Osaka University Knowledg

Shear viscosity of strongly coupled Yukawa

Title
systems
Author(s) |[Saigo, T.; Hamaguchi, S.
Citation |Physics of Plasmas. 2002, 9(4), p. 1210-1216

Version Type

VoR

URL https://hdl. handle.net/11094/78490
This article may be downloaded for personal use
only. Any other use requires prior permission of
rights the author and AIP Publishing. This article
g appeared in Physics of Plasmas 9, 1210 (2002)
and may be found at
https://doi.org/10.1063/1.1459708.
Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University




"
(")
£
"

3

a

S
o
"

9
"
P

L

a

Shear viscosity of strongly coupled Yukawa
systems

Cite as: Physics of Plasmas 9, 1210 (2002); https://doi.org/10.1063/1.1459708
Submitted: 12 December 2001 . Accepted: 21 January 2002 . Published Online: 21 March 2002

T. Saigo, and S. Hamaguchi

A
@ S

View Online Export Citation

L

ARTICLES YOU MAY BE INTERESTED IN

Molecular dynamics evaluation of self-diffusion in Yukawa systems
Physics of Plasmas 7, 4506 (2000); https://doi.org/10.1063/1.1316084

Equilibrium molecular dynamics simulations of the transport coefficients of the Yukawa one
component plasma

Physics of Plasmas 10, 1220 (2003); https://doi.org/10.1063/1.1566749

Temperature dependence of viscosity in a two-dimensional dusty plasma without the effects
of shear thinning

Physics of Plasmas 23, 093703 (2016); https://doi.org/10.1063/1.4962512

READ NOW

and Plasmas Collection

Physics of Plasmas 9, 1210 (2002); https://doi.org/10.1063/1.1459708 9, 1210

© 2002 American Institute of Physics.


https://images.scitation.org/redirect.spark?MID=176720&plid=1296192&setID=377252&channelID=0&CID=444925&banID=520069418&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=d274febdd61d0a837c9f429225b2f92d5ef8a8d7&location=
https://doi.org/10.1063/1.1459708
https://doi.org/10.1063/1.1459708
https://aip.scitation.org/author/Saigo%2C+T
https://aip.scitation.org/author/Hamaguchi%2C+S
https://doi.org/10.1063/1.1459708
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1459708
https://aip.scitation.org/doi/10.1063/1.1316084
https://doi.org/10.1063/1.1316084
https://aip.scitation.org/doi/10.1063/1.1566749
https://aip.scitation.org/doi/10.1063/1.1566749
https://doi.org/10.1063/1.1566749
https://aip.scitation.org/doi/10.1063/1.4962512
https://aip.scitation.org/doi/10.1063/1.4962512
https://doi.org/10.1063/1.4962512

PHYSICS OF PLASMAS VOLUME 9, NUMBER 4 APRIL 2002

Shear viscosity of strongly coupled Yukawa systems

T. Saigo and S. Hamaguchi
Department of Fundamental Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

(Received 12 December 2001; accepted 21 January)2002

With the use of equilibrium molecular dynami@€lD) simulations, shear viscosity of the Yukawa
system is evaluated under strongly coupled conditions. In the limit of weak screening, it is
confirmed that the obtained Yukawa shear viscosity approaches the previously known shear
viscosity of the one-component plasma. It is shown that Yukawa shear viscosities with appropriate
normalization follow a simple temperature scaling formula. Yukawa shear viscosities obtained from
the present MD simulations are significantly larger than those obtained previously based on a
different numerical method. It is argued that the new simulations provide more plausible values for
Yukawa shear viscosities than the previously known results2002 American Institute of Physics.
[DOI: 10.1063/1.1459708

I. INTRODUCTION Sanbonmatsu and Murilt. We initially intended to cor-

) ) , ) roborate the results obtained in Ref. 14 independently, using
A wide variety of systems of charged particles immersed, itterent numerical method. It turns out that shear viscosi-

in charge neutralizing media, such as dusty plasmas and CQlgs e have obtained are significantly larger than those
loidal particles in electrolytes, may be modeled by Yukawag;yen in Ref. 14. Although the cause of this discrepancy is
systems with good accuracy if they are in thermodynamicafq; yet clear, we have some reasons to believe that our simu-

equilibrium:"* Yukawa systems consist of particles with |40 results are more plausible than those given in Ref. 14,
chargeQ and massn interacting through the Yukawa.e., as will be discussed in this article.

screened Coulomtpotentials given by Static properties of Yukawa systems in thermodynamical
equilibrium can be characterized by two dimensionless pa-

Q2 exp(—kpr) rameters. One is screening parameterkpa, i.e., the ratio

d(r)= Areg ; : (1)  of interparticle spacing[i.e., Wigner—Seitz radiusa

=(3/4mn)*? with n being the particle number densjtyo
Herer is the separation length of two particles akgj1 isthe  screening Iengtr|>(5l and the other is coupling parameter
screening length due to Debye shielding by the backgroune: Q%/4msakgT, i.e., the ratio of the average Coulomb po-
medium. Especially in the limit okp— 0 (i.e., the infinite  tential energyQ?/4meya to temperaturel (with kg being
screening length the system is known as the one-componenthe Boltzmann constant Alternatively, one may use the
plasma(OCP. ratio of the average interparticle potential energy

Dynamical properties, such as transport Q2 exp(— k)/4meqa to temperature, i.el'* =T" exp(—«), to
coefficientd~*1%~1%and wave dispersiolf;}”are some of the represent the extent of interparticle correlations of the sys-
most fundamental properties characterizing systems of mangm. In the present work, however, we follow convention and
particles. To date various authors have studied dynamic proprostly usex andI’ (rather thanl'*) as the system param-
erties of the OCP~?°and evaluated the self-diffusion coef- eters. If the average interparticle potential energy is compa-
ficient, shear and bulk viscosities and heat conductivities. Asable with or greater than the average kinetic energy, the
to Yukawa systems, some of the transport coefficients haveystem is referred to as “strongly coupled,” which may be
been evaluated only recently. For example, Ohta and one aharacterized by'* > 1. The criticall’ for the phase transi-
the authorgS.H) have recently evaluated self-diffusion co- tion between fluid and solid statéander constant density
efficients of Yukawa systems using equilibrium MD simula- conditiong of a Yukawa system is denoted by,, where the
tions in a wide range of the parameter spat®8anbonmatsu  subscriptm represents “melting.” Table | list§™,, for some
and Murillo have evaluated shear viscosity coefficients ofselecteds, which are taken from Ref. 9.
Yukawa systems using nonequilibrium MD simulatidfis. Dynamical properties such as transport coefficients de-

Our initial motivation to study Yukawa systems is to pend also on characteristic frequencies of the system. We
understand statistical dynamics for dusty plasmas. In dustgefine the Einstein frequency by
plasmas, particulates are typically charged negatively due to
the high mobility of electrons. The screening arises from the
formation of a sheath around each particulate by the back-
ground plasma.

The goal of the present work is to determine shear vis-
cosity of Yukawa systems using equilibrium MD simula- where ¢ is the Yukawa potential of Eql), mis the particle
tions, i.e., a numerical method different from that used bymass, the sum is taken over akxcept for(fixed) j and all

1 kg
wé:% % Ag{;(ri—rj):% ; B(ri—rj),

1070-664X/2002/9(4)/1210/7/$19.00 1210 © 2002 American Institute of Physics
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TABLE |. The critical I' for the fluid—solid phase transition and the fcc Straightforward integration of the equations of motion
Einstein frequencies. results in simulations under constant-energgsther than
B T, Bl constant-temperaturgonditions. In order to attain thermo-

dynamical equilibrium at desired temperatufe(i.e., I'),

0.0 1718 1.0000 therefore, we periodically renormalize particle velocities to

0.1 172.2 0.9972 th ibed t t value fér. The statistical

05 181.9 0.9423 e prescribed target value fét. The statistica averagf _

1.0 217.4 0.8178 may be obtained by taking the time average over a suffi-
2.0 440.1 0.5315 ciently long time period once the system reaches thermody-
3.0 1185 0.3047 namical equilibrium. In the parameter regime we discussed

in this work, it is usually sufficient to run the simulation with
velocity rescaling for the first 100 time unitg.e., O<r
=<100) in order to force the system to reach thermodynami-
particles are assumed to be at given crystal structure sitegg| equilibrium. To evaluate time-dependent functi¢sisch
This represents the harmonic oscillation frequency of a paras the stress autocorrelation function that we discuss below
ticle around its equilibrium site when all other particles arej, thermodynamical equilibrium, we discontinue the velocity
situated at their equilibrium sites. Note thag—w,/\3 as  rescaling atr=100 and then evaluate the desired functions
x— 02" Herewy, is the nominal plasma frequency of Yukawa of time under constant—energy calculations for the next 400
systems, i.e.w,=Q°n/eom. Although we depends on the  time units(i.e., 106< <500). Under such conditions, tem-
selected crystal structure, its numerical values for the fcc anBerature fluctuates and can gradually shift toward a value
bce crystals differ only less than 1%. Therefore, in thegifferent from the target value. Therefore the actual system
present work, we only use the fcc Einstein frequency fortemperature here is defined as its time average. The number
convenience. Table | lists the fcc Einstein frequenciesh  of simulation particles used in our simulations presented in
respect tow,//3) for selectedc values. this article isN= 250 unless otherwise specified.

In thermodynamical equilibrium MD simulations, we
use autocorrelation function for the microscopic stress tensor
to evaluate shear viscosity. Thg component of the micro-

IIl. NUMERICAL METHODS scopic stress tensor is defined as

In our MD simulationsN simulation particles are placed

in a cubic box of sid&. and periodic boundary conditions are N

N nyX(pnyy
imposed on all boundaries in order to emulate the infinitely 3yt =S | mpXye S S (rip™(ryy)” d o™ |,
large system. The pair potential between particend par- i=1 UGEH B ri“j dri’} g
ticle j (located atr; andrj) in the simulation box is then 4

iven b
g y wherer=r;—r;+nL andr=|ri|. Also (r{})* andv{* («

=X, Y, or z) are thea component ofi’} andv,;, and super-

_ scriptsx, y, andz denote the corresponding components in
D(rij)=p(|ry;]) +[§O (Ir+nL) @ the ordinary rectangular coordinate system. All quantities are
evaluated at time. Note thatJ*¥Y=JY*. Other components
such as)¥” are similarly defined.

Let us define the stress autocorrelation functi®AF) as

with the Yukawa pair potentiap(r) of Eq. (1). The infinite
sum of ¢ over integer vectorsi=(l,m,n) represents the
contribution from all periodic images. Note that the infinite
sum converges only Ky # 0. In the cas&p =0 it is replaced

by the Ewald sun? In our simulations for finitec, the sec- HXYY(t)=(J¥(1)J¥(0)).
ond term is approximated by a tensor-product spline . ) , ) )
function? The statistical averag@ is obtained by taking a time aver-

As units of mass, length, and time, we employ particle?d€ Of function)®(s-+1)J®(s) over the initial times. Note
mass m, Wigner—Seitz radiusa, and plasma frequency thatH*Y(t) = HY*(t). As mentioned earlier, time averaging of

Bo.t. The equations of motion in dimensionless form are@ function is done under microcanonical conditions after the
then F(j;iven by system reaches thermal equilibrium with given target tem-

peraturel. Since the actual system temperature under micro-
N canonical conditions is not an exact constant of time, we
.. have to limit the period of averaging in such a way that shift
d2 _;k VO(§—§) for k=1,..N, 3) of the system temperature is limited within about 1% of the
target temperature. To reduce statistical noise, we run 30
where 7= w,t/\[3 and# are the dimensionless time and po- independent MD simulations with randomly chosen initial
sitions andV is the gradient irg. The system of equations of conditions for each target temperatfand take an average
motion above are integrated by a predictor-corrector schemever these 30 runs for each physical quantity.
with variable time step®.The MD code used in this article Since thex, y, andz directions are equivaleriand the
was initially developed by Faroukiand later modified by system becomes truly isotropic &—o), we haveH*Y
Ohta*'" and the present authors. =HY?=H?* Therefore we writeH(t)=H"Y(t) and use
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FIG. 1. The SAFH(t)=(J"(t)J¥(0)) versus time forc=2.0. The solid
line is for T*=1.1 (i.e.,, '=400) and the dashed line fa* =88 (i.e., I"

=5).
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contribution of the long-time tail is small compared with
statistical noise inherent in our MD simulations witth
=250.

lll. SIMULATION RESULTS

Shear viscosities that we have evaluated from MD simu-
lations using Eq(5) are given in Tables Il and Ill. The defi-
nitions of normalized shear viscosities here are given by

n=nl\3mnwga? and 7* =zn/mnw,a?,

wherewg andw, are the Einstein frequency for fcc crystals
and the nominal plasma frequency, as mentioned before.
Note thatz=5* when x=0. The normalization employed
for »* has been widely used for the OCP as well as some of
earlier studies for Yukawa systems. However, as Einstein fre-
quency wg, rather than nominal plasma frequeney, is
more natural frequency associated with the Yukawa system,

H(t) = (H®+ HYZ+H?)/3 to further improve statistics. For We here employ; as a natural extension af* of the OCP in
example, we show in Fig. 1 the SAF as a function of timefinite screenindi.e., k#0) cases. Statistical noise for is
(normalized bngl) for k=2.0. The solid line is forT*
=1.1(i.e.,I'=400) and the dashed line far =88 (i.e.,I'
=5). It is seen that the decay time of the SAF is larger fortemperaturél mentioned in the previous section.
the system with stronger couplir(@e., largerl’).

Once the SAF is obtained, the shear viscositis given
by the Green—Kubo formula, i.e.,

1 0
n= VkBTfo H(t)dt,

©)

whereV is the volume of the simulation bdX.In actual
calculations the range of integration above is replaced by Qable Il for eachk. The solid lines in the figure are fitting
<7<100, which is sufficiently long in the sense that the curves based on a simple form given by

indicated byA », which is the standard deviation of values of
7 obtained from the 30 simulation runs for a given target

As to normalization of temperature, we use the melting
temperatureT,,, i.e., T*"=T/T,=I',/I', as in Ref. 13.
Since shear viscosity is defined only in fluid phase, all the
data that we present in this article are T6r>1. Normalized
temperaturel* is roughly a measure of how far the system
is away from the solid phase.

In Fig. 2 we have plotted; together withA 7 given in

TABLE II. Shear viscosity of the Yukawa system obtained from MD simulations Wth250 simulation
particles. The normalized shear viscosities are defined®yy/\3mnwga? and »* = n/m nwpaz. Note that
7=1n* whenx=0. Error estimates fo, are indicated by 7 (the definition of which is given in the main text

K r T 7 A7 n* K r T 7 Ap n*

01 201 85.8 0.503 0.0237 0.502 2.0 199 2210 1.21 0.177 0.646
5.02 343 0.132 0.0134 0.128 498 884 0487 0.0583 0.259
10.0 17.2 0.0687 0.00517 0.0686 9.92 444  0.206 0.0357 0.109
20.0 8.61 0.0693 0.00298 0.0691 19.8 222 0.110 0.0225 0.0584
50.0 3.44 0.0912 0.00150 0.0912 49.0 898 0.0976 0.0231 0.0520
100.0 1.72 0.207 0.0150 0.206 98.9 445 0.118 0.0206 0.0628
150.0 1.15 0.338 0.0318 0.337 199.0 221 0.191 0.0220 0.101

2950 149 0.267 0.0292 0.142

0.5 2.00 91.1 0531 0.0727 0.500 396.0 111 0.352 0.0435 0.187
5.01 36.3 0.138 0.0169 0.130
10.0 18.2 0.0930 0.00315 0.0874 3.0 5.01 237.0 1.13 0.0100 0.345
19.9 9.13 0.0670 0.0117 0.0629 9.96 119.0 0.694 0.168 0.211
50.2 3.63 0.0912 0.00924 0.0861 19.8 599 0.322 0.0220 0.0982
100.0 1.81 0.204 0.0289 0.192 49.5 24.0 0.202 0.0121 0.0613
149.0 1.22 0.311 0.0306 0.293 99.3 11.9 0.133 0.008 78 0.0407

198.0 6.00 0.133 0.0133 0.0406

1.0 2.00 109.0 0.595 0.0330 0.486 395.0 3.00 0.148 0.0191 0.0450
4.99 43.6 0210 0.00970 0.172 996.0 1.19 0.380 0.0337 0.116
9.90 22.0 0.130 0.0101 0.106
19.8 11.0 0.110 0.009 53 0.0904
49.4 440 0.118 0.0140 0.0964
99.0 219 0.218 0.0186 0.179
199.0 1.09 0.357 0.0258 0.292
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TABLE Ill. Normalized shear viscosityAy and its kinetic, potential, and cross parts.

K ™ 7 Tkin ;]pot eross K ™ n Tkin ;7pot Teross
0.1 858 0.503 0.546 0.0196-0.0624 20 2210 121 1.40 0.0119-0.192

343 0.132 0.174 0.0353-0.0803 88.4 0.487 0.532 0.0171+0.0618

17.2 0.0687 0.0855 0.0531-0.0693 444 0.206 0.231 0.0312-0.0565

8.61 0.0693 0.0424 0.0664—0.0395 22.2 0.110 0.125 0.0383-0.0531

3.44 0.0912 0.0150 0.102 —0.0256 8.98 0.0976 0.0510 0.0733-0.0263

1.72 0.207 0.00837 0.195 0.003 15 445 0.118 0.0249 0.1680.0150

1.15 0.338 0.00687 0.336 —0.00471 221 0.191 0.0123 0.194 -0.0159

1.49 0.267 0.00907 0.304 —0.0454

0.5 91.1 0531 0.564 0.0246—-0.0583 1.11 0.352 0.00716 0.394 —0.0495

36.3 0.138 0.176 0.0310-0.0687
18.2 0.0930 0.114 0.0502—-0.0716 3.0 237.0 113 1.29 0.017+0.174

9.13 0.0670 0.0391  0.0630—0.0353 119.0 0.694 0.647 0.0248 0.0204
3.63 0.0912 0.0202  0.0976—0.0262 59.9 0.322 0.320 0.0314-0.0288
1.81 0.204 0.00953 0.203 —0.008 20 240 0.202 0.140 0.0606 0.00110
122 0311 0.00641 0.308 —0.003 96 119 0.133 0.0544 0.0745 0.004 73
6.00 0.133 0.0330 0.111 —0.0106
1.0 109.0 0595 0.797 0.0192-0.225 3.00 0.148 0.0169 0.146 —0.0151
43.6 0.210 0.232 0.0285—-0.0502 1.19 0.380 0.00774 0.367 0.005 66

22.0 0.130 0.113 0.0388-0.0219

11.0 0.110 0.0524  0.0624—0.003 98
440 0.118 0.0206  0.0993—-0.002 15
219 0.218 0.0109 0.161 0.0467
1.09 0.357 0.00693 0.359 —0.008 95

. b (4). This represents momentum transport by the displacement
n=aT*+ — T (6) of particles. Similarly, the potential pad,, which is de-
T fined as the second term of E@l), represents momentum
The values ofa, b andc are summarized in Table IV. It is transport by collisions.

shown that the normalized Viscosity has a minimunil at Using the definitions above, we also define the kinetic,
~10 for all k examined here. potential, cross parts of shear viscosity as
It is interesting to note that these fitting parameters de- 1 (e
pend Onk very weakly, suggestlng that norm_ahze;(_jls al- ”ki”:mf (I (H)I(0)),
most independent ot. In Fig. 3 all the data given in Table B!Jo

Il are plotted in a single chart. The solid line is the fitting
curve of form Eq.(6) for all these data pointgThe fitting 7 :LJW<nyl(t)nyl(o)>
parameters are given in the last rdimdicated ask being POL VKT Jo POR /POt
“all” ) of Table IV] The fitting is excellent, especially for
1<T*=<3 andT*=50. For intermediatd* (=10), how-
ever,;; for larger « is observed to be slightly but systemati-
cally higher than that for smallet. Therefore, although the
“universal” curve shown in Fig. 3 represents the dependenc h e

these terms, i.e= 7int 7pot Mcross The Kinetic and po-

of » onT* very well for all x examined here, care must be . . : .
tential parts of shear viscosity, once normalized by

taken if the curve is used to evaluate shear viscosity value 2 . ;
. . T 3mnwga“, follow scaling laws independent af, as shown
near the viscosity minimum. .
momentarily.

Universality of the curve given in Fig. 3 indicates the : . S .
dependence of shear viscosity— \3mnwgaZy for given Figure fl shows the normalized kinetic part of shear vis-
b ES 7 cosity, i.e.,7in= 7«n/ V3Mnwga?, as a function of normal-

tseerﬂfdei;fal}gig (z:cc))r:f?iiiggtn; ;?e\;uizazngssnt(;?ﬁ?;vzngr:mér izeq temperaturd™*. Th.e solid line is the fittir?g curve giyen
nature, i.e., the normalized self-diffusion coefficiedt DY 7n=0.0059Z*. Itis shown that numerically obtained
=D/wga® with D being the dimensional self-diffusion coef- 7kin €ssentially follows this function, almost independent of
ficient is known to follow a “universal” curve as a function , in the parameter regime discussed here.
of T* when T* is relatively small in fluid phasdi.e., 1 Figure 5 shows the normalized potential part of shear
<T*=<10). ViSCOsity, i.€.,7po= 7pot/ 3MNwga?, as a function of nor-
We now look into details of shear viscosity. Let us sepa-malized temperaturd*. The solid line is a fitting curve
rate the stress tensa(t) into two parts asl(t)=Jy,(t) given by 0.402T'* and the dashed line is a fitting curve given
+Jp0(t), Where theas component of kinetic parfy;, is by 0.2124/T*. The cross point of these two functions is
defined aslgf(t)=3N ,mv?, i.e., the first term of Eq. aroundT* =3,

o

2
ncrossszo <Jﬁi¥1(t)‘]égt(o)>’

Lespectively. The shear viscosity is then given by the sum of
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(b) k=0.5
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(d) kK =2.0
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T

*

(e) k=3.0

100

FIG. 2. Normalized shear viscosiﬁy for various. The solid lines are fitting curves given by E). The vertical bars represent standard deviaﬁéyl

Unlike 7y OF 7p0, the normalized cross pamerss
= erosd V3MNwea?, seems to depend an as well asT*.

TABLE IV. The fitting parameters, b, andc for the normalized viscosity
given by Eq.(6), obtained from our simulation data shown in Table II.

As shown in Table I, the cross part is relatively small com-

pared with the other two parts, especiallyTif <3 or T*

>50. This results in good agreement of numerically ob-
tained;y values with the scaling curve given in Fig. 3, espe-
cially for T* <3 andT* >50. However, for intermediaf€*,

Nerossbecomes comparable with other parts, which results in
slight deviation of the curve from the data points near the

K a b c

0.1 0.005 56 0.373 —0.0347

0.5 0.005 04 0.375 —0.0212

1.0 0.004 71 0.393 0.0113
2.0 0.005 09 0.393 0.000 596
3.0 0.004 56 0.303 0.0634

all 0.004 96 0.324 —0.0133

viscosity minimum, as we have pointed out before.
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0.6

05F

0.4

< 03 F

0.2F

0.1 F

0.01

1 10 « 100

FIG. 5. The potential part of shear viscosﬁ%l as a function of normalized
temperaturd* . The solid line is the fitting curve given by 0.402/ and the
dashed line is the fitting curve given by 0.2¢ZF. Here O: «=0.1,
HW:x=0.5,0:xk=1.0, ®:x=2.0, andA: «=3.0, as in Fig. 3.

FIG. 3. Normalized shear viscosity versus normalized temperatufe .
The solid line is the fitting curve based on H§) with fitting parameters
given in Table IV (under “all”). Here (J:x=0.1, M:x=0.5, O:x=1.0,
®:x=2.0, andA:x=3.0.

that errors incurred by employingelatively small N=250
are roughly within 20%, which is comparable with typical
To demonstrate that our simulation results smoothly apstatistical noise in our simulations.
proach data for the OCP as—0, we have plotted in Fig. 6 Recently, Sanbonmatsu and Murillo have evaluated
shear viscosity values of the OCP previously obtained byshear viscosity of Yukawa systems fosk=<4 using non-
various authoré=2° and our simulations results for=0.1  equilibrium molecular dynamic®EMD) simulationst* The
together with the fitting curve given in Fig. 3. Note that, in shear viscosity values they have obtaiiexpressed in terms
this figure, we have plotted*, instead ofy. It is seen that ©Of 7* in Ref. 14 are typically ;-3 of those we have pre-
our simulation results fox=0.1 are sufficiently close to sented in this work. The difference is significant, much larger
those for the OCP, as expected. than possible errors due to statistical noise or relatively small
In order to confirm that the number of particlés N that we used in our simulations. While Sanbonmatsu and
=250 that we emp]oyed in our MD simulations is sufficient Murillo did not check whether their MD simulations prOVide
to provide reasonably accurate estimates of shear viscosi§hear viscosity values that smoothly approaches those for the
values, we have performed simulations with differsngal- ~ OCP if k—0, Rosenfelé® has shown that shear viscosity
ues(up to N=1000). Figure 7 shows numerically obtained values of the OCP obtained by Donko and Nyiri and those
shear viscosity as a function ofN./for k=2.0 and target for all k>1 obtained by Sanbonmatsu and Murillo follow
I'=400. (Note that, for each case, numerically obtained aciwo different curves when they are plotted #I'5” vs
tualT', which is the time average of fluctuatidy is slightty ~ I'/I'm (=1/T*). We also note that, compared with the scal-
different from the target value 400. As mentioned before, theng of 7 vs T* that we have presented in this arti¢lehich
difference is typically within 199.The solid line is the least- the results by Donko and Nyiri also followthe results by

square fit, which suggests that=0.407 atN=c. It is seen

IV. DISCUSSION

0.6

0.01 p
»” 1 10 100

1 10 « 100
T FIG. 6. Comparison of numerically obtained shear viscosities: our simula-
R tion results fork=0.1 (denoted by®) and simulation results for the OCP
FIG. 4. The kinetic part of shear viscosity;, as a function of normalized (i.e., k=0) obtained by Vieillefosse and Hansdn, Wallenborn and Baus
temperature T*. The solid line is the fitting curve given by;ykin (O) and Donko and Nyiri {\). The solid line is the fitting curve based on
=0.00597*. Here[1: k=0.1, M:xk=0.5,0:xk=1.0, ®:x=2.0, andA: Eq. (6) with fitting parameters given in Table I\under “all”). The broken
x=3.0, as in Fig. 3. line is the fitting function forA.
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0.5 " i normalized shear viscosity as a function of the normalized
; : temperatureT* =T/T,, follows a simple universal scaling
045 } i . . function that is independent aa
- ¢ Py i T Note added in prooflt has come to our attention that
! 1 4 1 . . .
& i ; ® ' independent work on the evaluation of Yukawa shear viscos-
< A4 T i T ity by Salin and Caillol has been published recentlyVe
= 04 — ? ty by Sal d Caillol has b blished At
' S ; have confirmed their results are in good agreement with our
' o
0.5 b o results presented here.
]
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