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Destabilization of nonlinear resistive wall mode due to suppression
of poloidal rotation in a cylindrical tokamak

M. Sato, S. Hamaguchi, and M. Wakatani
Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-1100, Japan

~Received 12 June 2002; accepted 14 October 2002!

It is known that linear resistive wall modes~RWMs! can be stabilized by a poloidal rigid rotation.
Nonlinear behavior of unstable RWMs has been studied in a cylindrical tokamak plasma with such
a poloidal rotation. When a resistive wall is very close to the plasma surface (r w /a.1.2) significant
reduction of the poloidal rotation due to the Maxwell stress occurs in the neighborhood of resonant
surface of (m,n)5(2,1), wherem ~n! is a poloidal~toroidal! mode number. Thus the nonlinear
saturated state does not depend on the magnitude of poloidal rotation. However, when the resistive
wall position is close to the ideal wall stabilization limit (r w /a51.3) or r w /a.1.27, the poloidal
rotation remains in the nonlinear phase for a large poloidal rotation case. In this case, nonlinear
saturation with a small amplitude level becomes possible. The role of Maxwell stress is clarified by
introducing magnetic island width and rotational torque for the reduction of poloidal rotation.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1527042#

I. INTRODUCTION

Magnetohydrodynamic~MHD! stability of magnetically
confined plasmas is crucial for obtaining improved confine-
ment suitable for a fusion reactor.1 For obtaining high beta
plasmas, stabilization of dangerous ideal kink modes is re-
quired in current carrying tokamaks.2 The ideal kink modes
can be stabilized by a perfect conducting wall placed suffi-
ciently close to the plasma surface.3 However, when the wall
has a finite conductivity, the mode cannot be stabilized com-
pletely, even if the wall is close to the plasma surface.4 In
this situation, resistive wall modes~RWMs! become un-
stable. The RWM grows slowly with a growth time on the
order of resistive decay time of magnetic field,tw , in a wall.
For a stationary tokamak sustained with a large bootstrap
current, such a slowly growing instability becomes danger-
ous and it is important to stabilize RWMs. There are several
experimental results that the RWMs deteriorate confinement
in tokamaks.5–7 For suppressing effects due to RWMs feed-
back controls have been proposed.8,9

It is noted that the linear RWMs can be stabilized by
plasma rotation.10–14 Indeed, in DIII-D tokamak, high beta
plasmas withbN.bN

no wall are obtained for sufficiently longer
times thantw when the toroidal rotation is sufficiently fast.7

Here,bN is a normalized beta with respect to Troyon limit
and bN

no wall is the bN limit predicted under the assumption
without a conducting wall.

However, when the plasma rotation decreases below a
critical level, the RWM begins to grow as shown in the
experiment.7 As the RWM grows, the plasma rotation fre-
quency decreases clearly. Finally, the high beta plasma phase
of discharge is destroyed.

It is considered that the slowdown of plasma rotation
results from the electromagnetic drag force.15 Nave and Wes-
son showed that the electromagnetic drag force comes from
perturbed magnetic fields penetrating into the resistive wall.
Here we show that the magnetic perturbation due to the

RWM has a role to suppress the poloidal rotation through the
Maxwell stress. The resultant slowdown of plasma rotation
significantly affects stability of RWMs and their nonlinear
behavior.

In this paper, we study numerically nonlinear behavior
of RWMs in a cylindrical plasma with a rigid poloidal rota-
tion. This may be a simplified model for understanding non-
linear physics of RWMs applicable to those in tokamak ex-
periments. The rest of the paper is organized as follows. In
Sec. II, for describing nonlinear RWMs in the cylindrical
geometry, the reduced MHD equations are introduced. Then
our numerical model for studying nonlinear RWMs are
shown. Numerical schemes for solving the reduced MHD
equations are briefly mentioned. In Sec. III, results of non-
linear calculations of unstable RWMs are shown. Our con-
cern is in the change of the assumed poloidal rotation due to
the nonlinear RWM with (m,n)5(2,1), wherem ~n! is a
poloidal! mode number. Finally, a summary is given in Sec.
IV.

II. MODELING OF RWM

For low beta cylindrical tokamak plasmas, the well-
known reduced MHD equations were derived by Kadomtsev
and Pogutse16 and Strauss.17 These equations with dimen-
sionless variables are shown as
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U5¹'
2 f, ~4!

in the cylindrical coordinates~r, u, z!, wherec is the poloi-
dal magnetic flux defined byB'52(a/R)¹c3ez andf is
the stream function defined byv'5¹f3ez . Here,r, u andz
are radial, poloidal and toroidal coordinate, respectively. In
Eq. ~1!, resistivity h is normalized tom0a2/thp , wherethp

5RAm0r/B0 . Here, the length of cylindrical plasma is
2pR, the plasma minor radius isa, the mass density isr,
and the longitudinal magnetic field isB0 . In Eq. ~2!, viscos-
ity is denoted byn. The source termSm is chosen to satisfy
n¹'

2 Ueq(r )1Sm50, whereUeq(r ) is a vorticity at an equi-
librium state. It is noted that a poloidal rotation is introduced
through the vorticityUeq(r ). In Eqs. ~1! and ~2!, time is
normalized tothp , length toa, c to B0a2, f to B0a2/thp

and U to B0 /thp . Thus the velocityv' is normalized with
a/thp .

Resistivity is introduced artificially in the vacuum region
to use the pseudo-vacuum model.18,19 Time evolution of the
resistivity in Eq.~1! is solved here. The equation for resis-
tivity is described as20

]h

]t
5

]f

]r

1

r

]h

]u
2

1

r

]f

]u

]h

]r
1k i¹ i

2h1k'¹'
2 h1Q, ~5!

where the parallel thermal transport coefficient of resistivity
k i is normalized toR2/thp and the perpendicular onek' to
a2/thp . In the numerical calculationsk i51 andk'51025

are assumed. The source termQ is chosen to satisfy
k'¹'

2 heq(r )1Q50, whereheq(r ) is a resistivity at an equi-
librium state.

The pseudo-vacuum region is surrounded by the resis-
tive wall with a finite thickness. In the resistive wall, the
velocity is zero and the resistivity is independent of time.
However, the poloidal flux may change in this region. Thus,
the diffusion equation of perturbed poloidal fluxc̃

]c̃

]t
5hw¹'

2 c̃ ~6!

is solved in the resistive wall, wherehw is a resistivity of the
resistive wall.

It is assumed that the outside of resistive wall is covered
by a perfect conductor atr c52 for simplicity. In this case,
the main plasma is located in the regionr<1, the pseudo-
vacuum in the region 1,r ,r w , and the resistive wall in the
region r w<r<r c , where r w is the boundary between the
pseudo-vacuum and the resistive wall. The boundary condi-
tions for the reduced MHD equations solving
f̃(r ,u,z,t), c̃(r ,u,z,t) and h̃(r ,u,z,t) are f̃(r w)5h̃(r w)
50 at r 5r w and c̃(r c)50 at r 5r c . At r 50 standard
boundary conditions are employed.

The current profile at an equilibrium state is chosen as

Jeq~r !5~Ja2Jb!~12r 3.5!21Jb ~7!

for 0<r<1, andJeq(r )5Jb!Ja for 1,r ,r c . The resistiv-
ity profile is assumed to be proportional to 1/Jeq(r ) for r
,r w , h(r 50) and the resistivity in the pseudo-vacuum re-
gion hv are set to beh(r 50)51025 andhv51023, respec-
tively. Resistivity of the resistive wallhw is assumed to be

hw51024. The profiles ofq, Jeq andheq are shown in Fig.
1, whereq is a safety factor. In Fig. 1,qa51.85 andr w

51.2 are assumed, whereqa is a safety factor at the plasma
surface. The rational surface ofq52 is located atr 5r s

.1.04 in the pseudo-vacuum region. For studying nonlinear
RWMs, this configuration has been used.

Equations~1!–~5! are solved numerically for the cylin-
drical plasma shown in Fig. 1. In our numerical code, the
radial derivates are replaced with standard difference ap-
proximations. the derivatives with respect to poloidal angleu
and the toroidal anglez are treated with Fourier-expansions.
We also assume single helicity for studying the (m,n)
5(2,1) mode destabilized at theq52 surface, since our in-
terest is in the unstable low-m modes. The time advancement
is made with a predictor-corrector method. A typical radial
mesh number is 400 and 10 harmonics of the~2,1! mode are
solved in nonlinear calculations. These numbers are suffi-
cient from the point of view of numerical accuracy.

III. NUMERICAL RESULTS

A. Nonlinear behavior of RWMs without a poloidal
rotation

Figure 2 shows dependence of linear growth rate of the
(m,n)5(2,1) mode on the resistive wall position given by
r w . For obtaining linear growth rate in case of a perfect
conducting wall, the boundary conditions are changed to
standard ones,c̃(r w)5f̃(r w)5h(r w)50 at r 5r w . When

FIG. 1. Profiles of safety factorq, plasma current densityJeq and resistivity
heq at equilibrium state.

FIG. 2. Dependence of linear growth rateg of (m,n)5(2,1) mode on wall
position r w .
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the perfect conducting wall is located atr &1.27 instead of
the resistive wall, the ideal kink mode can be stabilized com-
pletely. When a resistive wall is assumed, RWMs become
always unstable. Radial profile of linear eigen function of
c̃2,1 andf̃2,1 for the case ofr w51.2 is shown in Fig. 3. For
the resistive wall case, the magnetic flux diffuses into the
wall clearly.

Time evolution of magnetic energy and kinetic energy
without the poloidal rotation is shown in Fig. 4. Here, the
resistive wall is assumed atr w51.2. The perturbed magnetic
energy saturates att52000. The magnetic surfaces att
52000 are shown in Fig. 5~a!. The contours of resistivity at
t52000 are shown in Fig. 5~b!. The cross-section of core
plasma is deformed elliptically and magnetic islands are
formed around the rational surface. Even when the region
between the plasma surface and the resistive wall is replaced
with a vacuum,c̃ has a finite perturbation atr 5r s and
vacuum magnetic islands are formed. The radial profile of
(m,n)5(0,0) component of perturbed resistivityh̃0,0 is
shown in Fig. 6. It is considered that the plasma confinement
in the edge region become degraded due to the formation of
island structure by the RWM.

B. Nonlinear behavior of RWMs with poloidal rotation

It is shown that RWMs can be stabilized by a large rigid
poloidal rotation. Linear growth ratesg and mode frequency
are plotted as a function of poloidal rotation frequencyveq

5vu /r in Fig. 7, wherevu is a poloidal flow velocity pro-
portional to r. For r w51.3, the mode cannot be stabilized
perfectly by the rigid poloidal rotation, because the ideal
kink mode with (m,n)5(2,1) becomes marginally unstable.

As shown in Fig. 7~b!, the mode frequency is smaller
than veq , and the difference betweenveq and the mode

frequency increase whenr w is decreased. This is a general
behavior of mode frequency of RWM, when the resistive
wall position is changed.4,14A significant effect ofveq on the
RWM is the appearance of the phase shiftd depending onr
as shown in Fig. 8~a!. For understanding the stabilizing ef-
fect of poloidal rotation, it is useful to check positions satis-

FIG. 3. Linear eigenfunction of~a! c̃2,1 and~b! f̃2,1. Line ~1! corresponds
to the perfect conducting wall case. Line~2! corresponds to the case that the
resistive wall is located atr w51.2 andveq50 ~no poloidal rotation!.

FIG. 4. Time evolution of~a! magnetic energy and~b! kinetic energy with-
out a poloidal rotation. Resistive wall is assumed to be located atr w51.2.
Mode numbers for 10 lines in both figures are~2,1!,~4,2!,~6,3!, . . . ,~20,10!
respectively from the top line.

FIG. 5. ~a! Magnetic surfaces, and~b! contours of resistivity at the satura-
tion phase (t52000) corresponding to Fig. 4.
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fying c2,1(r ,u,0)50 in Fig. 8~b!. When veq50,
c2,1(r ,u,0)50 at u5r/2 or 3p/2. However, forveqÞ0, the
curve satisfying 2u2d(r )5p/2 or 3p/2 gives c2,1(r ,u,0)
50. According to linear calculations of RWM,dd/dr be-
comes large with the increase ofveq . Thus, as shown in Fig.
8~b!, c2,1(r ,u,0)50 is satisfied onr .const surface roughly
for a largeveq case. This situation is similar to the case with
a perfectly conducting wall which stabilize kink modes eas-
ily.

Since our interest is in cases withr w larger than 1.15–
1.2, the stabilizing effect of poloidal rotation becomes domi-
nant. However, when the resistive wall is close to the core
plasma orr w,1.1, the mode frequency becomes almost zero
and destabilizing effect due to plasma rotation appears.4,14

For such a case withr w,1.1, the coupling of RWM to the
other mode such as magnetosonic wave or shear Alfve´n
wave becomes essential to reduce the growth rate of RWM

in the cylindrical geometry.13,14 For a toroidal case, more
efficient toroidal coupling to sidebands becomes
possible.10,11

Time evolution of magnetic energy of the (m,n)
5(2,1) component forr w51.27 for various poloidal rotation
frequencies is shown in Fig. 9. When a poloidal rotation is
sufficiently large such asveq>431022, the RWM saturates
at a lower level than that in the case withveq50. However,
when the poloidal rotation velocity is small, the RWM satu-
rates at the level comparable to that ofveq50 case. For
veq5331022, after the mode almost saturate att.2500
temporally, the mode grows again att.3000.

The difference of the saturation level is related to the
change of poloidal rotation. Figure 10 shows time evolution
of profile of poloidal rotation velocity,vu(r )5veq(r )
1 ṽ0,0(r ), for ~a! veq5331022 and ~b! veq5431022, re-

FIG. 6. Radial profile of (m,n)5(0,0) component of perturbed resistivity
h̃0,0 at saturation phase (t52000) corresponding to Fig. 4.

FIG. 7. Dependence of~a! linear growth rateg and~b! mode frequency on
poloidal rotation frequencyveq for various resistive wall positions.

FIG. 8. Linear mode structures of RWM with (m,n)5(2,1) mode described
by c2,1(r ,u,0)5c* (r )cos(2u2d(r)) for r w51.2 andveq51.331022; ~a!
showsc* (r ) andd(r ), and~b! shows contours ofc2,1(r ,u,0).

FIG. 9. Time evolution of magnetic energy of (m,n)5(2,1) mode forr w

51.27 for various poloidal rotation frequencies.
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spectively. For both cases, there is a slowdown of poloidal
rotation velocity in the nonlinear phase. Forveq53
31022, the poloidal rotation velocity begins to decrease at
t.2500 and it decreases to almost zero around the rational
surface aftert.3000. Thus, aftert.3000 the stabilization
effect of poloidal rotation becomes weak and the mode
grows again. However, forveq5431022, a substantial po-
loidal rotation velocity remains even in the nonlinear phase.
Thus, the saturation level becomes low due to the stabiliza-
tion effect of the poloidal rotation.

Figure 11 shows time evolution of magnetic energy of
the (m,n)5(2,1) component forr w51.2 which is chosen as
an example of the case that the wall is close to the plasma
surface. The linear growth rate forr w51.2 at veq51.3
31022 in Fig. 11 is smaller than that forr w51.27 atveq

5431022 in Fig. 9. However, in the case ofr w51.2 at
veq51.331022, the nonlinear growth rate is enhanced att

.6000. In this case, the poloidal rotation velocity begins to
decrease near the rational surface aftert56000~see Fig. 12!.
As the poloidal rotation velocity decreases, the growth of
RWM is enhanced. The increase of perturbation amplitude
leads to further reduction of the poloidal rotation velocity.
Finally, the poloidal rotation velocity become almost zero in
the regions near the plasma surface and the resistive wall
surface in Fig. 12. As shown in Fig. 11, the saturated ampli-
tude in case ofveqÞ0 becomes comparable to that for the
veq50 case even though linear growth rate is smaller than
that for theveq50 case.

Figure 13 shows dependence of the saturation level of
magnetic energy of the (m,n)5(2,1) component on the po-
loidal rotation frequency. When the distance between the
plasma surface and the resistive wall surface becomes wider,
the poloidal rotation velocity required to stabilize the RWM
becomes larger. However, if the initial poloidal rotation ve-
locity is large, the poloidal rotation survives in the nonlinear
phase and the saturation level is much lower than that for the
veq50 case. When the resistive wall is very close to the
plasma surface, the reduction of poloidal rotation is signifi-
cant in the nonlinear phase. Then the resistive wall mode
may grow up to the saturation level in theveq50 case re-
gardless of the value of the poloidal rotation frequency.

C. Mechanism of slowdown of poloidal rotation

The time evolution of averaged poloidal rotation veloc-
ity ^vu& is described by

FIG. 10. Time evolution of radial profile of poloidal rotation velocity for~a!
veq5331022 and ~b! veq5431022 corresponding to Fig. 9.

FIG. 11. Time evolution of magnetic energy of (m,n)5(2,1) mode forr w

51.2 for various poloidal rotation frequencies.

FIG. 12. Time evolution of radial profile of poloidal rotation velocity for
veq51.331022 corresponding to Fig. 11.

FIG. 13. Dependence of maximum magnetic energy of (m,n)5(2,1) mode
on the initial poloidal rotation frequency.
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r 2^ṽ r ṽu&1

1

r 2

]

]r
r 2^B̃r B̃u&2n

dŨ0
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,

~8!

where^ f &5*0
2p f dudz/4p2 andŨ0 is (m,n)5(0,0) compo-

nent of perturbed vorticity. Equation~8! is obtained by taking
the average of Eq.~2! over u and z. In order to study the
mechanism of generation or decay of the poloidal rotation,

the three terms in the right hand side of Eq.~8! are treated
separately. Time evolution of radial profile of each term in
Eq. ~8! for r w51.27 atveq5331022 and for r w51.27 at
veq5431022 are shown in Fig. 14 and Fig. 15, respec-
tively. Generally the second term or Maxwell stress is domi-
nant in the RHS of Eq.~8!. The Maxwell stress largest in the
vicinity of the rational surface becomes a damping force. The
electrostatic Reynolds stress corresponding to the first term
in the RHS of Eq.~8! has a tendency to generate the poloidal

FIG. 14. Time evolution of radial profile of each term in Eq.~8! for r w

51.27 atveq5331022. Here curve~1! denotes left-hand side of Eq.~8!,
curve ~2! denotes the first term of right-hand side of Eq.~8! corresponding
to Reynolds stress, curve~3! denotes the second term of RHS of Eq.~8!
corresponding to Maxwell stress, and curve~4! denotes the third term of
RHS of Eq.~8! corresponding to viscous damping.

FIG. 15. Time evolution of radial profile of each terms in Eq.~8! for r w

51.27 atveq5431022. Here curves~1!, ~2!, ~3!, ~4! denote the same term
in Eq. ~8!, respectively, as shown in Fig. 14.
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flow. However its contribution is weak for RWMs. Although
the viscosity effect given by the third term in the RHS of Eq.
~8! works to generate the poloidal flow near the rational sur-
face, its effect is not large. Forveq5431022, the mode
saturate at.3400 as shown in Fig. 9, however, the poloidal
rotation velocity remains at this time@see Fig. 10~b!#. Since
the perturbed magnetic energy of (m,n)5(2,1) mode decays
after t.3400 as shown in Fig. 9, the Maxwell stress also
decreases after the saturation. Thus, the reduction of poloidal
rotation also become small, and the finite poloidal rotation
velocity is kept in the nonlinear phase.

Figure 16 shows a relation between the magnetic island
width ~full width! due to the RWM of (m,n)5(2,1) mode
and Dv5veq2v(t) at the rational surface. Herev(t) de-
notes a time dependent poloidal rotation frequency of the
rational surface, and the magnetic island width also depends
on time. The poloidal rotation velocity begins to decrease at
smaller island width, when the initial poloidal rotation veloc-
ity becomes larger. When the resistive wall is close to the
plasma surface (r w51.2), the poloidal rotation velocity be-
gins to decrease at smaller island width than the case for
r w51.27. The Maxwell stress is larger forr w51.2 than for
r 251.27 at the same island width as shown in Fig. 17. It is
noted that the Maxwell stress becomes maximum for a spe-
cific magnetic island width. When the resistive wall is close

to the plasma surface and the initial poloidal rotation velocity
is large, the nonlinear RWM is affected by the large Maxwell
stress atr .r s . The poloidal rotation velocity is also affected
by the Maxwell stress in case of a smaller linear growth rate,
since the magnetic island keeps the width corresponding to
the maximum Maxwell stress for a longer time. Thus, the
poloidal rotation velocity decreases significantly forr w

FIG. 16. Island widthw vs Dv5veq2v(t) at r 5r s . ~a! r w51.2,veq

5431023, ~b! r w51.2,veq5831023, ~c! r w51.2,veq51.331022, ~d!
r w51.27,veq5231022, ~e! r w51.27,veq5331022, and ~f! r w

51.27,veq5431022.

FIG. 17. Island widthw vs Maxwell stress atr 5r s , ~a! r w51.2, veq54
31023, ~b! r w51.2,veq5831023, ~c! r w51.2,veq51.331022, ~d! r w

51.27,veq5231022, ~e! r w51.27,veq5331022, and~f! r w51.27,veq

5431022.

FIG. 18. Time evolution of a torque acting inside the plasma~continuous
line! and that inside the wall~dotted line! for r w51.27 atveq5331022.

FIG. 19. Dependence of~a! (c̃(r w)/ṽ(r s))
2, ~b! dd/dr, and ~c! Tw on

initial poloidal rotation frequency in linear phase.
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51.2 atveq51.331022. In this case, the poloidal rotation
begins to decrease before the mode saturates as shown in
Fig. 11 and Fig. 12.

Figure 18 shows time evolution of a rotational torqueTp

acting inside the plasma and magnetic torqueTw acting in-
side the resistive wall forr w51.27 atveq5331022. Here
Tp andTw are defined as

Tp5E
plasma

U]^vu&
]t Ur dV54p2RE

0

r wU]^vu&
]t Ur dr , ~9!

Tw5E
wall

1

r 2

]

]r
r 2^B̃r B̃u&r dV

54p2RE
r w

2 1

r 2

]

]r
r 2^B̃r B̃u&r dr . ~10!

The contribution from the Reynolds stress and the viscosity
to Tp is negligible. HereTp is almost equal toTw , which
means that the poloidal rotation velocity decreases due to the
magnetic torque inside the resistive wall.

It is noted that the perturbationc̃(r ,u,z) is written as
c̃(r ,u,z)5(m,nc̃m,n(r )cos(mu1nz2dm,n). Since the contri-
bution of the (m,n)5(2,1) component toTw is dominant as
shown in Fig. 8, other higher harmonics may be negligible.
ThenTw is written as

Tw/4p2R5E
r w

2 m

2r 2

d

dr S r c̃m,n
2 ddm,n

dr D r 2dr

5
m

2 S r c̃m,n
2 ddm,n

dr D
r 5r w

~11!

by using c̃m,n and ddm,n /dr at the boundary between the
resistive wall and the pseudo-vacuum.15 Figure 19 shows~a!
(c̃2,1(r w)/c̃2,1(r s))

2, ~b! dd2,1/dr, and ~c! Tw in the linear
phase, respectively, as a function ofveq . Since c̃2,1 de-
creases monotonically forr .r s , (c̃2,1(r w)/c̃2,1(r s))

2 be-
come large as the position of resistive wall becomes close to
the plasma surface. Also,dd2,1/dr becomes large for the
large veq case@see Fig. 19~b!#, andTw increases when the
resistive wall becomes closer to the plasma surface@see Fig.
19~c!#. Thus, when the resistive wall becomes close to the
plasma surface, the Maxwell stress increases.

IV. SUMMARY

Nonlinear behavior of the RWM of (m,n)5(2,1) mode
has been clarified with the reduced MHD model. Here the
vacuum is treated with the pseudo-vacuum model and the
poloidal rigid rotation is assumed as the initial condition.

When a resistive wall is placed close to the plasma surface
such asr w&1,2, the reduction of initially imposed poloidal
rotation is significant and, the poloidal velocity almost dis-
appears near the resonant surface. Then the RWM grows up
to the saturation level in the case ofveq50. Thus the satu-
ration level becomes independent of the initial poloidal rota-
tion. When the distance between the plasma surface and the
resistive wall becomes wider such asr w.1.27, the poloidal
rotation velocity required to stabilize the linear RWM in-
creases. However, if the poloidal rotation frequency is suffi-
ciently large, the poloidal rotation survives even in the non-
linear phase. In this case, the saturation level decreases due
to the increase of poloidal rotation. Finally it has been shown
that the poloidal rotation is damped by the Maxwell stress
dominantly. Here the magnetic torque is calculated for ex-
plaining this result. Also the dependence of Maxwell stress
on the magnetic island width is shown.
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