions of the full PDE model and 1D model.
Figure 15 shows time evolutions of the kinetic energy com-
ponents forKi =5, which exhibits intermittent bursts similar,
but not identical, to those in Fig. 9. The time evolution of
Nusselt number Nu is illustrated in Fig. 16, which shows
intermittent bursts that synchronize with the growth of fluc-
tuationsK1,1, as in Figs. 9 and 10. Note that the amplitudes
of Nu bursts are generally larger in the case of the 1D model
and also that the time scales of Figs. 10 and 16 are different.
The power spectrum density of kinetic energyK1,1 is shown
in Fig. 17. The spectrum has large components at aroundf
,0.14 and 0.42, which indicates that the frequencies of in-
termittent bursts are also different between the full PDE
model and 1D model.

Figure 18 gives the time averaged Nusselt number as a
function of Ki. The scaling of the time averaged Nusselt
number obtained from the 1D model is surprisingly similar
to that from the full PDE model, given the fact that a large
number of the higher harmonics in the poloidal direction are
ignored in the 1D model. On the other hand, the 18 ODE
low-degree-of-freedom model, which has the same mode
numbers in the poloidalsi.e., yd directions and only three
mode components in the radialsi.e., xd directions, shows a
different scaling for the Nusselt number.10 These facts indi-
cate that the bifurcation dynamics associated with chaotic

and intermittent oscillations for nonlinear ITG modes
strongly depends on the mode structures in thex directions.

V. DISCUSSION

In this work, we have studied anomalous thermal trans-
port due to toroidal ITG driven turbulence using numerical
simulation of two different fluid models for toroidal ITG
modes, i.e., the full PDE model given by Eqs.s1d ands2d and
the 1D model reduced from these equations. In both models,
when the normalized ion pressure gradientKi is slightly
larger than the threshold value of instability, the kinetic en-
ergy and Nusselt number converge to steady-state values
with no sheared mean flow. AsKi is increased, finite sheared
flows are generated by nonlinear mode coupling and trigger
an L-H-like transition, after which the Nusselt number de-
creases with the further increase of the sheared mean flow. If
Ki is further increased, periodic and chaotic oscillations are
observed. WhenKi becomes sufficiently large and turbulence
becomes strong, intermittent bursts of fluctuating quantities
appear.

In both full PDE and 1D models, the Nusselt number Nu
scales in a very similar manner with the normalized ion pres-
sure gradientKi, as shown in Figs. 12 and 18. The scaling
may be summarized as follows:s1d Nu~Ki

2 when the system
converges to a fixed steady state,s2d Nu~Ki

1/2 when the
system is in bifurcation processes from periodic to chaotic
oscillations, ands3d Nu~Ki

1/3 when the system exhibits in-
termittent bursting transport.

FIG. 15. Time evolution of the total kinetic energyKtotal and kinetic energy
componentsK0 and K1,1 obtained from 1D simulations forKi =5. Other
Fourier components are negligibly small compared with those listed here.

FIG. 16. Time evolution of the Nusselt number Nu obtained from 1D simu-
lations forKi =5.

FIG. 17. Power spectrum density ofK1,1 obtained from 1D simulations for
Ki =5.

FIG. 18. Time averaged Nusselt number Nu as a function ofKi obtained
from 1D simulations.
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The similarity in the Nusselt number scaling between the
full PDE and 1D models is remarkable, given the fact that
only the time-dependent mean component and the lowest
order components are retained in the 1D model whereas all
poloidal modes are included in the full PDE model. On the
other hand, the Nusselt number scaling obtained from the 18
ODE low-degree-of-freedom model10 is quantitatively differ-
ent from those obtained from the full PDE and 1D models.

As in the case of the 18 ODE model, we have observed
in both full PDE and 1D models that changes of anomalous
transport characteristics are caused by the interplay of
sheared mean flows and fluctuations. In the first stage where
Nu~Ki

2, essentially no sheared mean flow is observed. In the
next stage, where Nu~Ki

1/2, the generation of sheared mean
flows reduces the growth of ITG instabilities and the reduc-
tion of the instabilities reduces the generation of sheared
mean flows, which leads to periodic or chaotic oscillations of
fluctuating quantities. In the stage where Nu~Ki

1/3, intermit-
tent bursts of fluctuating quantities occur, which is again
caused by similar interactions between sheared mean flows
and fluctuations, as discussed in Ref. 10. We also note that
the scaling Nu~Ki

1/3 is similar to those observed for
Rayleigh–Bénard convections20,21 and resistive interchange
turbulence.22 This scaling behavior provides insights into the
nature of tokamak plasma turbulence which shares many
common features with thermal convective turbulence.

In summary, the 18 ODE low-degree-of-freedom model
for ITG modes discussed in our previous work,10 which con-
tains only the most unstable mode and several low-order
harmonics, can qualitatively accounts for the essential dy-
namics of nonlinear ITG driven turbulence although it fails
to reproduce quantitatively correct anomalous thermal trans-
port, which we have obtained by solving the full PDE model
in the present work. On the other hand, we have found that
the 1D model reduced from the full PDE model can repro-
duce the anomalous thermal transport scaling similar to that
obtained from the full PDE model. These facts indicate that

the generation of sheared mean flows due to the nonlinear
evolution of toroidal ITG modes and suppression of the in-
stabilities by such flows are largely determined by the dy-
namics and mode interactions in the radial direction.
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