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Destabilization of nonlinear resistive wall mode due to suppression
of poloidal rotation in a cylindrical tokamak

M. Sato, S. Hamaguchi, and M. Wakatani
Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-1100, Japan

(Received 12 June 2002; accepted 14 October 002

It is known that linear resistive wall modéRWMSs) can be stabilized by a poloidal rigid rotation.
Nonlinear behavior of unstable RWMs has been studied in a cylindrical tokamak plasma with such
a poloidal rotation. When a resistive wall is very close to the plasma sunfg¢a 1.2) significant
reduction of the poloidal rotation due to the Maxwell stress occurs in the neighborhood of resonant
surface of (n,n)=(2,1), wherem (n) is a poloidal(toroida) mode number. Thus the nonlinear
saturated state does not depend on the magnitude of poloidal rotation. However, when the resistive
wall position is close to the ideal wall stabilization limit,{/a=1.3) orr,,/a=1.27, the poloidal
rotation remains in the nonlinear phase for a large poloidal rotation case. In this case, nonlinear
saturation with a small amplitude level becomes possible. The role of Maxwell stress is clarified by
introducing magnetic island width and rotational torque for the reduction of poloidal rotation.
© 2003 American Institute of Physic§DOI: 10.1063/1.1527042

I. INTRODUCTION RWM has a role to suppress the poloidal rotation through the

. - . Maxwell stress. The resultant slowdown of plasma rotation
MagnetohydrodynamiMHD) stability of magnetically  gjgnificantly affects stability of RWMs and their nonlinear
confined plasmas is crucial for obtaining improved Conf'ne'behavior.

ment suitable _fpr a fusion reactbi.:or.obtain.ing high be.ta In this paper, we study numerically nonlinear behavior
plasmas, stabilization of dangerous ideal kink modes is réz¢ pywvs in a cylindrical plasma with a rigid poloidal rota-
quired in current carrying tokamaﬁsThe' ideal kink modes _tion. This may be a simplified model for understanding non-
can be stabilized by a perfect conducting wall placed suffiyi,qq, physics of RWMs applicable to those in tokamak ex-
ciently _cl_ose to the plgsma surfatelowever, when 'Fhe wall periments. The rest of the paper is organized as follows. In
has a finite conductivity, the mode cannot be stabilized comgg. || for describing nonlinear RWMs in the cylindrical
pletely, even if the wall is close to the plasma surfada. geometry, the reduced MHD equations are introduced. Then
this situation, resistive wall modedRWMs) become un-

; ; our numerical model for studying nonlinear RWMs are
stable. The RWM grows slowly with a growth time on the gnqn  Numerical schemes for solving the reduced MHD
order of resistive decay time of magnetic fietg,, in a wall.

; . ; equations are briefly mentioned. In Sec. lll, results of non-
For a stationary tokamak sustained with a large bootstrannear calculations of unstable RWMs are shown. Our con-

current, such a slowly growing instability becomes danger¢q, js in the change of the assumed poloidal rotation due to

ous and it is important to stabilize RWMs. There are severa{he nonlinear RWM with n,n)=(2,1), wherem (n) is a

experimental results that the RWMs deteriorate ConfinemerB()'OidaD mode number. Finally, a summary is given in Sec.

in tokamaks.™’ For suppressing effects due to RWMs feed- y, ’

back controls have been propo$ed. '
It is noted that the linear RWMs can be stabilized by

plasma rotation®~** Indeed, in DIII-D tokamak, high beta || MODELING OF RWM

plasmas withgy> B’ wall are obtained for sufficiently longer

times thanr,, when the toroidal rotation is sufficiently fast. For low beta cylindrical tokamak plasmas, the well-

Here, By is a normalized beta with respect to Troyon limit known reduced MHD equations were derived by Kadomtsev

and ﬂrlllowall is the By limit predicted under the assumption and Poguts]é and Straus$’ These equations with dimen-

without a conducting wall. sionless variables are shown as
_ _However, when the plas_ma rotation decreases l_aelow a b abLab 1aday I
critical level, the RWM begins to grow as shown in the — = + 73— E;, (1)

experiment. As the RWM grows, the plasma rotation fre- gt drraf radfdr oL
quency decreases clearly. Finally, the high beta plasma phase sU 9¢ 1 90U 1 d¢ U ;1 ay 1393 oy

of disqharge i; destroyed. . gt arr a0 rao ar + T a6 a0 ar
It is considered that the slowdown of plasma rotation
results from the electromagnetic drag fof¢élave and Wes- dd; 5
son showed that the electromagnetic drag force comes from ol +VVIU+ Sy, 2
perturbed magnetic fields penetrating into the resistive wall.
Here we show that the magnetic perturbation due to the Jg:Vi'l/' Q)

1070-664X/2003/10(1)/187/8/$20.00 187 © 2003 American Institute of Physics
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U=V2¢, (4

in the cylindrical coordinatef, 6, {), wherey is the poloi-
dal magnetic flux defined bB, = —(a/R)V¢xX e, and ¢ is

the stream function defined by =V ¢ X e, . Here,r, # and{

are radial, poloidal and toroidal coordinate, respectively. In
Eq. (1), resistivity  is normalized touoa® 74, Wherer,),

=R\ uop/By. Here, the length of cylindrical plasma is
27R, the plasma minor radius &, the mass density ip,
and the longitudinal magnetic field By. In Eqg. (2), viscos-

ity is denoted byv. The source tern$,, is chosen to satisfy
vaUeq(r)JrSm:O, whereU(r) is a vorticity at an equi-
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librium state. It is noted that a poloidal rotation is introducedFIG. 1. Profiles of safety factay, plasma current densitl, and resistivity

through the vorticityU(r). In Egs. (1) and (2), time is
normalized tor,,, length toa, ¢ to Bpa?, ¢ to Bya?/m,,
andU to By/7,,. Thus the velocity, is normalized with
al Thp -

Resistivity is introduced artificially in the vacuum region
to use the pseudo-vacuum mod&t® Time evolution of the
resistivity in Eq.(1) is solved here. The equation for resis-
tivity is described &

&n_&qbl&"/] 1d¢ dn

20 ar +KHVf77+KlVi7;+Q, (5)

where the parallel thermal transport coefficient of resistivity
k; is normalized td?zla-hp and the perpendicular ong_ to
aZ/Thp. In the numerical calculationg;=1 and«, =10"°
are assumed. The source ter@ is chosen to satisfy
KLVE 7eq(r) + Q=0, wherern4(r) is a resistivity at an equi-
librium state.

7eq at equilibrium state.

nw=10"%. The profiles ofg, Jeq and ¢4 are shown in Fig.
1, whereq is a safety factor. In Fig. 1¢,=1.85 andr,,
=1.2 are assumed, whegg is a safety factor at the plasma

surface. The rational surface ©f=2 is located atr=rg

=1.04 in the pseudo-vacuum region. For studying nonlinear
RWMs, this configuration has been used.

Equations(1)—(5) are solved numerically for the cylin-
drical plasma shown in Fig. 1. In our numerical code, the
radial derivates are replaced with standard difference ap-
proximations. the derivatives with respect to poloidal artjle
and the toroidal anglé are treated with Fourier-expansions.
We also assume single helicity for studying thm,q)
=(2,1) mode destabilized at tlgg=2 surface, since our in-
terest is in the unstable lommodes. The time advancement
is made with a predictor-corrector method. A typical radial

The pseudo-vacuum region is surrounded by the resiSyesh number is 400 and 10 harmonics of tdd) mode are

tive wall with a finite thickness. In the resistive wall, the
velocity is zero and the resistivity is independent of time.

solved in nonlinear calculations. These numbers are suffi-
cient from the point of view of numerical accuracy.

However, the poloidal flux may change in this region. Thus,

the diffusion equation of perturbed poloidal fI@(

o

m (6)

77WV12_ 1

is solved in the resistive wall, wheng, is a resistivity of the
resistive wall.

It is assumed that the outside of resistive wall is covered w-

by a perfect conductor at,=2 for simplicity. In this case,
the main plasma is located in the regios 1, the pseudo-
vacuum in the region &r <r,,, and the resistive wall in the
regionr,<r=<r., wherer,, is the boundary between the
pseudo-vacuum and the resistive wall. The boundary cond
tions for the reduced MHD equations solving
B(r,0,4,1), %(r,0,£,1) and 7(r,0,¢,t) are ¢(ry)=7n(ry)
=0 atr=r, and ¥(r;)=0 atr=r,. At r=0 standard
boundary conditions are employed.

The current profile at an equilibrium state is chosen as

‘]eq(r):(‘]a_Jb)(l_r3'5)2+~]b (7)

for O=r=<1, andJy(r) =Jp<J, for 1<r<r.. The resistiv-
ity profile is assumed to be proportional taJdy(r) for r

<r, 7(r=0) and the resistivity in the pseudo-vacuum re-

gion 7, are set to bey(r=0)=10 ° and#,=10 3, respec-
tively. Resistivity of the resistive walk,, is assumed to be

IIl. NUMERICAL RESULTS

A. Nonlinear behavior of RWMs without a poloidal
rotation

Figure 2 shows dependence of linear growth rate of the
(m,n)=(2,1) mode on the resistive wall position given by
For obtaining linear growth rate in case of a perfect
conducting wall, the boundary conditions are changed to

standard onesy(r,,) = ¢(r,)=n(r,)=0 atr=r,. When

I- 0.03 pe'rfect cc;nductiné wall ——
resistive wall ---%---
0.02
>~
0.01 |
0

Tw

FIG. 2. Dependence of linear growth rayef (m,n)=(2,1) mode on wall
positionr,, .
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the perfect conducting wall is located lat1.27 instead of FIG. 4. Time evolution ofa) magnetic energy antb) kinetic energy with-
the resistive wall, the ideal kink mode can be stabilized com?dut a poloidal rotation. _Resi_stive Wa!l is assumed to be locateq,atl.2.
L. . Mode numbers for 10 lines in both figures d&1),(4,2),(6,3), . .. (20,10

pletely. When a resistive wall is assumed, RWMs becomqespectively from the top line.
always unstable. Radial profile of linear eigen function of
o1 and ¢, , for the case of ,=1.2 is shown in Fig. 3. For
the resistive wall case, the magnetic flux diffuses into thérequency increase when, is decreased. This is a general
wall clearly. behavior of mode frequency of RWM, when the resistive

Time evolution of magnetic energy and kinetic energywall position is changet™*A significant effect ofwe, on the
without the poloidal rotation is shown in Fig. 4. Here, the RWM is the appearance of the phase shittepending on
resistive wall is assumed g},=1.2. The perturbed magnetic as shown in Fig. &). For understanding the stabilizing ef-
energy saturates at=2000. The magnetic surfaces at fect of poloidal rotation, it is useful to check positions satis-
=2000 are shown in Fig.(8). The contours of resistivity at
t=2000 are shown in Fig.(b). The cross-section of core i i . '
plasma is deformed elliptically and magnetic islands are -(a)A 11
formed around the rational surface. Even when the region
between the plasma surface and the resistive wall is replaced
with a vacuum, ¢ has a finite perturbation at=r¢ and
vacuum magnetic islands are formed. The radial profile of
(m,n)=(0,0) component of perturbed resistivityg o is
shown in Fig. 6. It is considered that the plasma confinement
in the edge region become degraded due to the formation of
island structure by the RWM.

B. Nonlinear behavior of RWMs with poloidal rotation

It is shown that RWMs can be stabilized by a large rigid
poloidal rotation. Linear growth rategand mode frequency
are plotted as a function of poloidal rotation frequengy,
=v,/r in Fig. 7, wherev, is a poloidal flow velocity pro-
portional tor. For r,=1.3, the mode cannot be stabilized
perfectly by the rigid poloidal rotation, because the ideal L
kink mode with (m,n)=(2,1) becomes marginally unstable. -1 05 0 05 1

As shown in Fig.. ), the mode frequency is smaller gig. 5. (g Magnetic surfaces, an) contours of resistivity at the satura-
than weq, and the difference between,, and the mode tion phase (=2000) corresponding to Fig. 4.
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FIG. 6. Radial profile of f,n)=(0,0) component of perturbed resistivity

o, at saturation phase £ 2000) corresponding to Fig. 4.

1.5

1
fying  ¢,4(r,0,00=0 in Fig. 8h). When wc4=0, 0.5
Up4(r,0,0)=0 at 6= p/2 or 3m/2. However, forwe,# 0, the 0
curve satisfying 2— 5(r)= /2 or 3mw/2 gives i, «(r,0,0) -0.5
=0. According to linear calculations of RWMJé/dr be- -1
comes large with the increase ©f,. Thus, as shown in Fig. -1.5

8(b), ¥, 4(r,6,0)=0 is satisfied om = const surface roughly
for a largew.q case. This situation is similar to the case with

a perfectly conducting wall which stabilize kink modes eas-FIG. 8. Linear mode structures of RWM witim(n) = (2,1) mode described
ily. by #,4(r,8,0)= 4" (r)cos(PB—&r)) for r,,=1.2 andweq=1.3X 1072 (a)
showsy* (r) and (r), and(b) shows contours o, 4(r,6,0).

-2-15-1-05005 1152

Since our interest is in cases witl, larger than 1.15—
1.2, the stabilizing effect of poloidal rotation becomes domi-

plasma or,,<1.1, the mode frequency becomes almost zergsfficient toroidal coupling to sidebands becomes
and destabilizing effect due to plasma rotation appédts. possiblet®

For such a case with,<1.1, the coupling of RWM to,the Time evolution of magnetic energy of them(n)
other mode such as magnetosonic wave or shear Alfve— (2 1) component for,,= 1.27 for various poloidal rotation
wave becomes essential to reduce the growth rate of RWNequencies is shown in Fig. 9. When a poloidal rotation is
sufficiently large such a@¢=4x 10 2, the RWM saturates
at a lower level than that in the case with,=0. However,
when the poloidal rotation velocity is small, the RWM satu-
rates at the level comparable to that ®f,=0 case. For
weq=3X 102, after the mode almost saturate tat 2500
temporally, the mode grows againtat 3000.

> The difference of the saturation level is related to the
change of poloidal rotation. Figure 10 shows time evolution
of profile of poloidal rotation velocity,v,(r)=uveq(r)
+0or), for (8) weq=3%10? and(b) weq=4X%10"2, re-
0 002 0.04 006 0.08
wea %
£
0.02 T T T ;:
(b) r=1.30 —— o ]
Py=1.27 -edtesm W
& 0.015 = ]
g 001 5 10 o ]
b el -2 3
2 B 2x 107 - ]
A [} "E e -
€ 0.005 & 102 f
£ Bx 102 -eiere 2
0 ba®= 2 / 6% 1072 ;o]
0 0.005 0.01 0.015 0.02 g 0 2000 4000 6000 8000
wea t

FIG. 7. Dependence df) linear growth ratey and(b) mode frequency on  FIG. 9. Time evolution of magnetic energy afi(n)=(2,1) mode forr,,
poloidal rotation frequency., for various resistive wall positions. =1.27 for various poloidal rotation frequencies.
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> 006 r
'g 0.05 | FIG. 12. Time evolution of radial profile of poloidal rotation velocity for
Y weq=1.3x10"2 corresponding to Fig. 11.
= 0.04}
S
® 003}
e 0.02 - i =6000. In this case, the poloidal rotation velocity begins to
S ) decrease near the rational surface afte6000(see Fig. 12
2 0.01 1 T As the poloidal rotation velocity decreases, the growth of
Q

0 : : : : ; : RWM is enhanced. The increase of perturbation amplitude
© 02 04 06 08 1 12 leads to further reduction of the poloidal rotation velocity.
r Finally, the poloidal rotation velocity become almost zero in
FIG. 10. Time evolution of radial profile of poloidal rotation velocity fay ~ the regions near the plasma surface and the resistive wall
weq=3%10"? and(b) weq=4% 10" corresponding to Fig. 9. surface in Fig. 12. As shown in Fig. 11, the saturated ampli-
tude in case ofw.,#0 becomes comparable to that for the
eq=0 case even though linear growth rate is smaller than
at for thew.q=0 case.
Figure 13 shows dependence of the saturation level of
gnetic energy of thenf,n)=(2,1) component on the po-
idal rotation frequency. When the distance between the
lasma surface and the resistive wall surface becomes wider,
he poloidal rotation velocity required to stabilize the RWM
becomes larger. However, if the initial poloidal rotation ve-
locity is large, the poloidal rotation survives in the nonlinear
af)hase and the saturation level is much lower than that for the
Fiqure 11 shows time evolution of maanetic ener ofweqzo case. When the resistive wall is very close to the
the (mgn):(z 1) component for,— 1.2 whic% i chosenggs plasma surface, _the reduction of poloidal ro.ta.tlon is signifi-
an exz;lmple c;f the case that thvev Wa.ll is close 1o the plasrncant in the nonlinear phasg. Then the resistive wall mode
ﬁlay grow up to the saturation level in the =0 case re-

surface. The linear growth rate far,=1.2 at weq=1.3 : :
S ; ardless of the value of the poloidal rotation frequency.
X102 in Fig. 11 is smaller than that far,=1.27 atweq 9 P q y

=4x10"2 in Fig. 9. However, in the case af,=1.2 at
weq=1.3X 102, the nonlinear growth rate is enhanced at

spectively. For both cases, there is a slowdown of poloidaﬁ]
rotation velocity in the nonlinear phase. Fabeq=3

X 102, the poloidal rotation velocity begins to decrease atma
t=2500 and it decreases to almost zero around the ration%
surface aftert=3000. Thus, aftet=3000 the stabilization
effect of poloidal rotation becomes weak and the mod
grows again. However, fobeq=4X 102, a substantial po-
loidal rotation velocity remains even in the nonlinear phase
Thus, the saturation level becomes low due to the stabiliz
tion effect of the poloidal rotation.

C. Mechanism of slowdown of poloidal rotation

The time evolution of averaged poloidal rotation veloc-
ity (v, is described by

')
o
4]
£
= 0.1
o
1]
= ®
3 3 oot
- c
o K=]
& s
(o] -
3 £ 0.001
o @ E
02
@
5 0.0001 L L L L
g 0 2000 4000 6000 8000 0 002 0.04 0.06 0.08
t wcq
FIG. 11. Time evolution of magnetic energy ah(n)=(2,1) mode forr,, FIG. 13. Dependence of maximum magnetic energynofn) = (2,1) mode

=1.2 for various poloidal rotation frequencies. on the initial poloidal rotation frequency.
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FIG. 14. Time evolution of radial profile of each term in E&) for r,
=1.27 atweq=3><10’2. Here curve(1) denotes left-hand side of E¢B),
curve (2) denotes the first term of right-hand side of E8). corresponding
to Reynolds stress, cury@®) denotes the second term of RHS of E§)
corresponding to Maxwell stress, and cur¥g denotes the third term of
RHS of Eq.(8) corresponding to viscous damping.
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8

where(f)=[37f dod{/4m? andEJo is (m,n)=(0,0) compo-
nent of perturbed vorticity. Equatidi) is obtained by taking
the average of Eq(2) over § and {. In order to study the
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FIG. 15. Time evolution of radial profile of each terms in E§) for r,,
=1.27 atweq=4X 10" 2. Here curvegl), (2), (3), (4) denote the same term
in Eq. (8), respectively, as shown in Fig. 14.

the three terms in the right hand side of E§) are treated
separately. Time evolution of radial profile of each term in
Eq. (8) for r,,=1.27 atweq=3x%10"2 and forr,=1.27 at
weq=4%10"? are shown in Fig. 14 and Fig. 15, respec-
tively. Generally the second term or Maxwell stress is domi-
nant in the RHS of Eq(8). The Maxwell stress largest in the
vicinity of the rational surface becomes a damping force. The
electrostatic Reynolds stress corresponding to the first term

mechanism of generation or decay of the poloidal rotationjn the RHS of Eq(8) has a tendency to generate the poloidal
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FIG. 18. Time evolution of a torque acting inside the plasic@ntinuous
line) and that inside the walldotted ling for r,,=1.27 atweq=3><10’2.

to the plasma surface and the initial poloidal rotation velocity
flow. However its contribution is weak for RWMs. Although g large, the nonlinear RWM is affected by the large Maxwell
the viscosity effect given by the third term in the RHS of Eq. stress at~r . The poloidal rotation velocity is also affected
(8) works to generate the poloidal flow near the rational suryy the Maxwell stress in case of a smaller linear growth rate,

face, its effect is not large. Fapeq=4X 10 2, the mode

since the magnetic island keeps the width corresponding to

rotation velocity remains at this timesee Fig. 1(b)]. Since
the perturbed magnetic energy ofi(n) =(2,1) mode decays
after t=3400 as shown in Fig. 9, the Maxwell stress also
decreases after the saturation. Thus, the reduction of poloidal
rotation also become small, and the finite poloidal rotation
velocity is kept in the nonlinear phase.

Figure 16 shows a relation between the magnetic island
width (full width) due to the RWM of (n,n)=(2,1) mode
and Aw=w¢q— o(t) at the rational surface. Here(t) de-
notes a time dependent poloidal rotation frequency of the
rational surface, and the magnetic island width also depends
on time. The poloidal rotation velocity begins to decrease at
smaller island width, when the initial poloidal rotation veloc-
ity becomes larger. When the resistive wall is close to the
plasma surfacer(,=1.2), the poloidal rotation velocity be-
gins to decrease at smaller island width than the case for
rv=21.27. The Maxwell stress is larger foy,=1.2 than for
r,=1.27 at the same island width as shown in Fig. 17. It is
noted that the Maxwell stress becomes maximum for a spe-
cific magnetic island width. When the resistive wall is close

-107
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FIG. 17. Island widthw vs Maxwell stress at=rg, (@) r,=1.2, weq=4
X107, (b) ry=1.2,0eq=8x1073, (0) 1,=1.2,0=1.3x10°2, (d) 1,
=1.27,0eq=2X 1072, (8) 1,=1.27,0¢q=3X 1072, and(f) r,=1.27,wq
=4X102.
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=1.2 atweqg=1.3X 10"2. In this case, the poloidal rotation When a resistive wall is placed close to the plasma surface
begins to decrease before the mode saturates as shownsuoch as,,<1,2, the reduction of initially imposed poloidal

Fig. 11 and Fig. 12.

Figure 18 shows time evolution of a rotational tordyg
acting inside the plasma and magnetic tordygacting in-
side the resistive wall for,,=1.27 atweq=3X 10 2. Here
T, andT,, are defined as

v p) 2 frw (v p)
Tp_fplasml g rdv=4=°R N rdr, (9
T —f L7 2B dv
w wall I’2 (9rr< r 0>r

, (219 ,~~
=47°R r_2(9_rr (B,By)r dr. (10
rW

rotation is significant and, the poloidal velocity almost dis-
appears near the resonant surface. Then the RWM grows up
to the saturation level in the case ©f,=0. Thus the satu-
ration level becomes independent of the initial poloidal rota-
tion. When the distance between the plasma surface and the
resistive wall becomes wider such gs=1.27, the poloidal
rotation velocity required to stabilize the linear RWM in-
creases. However, if the poloidal rotation frequency is suffi-
ciently large, the poloidal rotation survives even in the non-
linear phase. In this case, the saturation level decreases due
to the increase of poloidal rotation. Finally it has been shown
that the poloidal rotation is damped by the Maxwell stress
dominantly. Here the magnetic torque is calculated for ex-
plaining this result. Also the dependence of Maxwell stress
on the magnetic island width is shown.

The contribution from the Reynolds stress and the viscosity

to T, is negligible. HereT, is almost equal tdr,,, which

means that the poloidal rotation velocity decreases due to the

magnetic torque inside the resistive wall.

_Itis noted that the perturbation(r,6,{) is written as
Y(r,0,0) =2 n¥mn(r)cosmé+ni—a,,). Since the contri-
bution of the f,n)=(2,1) component td@,, is dominant as
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