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Anomalous heat transport due to ion-temperature-gradi€rn®)-driven turbulence is studied with

the use of a low-degree-of-freedom model composed of 18 ordinary differential eqUAIDES).

When the system is slightly above the stability threshold of ITG mode, the system is in the
convection regime and convective heat transport of the system is time-independent or periodically
oscillates. As the ion-temperature gradient is increased further, the system bifurcates to the turbulent
regime. In the strongly turbulent regime, edge localized m@geM)-like intermittent bursts
(so-called avalanchgsare observed. This intermittency is caused by the competition of the
following three factors(1) generation of sheared flows and suppression of ITG turbuld@ge,
gradual reduction of the sheared flows due to viscosity,(@hdapid re-growth of ITG modes due

to the reduction of the sheared flows. We found that the Nusselt nuMpscales with the ion
pressure gradiend; asN, Ki3 in the presence of intermittent bursting transport.2@04 American
Institute of Physics.[DOI: 10.1063/1.1751175

I. INTRODUCTION rate than the slab mode in toroidal magnetic geometry. In the
present work, therefore, we focus on the toroidal ITG mode.
Turbulence driven by micro-instabilities in magnetically In order to understand nonlinear physics of interaction

confined fusion experimental devices such as tokamaks hawgetween convective transport and sheared plasma flows, low-
been extensively studied based on various simulation toolgiegree-of-freedom dynamical models for the associated in-
One of the main goals of these studies is to clarify and constability are sometimes more useful than its full fluid model.
trol the anomalous transport and its relation with self-A low-degree-of-freedom model may be obtained from the
generated sheared flows, i.e., zonal flows. The presence ofpiojection of the dynamics governed by partial differential
self-generated sheared flow is known to be related with conequations(PDES describing the instability to a small num-
finement improvement triggered by low to high confinementber of ordinary differential equation®DES. One of the
(L—H) transition in the edge region or the formation of anmost well-known and successful examples of such dy-
internal transport barriefITB) in the core region. lon- namical models is the Lorenz model for Rayleigh—
temperature-gradientiTG)-driven turbulence is considered Benard convectiort® Howard and Krishnamurti extended the
to be the major cause of anomalous ion thermal transport ihorenz model to a 6 ODE system in order to include sheared
the core region of a tokamak and many numerical simulaflow formation in the problem of Rayleigh-Bard
tions have demonstrated that self-generated sheared flows bgnvection:*
ITG turbulence suppress the ITG turbulence and reduce the Dynamics of resistive interchange turbulettc® was
ion thermal transport across the magnetic surfacés. also studied based on similar ODE systems. Takayeinaé

ITG modes have two branches, i.e., Sidband toroidal solved 5 and 7 ODE models for resistive interchange
modes?'2Either of these modes becomes unstable when theodes’*® and observed oscillations in kinetic energy and
ratio of the normalized ion temperature gradient to normalthe Nusselt number. They also showed that sheared flows
ized density gradienty;, becomes sufficiently large. The perpendicular to both the magnetic field and the direction of
toroidal ITG mode is destabilized by, and VB-curvature equilibrium pressure gradient are generated and suppress the
drift, and this driving mechanism is similar to that of inter- resistive interchange turbulence. Biahal'® presented an-
change instability. The toroidal ITG mode is localized in theother simple model for resistive interchange turbulence. The

outer region of the torus and generally has a higher growttinodel contains only the fundamental mode in the poloidal
direction but infinite degrees of freedom in the direction of

IElectronic mail: takeda@center.jae kyoto-u.ac.jp pressure gradieni.e., minor radius direction With this
bElectronic mail: hamaguch@energy.kyoto-u.ac.jp mode, they have shown that _inte_rmittent bureis—called_
“Deceased. avalanchestakes place in the kinetic energy and convective
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flux when the system is sufficiently unstable. In numerical calculations presented in this article, we
Unlike Rayleigh—Beard convection or resistive inter- usedg=0.05, x=0.04, andx=0.01. Equationg1) and(2)
change turbulence, drift wave modes such as ITG modeare solved in a rectangular regions@<L, and Osys<L,
include wave solutions and intrinsically have twice as manywith perfectly conducting walls being located xa+0 and
degrees of freedom. For example, Hu and Hortgmesented x=L,. Periodic boundary conditions are imposed in the
an 11 ODE model for toroidal ITG modes, with which they direction and ¢(x=0,L,)=0 and p(x=0_L,)=0 are as-
showed an L—H-like transition and oscillation in kinetic en- sumed at the wall. The normalized equilibrium ion pressure
ergy can take place. In the model, however, observed shearégmperaturegradientk; (7;) is a parameter of Eq$l) and
flows were weak and no intermittent transport burst was ob¢2) that controls the growth rate of ITG mode.
served. In this work, in order to clarify the role of sheared
flows and transition dynamics for toroidal ITG modes, we
have employed 18 degrees of freedom, instead of 11 that H
and Horton used in Ref. 12, by including more radial mode
numbers in the ODE model. We now carry out linear analysis of Eq4) and (2) to
The rest of this article is organized as follows. In Sec. 1I,0btain the most unstable mode. Assuming a fluctuation of the
PDEs governing nonlinear ITG modes are presented and tHferm expkx+ky—iwt) with k,==/L, andk,=2=/L, and
projection of the system onto the 18 degrees of freedonfinearizing Eqs(1) and(2), we obtain the dispersion relation
space is given. We also present linear stability analysis ands follows:
estimate the most unstable toroidal ITG mode under given . . .
conditions. In Sec. lll, the numerical methods to solve tﬁqe 1 —|(l+kf)w+|ky(1—g— Kikd) + pkf](—iw+ xk?)
ODE model are given. From the numerical solutions to these _gKikizo- (4)
equations, we evaluate kinetic energy, Nusselt number, flux
and Reynolds stress. These simulation results are given ihhis is a quadratic equation which can be solved with respect

H. Linear analysis

Sec. IV. Discussion and summary are in Sec. V. to w as
1 2 : 2 2
A. Equations for toroidal ITG modes
q +uk?]= Dy}, ®)
Toroidal ITG modes may be given by the following vor-
ticity and pressure equations? where
2 H 2 2 4\ 2
9 ap  Ip Dy=1{ky(1—g—Kik?) +i[ kT (1+Kk])—uki]}
S (Vid—d)+[4.V2]=(1-g+K V) —=—g—C s
y y —4(1+KkF)gKik? . (6)
2g2
tuVivie, D The linear growth rate is derived from=Im(w). It follows
ap I that the system becomes unstable if
—+[¢,p]=—K;— +«V?2p, 2
ot HLOPIZTKiGy T aLp ? (1-g—KikD)*k kgl x K — gK;k2<0 7
+ —gKiks<
where (I+K (A ple) 2 #7980 0
b= da db _Ja db 3 is satisfied. It is clear from this condition that the most un-
[a,b]= ax ay  dy ox’ (3) stable mode has the wave numbers satisfying
is the Poisson bracket. Modes we consider in this work are . 1-—g
two dimensional(2D) and the magnetic shear is neglected. Ke<ky~ki= _Ki . (8)

The normalized variables andy indicate coordinates in the

radial and poloidal directions and the constant magnetic fieldn this paper, we assumg=k,/2 for the sake of simplicity,
is assumed to be in the direction. In the equations above, and set

g=2L,/R is the effective gravity due to the curvature of _ _ 12

magnetic fieldK;=T;/T.(7%;+1) with T, and T, being the kx=kyf2=[(1=Q)/5K T, ©)
ion and electron temperatures is a parameter proportional teo that this mode satisfies E@).

the equilibrium ion pressure gradient, wherey,
=dInT,/dInn, n is the plasma density is the viscosity,
and « is the thermal conductivity. In Eqgl) and (2), the
standard drift wave units=x/ps, y=Y/pgs, t=(L,/CHt,
pP=L,Tio/(psPioTeo) Ps dp=el,/(BoTeops) &, m Using the most unstable mode selected in the previous
=el,/(BoTeps)pt, and k=elL,/(ByTeps)x are used, subsection and a small number of higher harmonics, i.e.,
wherec is the ion sound velocityps=cs/();, ; is the ion  (€k,,mkj) with 1<{<3 and Osms<1, we reduced the
cyclotron frequency, and subscript O indicates the equilibPDEs(1) and(2) to the set of ODEs. The selected compo-
rium quantities. nents for¢ andp are given by the following expressions:

C. The low-degree-of-freedom model of 18 ODEs



Phys. Plasmas, Vol. 11, No. 7, July 2004 Onset of intermittent thermal transport . . . 3563

B(x,y,1)= p(D)siN(kyX) + $3(1)sin( 2k,x) + p3(1)sin(3k,x) + S (D) sin(k,x) cos kyy) + B3 (D) sin(kx) sin(kyy)

+ BS(1)sin(2k,x) cog kyy) + B3(1)sin 2k x)sin(k,y) + $S(t)sin(3k,x) cog kyy) + B3(t)sin(3kx)sin(ky),
(10

P(X,y,t) = pI(t)sin(kyx) + p3(t)sin( 2kex) + p3(t)sin(3k,x) + ps(t)sin(kyx) cog kyy) + p3(t)sin(k,x)sin(kyy)

+ p3(t)sin(2k,x)cog kyy) + p3(t)sin(2k,x)sin(kyy) + p3(t)sin(3k,x)cog kyy) + p3(t)sin(3k,x)sin(kyy).
(11

This is an extension of the Hu—Horton mod&lhich in-

clude 11 components, i.e.{K,,mk) modes with k(<2 F(th)=f puydy/Ly=(pv,)y (16)

and O=m=1. The only difference between our model and

the Hu—Horton model is the presence ok(3k,) mode in

our modeP® Note that sheared flow components, igi(t), av (pv v

#3(t), and $3(t), are also included. Nu(t):f KKi+pUXV/ (kKp=1+—7—. (17
Substituting these equations to E¢¥). and (2), we ob- '

tain the 18 Coup|ed Ordinary differential equations for eacH\IOte that the Nusselt number iS the ratiO of the tOtal heat ﬂUX

harmonics. The complete set of ODEs are given in the Ap{i-e., the sum of the convective and conductive fluxesthe
pendix. conductive heat flux. The Nusselt number is typically high

when the system is in turbulent state, where the convective
flux is usually much higher than the conductive flux.

and

I1l. DEFINITIONS OF QUANTITIES CHARACTERIZING
THE SYSTEM IV. SIMULATION RESULTS
WhenK;=0.3, i.e., the control paramet&s; is slightly
The 18 ODEs(A1)—(A18) given in the Appendix are apove the stability thresholl ;. (under the parameters we
solved numerically with fifth-order Runge—Kutta method. In employed in this workK;.~0.21), the system reaches an-
this section, we define characteristic quantities of the systergther steady state with finite convective flows. Figure 1
that can be evaluated from the numerical solutions. The kishows the time evolution of the kinetic energies and Nusselt

netic energy of the system may be defined as number. The trajectory in the phase space “sheared flows
energyK,—Nusselt numbeN,” is shown in Fig. 2a), which
K=f ¢+ (V. $)?dVIV=($"+ (V. $)?)y, (12 indicates that the system converges to a fixed steady state.

The power spectrum of the kinetic energy of the 1st harmon-
where V denotes the total volume of the system and,  ics K, is given in Fig. Zb), where the spectrum is peaked
means the volume average. The kinetic energies for the meaghly at zero frequency, i.ef=0.
shear flow(i.e., them=0 mode¢ and for different radial Time evolutions of the kinetic energies and Nusselt num-
components for the fundamental ma@e., them=1 mode  ber in the case oK;=0.4 are shown in Fig. 3. Periodic
may be defined as

3

1 0
Ko= 2, 7(1+ €7 (40)%, (13 " @
- 102 b .
Ke=3(1+CGHDI(6)*+ (4D (€=1,23). R
(14) v 10 [ B
It should be noted that the plasma mean flow in yhdirec- 100 | .

tion, i.e., Vy(x,t) = —(d¢/dx), with (),=[dy/L,, is char-
acterized by them=0 mode of electric potentia, i.e.,
(#)y=$2(1)sinN(N)+ PADSIN(F6X) + B1)SIN(HKX). - = ,

Sheared flows are generated by turbulence via Reynold:

stress, which may be defined as a function of the radial Ppo-3 ¢
sition x as 5 ﬂﬁ/‘ ]

— 0 1 1 1 1
Sr(x,t) = (v y> yr (15 0 1000 2000 3000 4000 5000

with vy,=d¢/dy andvy= — de/Ix. t

The quantl_tles charact_erlzmg anomalous heat transpoglG. 1. Time evolutions of kinetic energyw) andN, (b) in the case oK;
of the system, e, convective thermal flux and Nusselt num=g 3 |n (a), K, is dominant and nearly equal #. In the steady state,
ber may be defined as Ko=K,, which are about one tenth & .

B S R A Wb
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FIG. 4. Phase space&K,—N,"” (a) and power spectrum d&€, (b) in the case
FIG. 2. Phase spaceky,—N,”" (&) and power spectrum d¢f, (b) inthe case o K,=0.4.

of K;=0.3. In(b), the peak is located on at zero frequency, ife:0.

Figure 5 shows time evolutions of the kinetic energies
oscillations in these quantities are observed. Figure 4 showand Nusselt number, and Fig. 6 shows the trajectory in the
(@) the trajectory in the K,—N,” phase space antb) the “Ky—N,” phase space antb) power spectrum oK;. The
power spectrum oK. Time evolution is governed by a frequencies of oscillations change Ks increases but the
single frequency mode and the trajectory in the phase spaaystem still exhibits periodic oscillations. Figuréapshows
is attracted to a simple limit cycle. that the trajectory in the phase space converges to a different

0.03

0.02

0.01

FIG. 3. Time evolutions of kinetic energig) andN,,
(b) in the case oK;=0.4. In(a) K, is dominant and 5
is too small to be seen.

O 1 1 1 1
9000 9100 9200 9300 9400 9500
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FIG. 5. Time evolutions of kinetic energyp) and N,
(b) in the case oK;=0.5.

0.1 (@) ' ' ' Ktbtal
KO --------
0.08 Ky ]
K2
[ —
0.06 [ .
X
0.04 |
0.02 i
ok
50
2 25
O - .
59500 59600 59700 59800 59900

60000

type of limit cycle. More higher harmonics in the oscillation are no longer periodic oscillations. The system exhibits a
frequencies are seen in Fig.bd.

WhenK; is slightly more increased and set to be 0.6, theFig. 8@a). Figure 8§b) shows thatk,; has a continuous spec-
system bifurcates to a chaotic state as shown in Figs. 7 and §um, which indicates that the system is indeed in a chaotic
Time evolutions of the kinetic energy and Nusselt numberstate.

40

30 |

20 -

Nu

-10

0.03

0.035

0.04

power
n

(b)

FIG. 6. Phase space&Ky—N,

of K;=0.5.

0.05

0.1
frequency

0.2

" (a) and power spectrum &€, (b) in the case

complex trajectory in the phase spade;—N,” as shown in

If K; is further increased and set to Kg= 3, the system
becomes strongly turbulent. Under such conditions, fluctua-
tions exhibit intermittent bursts.

In the case ofK;=4.0, time evolution of the kinetic
energies, Nusselt number, and Reynolds sties®raged
overx) are shown in Figs. 9 and 10. In these figures, inter-
mittent explosive rises of these quantities are clearly seen.
Such time evolution of the physical quantities may be ex-
plained by the following mechanism. When the ITG modes
grow and turbulence is developed, sheared flows are gener-
ated through the Reynolds stress as shown in Figh)1tn
this phase, fluctuations are burst-like and their levels are
high. We call this phase the “bursting phase.” Increased
sheared flows then suppress the ITG modes, terminating the
source of sheared flows in the system. The sheared flows
generated earlier by the ITG modes continue to exist for a
while but gradually decay due to viscous damping. In this
phase, both sheared flowwhich can be measured H¢,)
and convective heat transpdmhich can be measured by
Nu) gradually decay and the flow structures are more or less
laminar, as we shall see in Fig. 12 below. We call this phase
the “laminar phase.” As the sheared flows continue to decay,
the ITG modes begin to grow again. As convective cells due
to ITG instabilities tend to tilt in this phase, we call this
phase the “tilting phase.” Eventually the magnitudes of
sheared flows becomes sufficiently low and the system re-
turns to the “bursting phase.” As we can readily see in Figs.
9 and 10, the Nusselt number and Reynolds stress burst when
ITG modes grow rapidly. For realistic deuterium plasmas
with T,~2 keV andL,~30 cm, the time poriod of intermit-
tency obtained here corresponds to about 10 ms.

The trajectories in the phase spad¢€,~N," are given
in Fig. 11 for the(a) bursting, (b) laminar, and(c) tilting
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0. 1 5 (a) T T T T T T T Kt'otal

0.1

0.05

FIG. 7. Time evolutions of kinetic energyg) and N,
(b) in the case oK;=0.6.

8
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40
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0

-20 I ! ! !
99000 99100 99200 99300 99400 99500

Nu

phases. In the bursting phase the system is in a stronglgnd the oscillation amplitude dllu decreasing gradually.
turbulent state and the trajectory is far more complex thaThe decrease d{, i.e., the energy of sheared flows, is due
those in any other phases. We also note that the magnitudés viscous damping. In the tilting phase the sheared flows
of Ko and Nu can be vary large. In the laminar phase thecontinue to decrease, bMtu, i.e., the convective heat trans-
system follows a regular trajectory with both the valudgf  port, gradually increase due to the re-excitation of ITG insta-
bilities.
Contours of the electrostatic potential functigix,y,t)
in real space are presented in Fig. 12 for the same simulation
run. Typical potential contours in the bursting phase are
1 given in Fig. 1Za), those in the laminar phase are given in
Figs. 1Zb) and 124c), and those in the tilting phase are given
in Figs. 12d) and 12e). In Fig. 12a), ITG turbulence gov-
erns the system and typical ITG nonlinear mode structures
appear in the potential contours. In Fig.(&g sheared flows
] are dominant and ITG modes are sufficiently suppressed. Af-
ter sheared flows become weak due to viscous damping, con-
vection cells arising from ITG instabilities grow and often
tilt, as shown in Fig. 1&).
Space—time contour of the poloidalfye., y-) averaged
20 .01 0.02 0.03 0.04 electrostatic potential¢),(x,t) is shown in Fig. 13 for the
(@) Ko simulation run given in Fig. 9. It is readily seen thﬁ% is the
dominant component after each bursts. It should be noted
P , , : that all three modes considered here, i, ¢35 and ¢3,
equally contribute to the generation of sheared flows. How-
3 ] ever we observe thap) and ¢3 decay much faster thag?
due to viscous damping. Therefore the period of intermit-
4 ] tency is essentially determined by the decay ratdﬁ)fi.e.,
the ¢ =1 component of sheared flow.
Dependence of the time averaged Nusselt nurieon
the parametekK; is described in Fig. 14. The time average of
instantaneoud(t) is taken over a sufficiently long period
and the errors arising from the time average process are con-
firmed to be negligibly small in this figure. The scalihy,
«K? is readily seen in this figure whet, =4 andK;=<0.9.
8 , , , The proportional coefficients irKj=4 and K;=<0.9 are
0 0.05 0.1 0.15 0.2 clearly different. WherK;=3, where intermittent bursts of
) frequency heat transport and other fluctuating quantities are observed,
FIG. 8. Phase space<,—N,” (a) and power spectrum df; (b) in the case  the magnitude ofNu is lower than the value of straightfor-
of K;=0.6. ward extension of th&lu scaling observed in the region of

80

60

Nu

20

power
n
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K;=<0.9. Suppression of ITG modes by the self-generatedre observed. IK; is further increased, the system bifurcates
sheared flows significantly reduces convective heat transpotd a turbulent regime. When the turbulence is sufficiently
for extended periods during the discharge, which clearly constrong, ELM-like intermittent bursts, so called avalanches,
tributes to the reduction of the proportional coefficient of theagre observed. This contrasts with the simulation results based

scaling law given above. on the 11 ODE model studied by Hu and Horféwhere no
intermittent bursts were reported. We have found that the
V. DISCUSSION intermittency we observed in our 18 ODE model is caused

We have examined nonlinear evolution of convectivePy the competition of the following 3 factor€l) generation

heat transport and other physical quantities of plasmas whicf sheared flows and suppression of ITG turpuler(@,
are subject to ITG instabilities, using a Iow-degree-of-gradua| reduction of the sheared flows due to viscosity, and

freedom model composed of 18 ODEs. When the system i63) rapid re-growth of ITG modes due to the reduction of the
slightly above the ITG stability threshold, i.e., the control sheared flows. We found that the Nusselt nunigrscales
parameteik; =K., ITG driven convections reach a steady with the ion pressure gradiert; asN,<K? in the presence
state. As we increask; slightly more, periodic oscillations of intermittent bursting transport.

in the kinetic energy and convective heat transiogt, N ) It should be noted that the role of viscosity is essential

300000 T T T T

150000
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FIG. 10. Time evolutions of the Nusselt numbéy (a)

and the Reynolds stre€ (b) in the case oK;=4.
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FIG. 11. Phase space&,—N," in the bursting phaséa), the laminar phase
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mittent oscillation of zonal flows generated by ITG turbu-
lence has been observed in gyro-kinetic simulations by Lin
etal?!

We have confirmed by dropping higher order harmonics
in Egs.(10) and(11) that the 11 ODE model does not exhibit
such intermittency and instead shows random oscillations of
kinetic energieK,, when the system is strongly unstable. In
a 16 ODE model in which onlyJ and ¢3 are neglected, the
intermittency was recovered an#f is observed to be domi-
nant in the laminar phase. Indeed, under the 18 ODE model,
¢2 and ¢2 are generated through nonlinear mode coupling of
ITG modes but dissipate rapidly by viscosity. It follows that,
for intermittency to occur, velocity shear generateddagl
plays the essential role to suppress the ITG mode. We have
also observed that the time period of intermittency is essen-
tially determined by the decay rate of tué? component of
sheared flow energy.

In the case of resistive interchange turbulence, oscilla-
tory behavior is also observed by using the 5-7 ODE
modeld”1822pyt no intermittent bursts were reported to be
observed under these models. On the other hand, using a
simple nonlinear model of resistive interchange modes that
retains only the fundamental mode in the poloidal direction
and infinite degrees of freedom in the radial directiae.,
the full x dependence of all dependent variables, which are
discretized by means of a finite differential methoBian
et all® demonstrated that intermittent bursts of convective
heat transport occurs. It follows that, for resistive interchange
modes, one needs at least some higher harmonics ix the
direction in order to reproduce intermittent burst-like con-
vective heat transport.

The toroidal ITG mode is a drift wave instability and
therefore requires twice the number of degrees of freedom
compared with the resistive interchange mode but the driving
mechanisms of these instabilities are similar. In this sense it
is worth comparing our simulation results of ITG turbulence
with those of resistive interchange turbulence mentioned
above. The simulation results for Hu and Horton’s 11 ODE
model for ITG modes suggests that this model corresponds
to the 5, 6, or 7 ODE model for resistive interchange modes
in the sense that neither of them contains sufficiently high
harmonics in thex direction to reproduce intermittent burst-
like heat transport. Therefore, one may consider that the 18
ODE model for ITG modes that we employed in this work
corresponds to an intermediate degree-of-freedom model be-
tween the 5, 6, or 7 ODE model and Bian's model with
infinite degrees of freedom in thedirection. Our simulation
results indicate that at least third harmonics inxtrdirection
must be included in order to obtain intermittent oscillations.
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APPENDIX: 18 MODE COUPLING EQUATIONS

Here we present the low-degree-of-freedom model used
in this work. Substituting the Eq$10) and (11) to the Egs.
(1) and(2), we obtain the following 18 coupled ODEs:
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FIG. 12. Real space contour ¢fx,y,t) in the bursting
phase [at t=25000 (a)], the laminar phasdat t
=30000(b) andt=35000(c)], and the tilting phase
[att=40000(d) andt=45 000(e)].
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FIG. 13. Space-time contours of the averaged electrostatic potential
(¢)y(x,1) in the case oK;=4.



3570 Phys. Plasmas, Vol. 11, No. 7, July 2004

Nu

Takeda et al.

10° .
l’/‘/’
10* | e .
10° s .
""’Iﬁ FIG. 14. Time averaged Nusselt numid¢r as a func-
102 | b i tion of K; . Broken lines represemlucxKis.
o* . ?
101 r -/l./. y ]
S Nu= K
Il,/
100 L 1
107 10° 10 10?
Ki
2(15l 2 L2 12 2 2 dp1k2 c s s 4c c 4s s 4c c 4s
(1+kp) —— =~k d(k3—k D BLB5—2(K5—4KE) p33 ot {p1¢2 P12+ P21~ PaditP3dho— P3¢
+2(k5— 4Kk%) poh3 — 3(k3— 9KY) 43 B3} + P35 P53t — kkipd, (A10)
—(1=g—Kik}kydi+gk,pi— ukie], g
(Ad) ot _ky{pld’l pigpi+pid3—pidst P3P —P3oi}
2901 o o s 2 412 — 4xkp3, (A11)
(14K~ =K (k5= kD) #T5— 2(kE— 4K]) 6355
0 2
2 2. ,0 4¢C 2 2. ,0 ,¢ %__3kxy S 4C__ ~C 4S sc_cs_9k20
+2(k3—4k:) pod5—3(k5—9k;) p3 3} a - 2 {P1ds—Pids+ P21~ P01} — KK P,
(A12)

+(1-g—KikDkypi—gkpi— ukies,
(A5)

dgs5
(1HK3) — = ~ K { (G kD) $33 + (k5—Kk3) 495

—3(k3—9k2) ¢35} —(1—g
—Kik)kyp5+gk,ps— ukids,  (A6)

d¢>S
(14+K3) —5~ = Ko {(Ki— k) d b + (K5 — k) ¢7 b5
—3(kZ-9K2) ¢35} +(1—g
_Kik%)kyd’g_g pz Mk ®5, (A7)
(1+K) ¢3 = — K2 {(K3—K2) pOp5+2(K?
—4k2) p393t — (1—g—KiKd)ky o3
+gkyp3— uk3os, (A8)
deb3
(1K) 5 =K (K5~ k) 665+ 2(kG — 4Kk5) 6345}

+(1—g—Kik3)kyp5—gk,ps— ukid$,
(A9)

dp$
< = (P26~ P30 — (365~ Pl Y +2(p365

—p3#3) —3(p3d3— P33} — Kikyds— xkips,
(A13)

dpl 2
ot —_ky{(pld’z P53 — 2(p3hT— Pl b3) +2(p3bs

—p5b3) —3(PIPS— P5d)} + Kiky i — kkips,

(A14)
pz K225 — p3ebd) + (pIbS— p5bd)
—3(p3¢3— P 3)} — Kikyps— kk3pS, (A15)
d(;)tz:—kzy{(plcﬁl S +(PIds—PShT)
—3(p3¢i—Pip} +Kikyp—kk3p3,  (AL6)

dp3 2
ra _ky{(p1¢2 P3¢3) +2(p3ebs — P39} — Kiky 3

- Kk3p3 , (A17)



Phys. Plasmas, Vol. 11, No. 7, July 2004
dpg 2 0,c c 40 0,c c 40
e K (P13 —P2d1) +2(P2b1—P12)}
+Kiky 53— xk3p3, (A18)

where ki=ki+kZ, K3=4ki+k7, k3=9ki+k’, and k%,
= 2kek, .
2Rxhy
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