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High- n ballooning instabilities in toroidally rotating tokamaks

M. Furukawa,® Yuji Nakamura, S. Hamaguchi, and M. Wakatani
Graduate School of Energy Science, Kyoto University, Gokasho, Uji 611-0011, Japan

(Received 7 May 2001; accepted 21 August 2001

High-n ballooning instabilities are studied with an initial-value code for toroidally rotating
tokamaks, whera is a toroidal mode number. The effects of toroidal rotation are classified into two
parts:(i) increase of effective pressure gradient due to the centrifugal force of the toroidal flow, and
(ii) averaging of local magnetic equilibrium configuration over a period of poloidal angle in the case
of finite flow-velocity shear. With the increase of effective pressure gradient in the rigid-rotation
case, the growth rate of ballooning mode increases in the low-pressure regime as the toroidal flow
velocity is increased, whereas it decreases in the high-pressure regime. The flow-velocity shear
generally reduces the growth rate of the higliallooning mode by the averaging of the local
equilibrium magnetic configuration. However, it is found that the ballooning mode becomes
unstable by increasing the flow-velocity shear in a low-aspect-ratio tokamak. This is understood by
the change of the local magnetic configuration, and by the changes of both the mode structure and
the potential function in the ballooning space. 2001 American Institute of Physics.
[DOI: 10.1063/1.1410382

I. INTRODUCTION Shafranov? and have solved them numerically. In Ref. 11,
they have shown a generalizeek diagram, and found that
In recent tokamak experiments, substantial plasma flowghe unstable region may be reduced significantly by the flow-
have been observéd?® particularly when the confinement velocity shear.
improvement has been realized in théhigh)-mode plasmas In the present article, the compressible higtalloon-
or in_ negative shear configurations_ with the inter_nal transporfng equations including the toroidal flow are solved numeri-
barrier. The flows have both toroidal and poloidal compo-cq)1y a5 an initial-value problem, and obtained results are

nents_ in general, al_though toroidal flows seem to be _dom"shown. The magnetohydrodynamiHD) equilibria with
ngnt n tge tcire rel?'oh”_ %f tt?e ?I?smas. In otrQer to r(_eal:jzc_a Abroidal flows are given numerically},therefore consistency
advanced tokamak, nigh bootstrap current 1S required 1N o4 o0 the equilibrium and the stability of ballooning mode

negative shear configuration. For increasing the bootstra% kept. In Sec. II, a MHD equilibrium equation for tokamaks
current, a high-beta-poloidal plasma is essential. Therefore ' L

. ) L including toroidal flows is introducet?. The compressible
effects of toroidal flows on higin-ballooning instabilities are . . . . ) .
; ) ! high-n ballooning equations including toroidal flows are also
studied here, whera is a toroidal mode number.

The theory on highy ballooning modes without plasma iptrodpceq in Sec. II. Brief dgrivation of the balloon'ing equa-
flows is well establisheti-® An eikonal representation or tions Is given in the Appeno!lx. The effepts of toroidal rovys
ballooning representation is introduced for ballooning pertur-are classified into tV\,’O partsi) the effective pressure g'r.ad|-
bations in these papers. For tokamak plasmas including tofe"t due to the centrifugal force of the toroidal flow, afidl
oidal flows, Cooper has used a time-dependent eikonal ithe averaging of the_ local equ|I|br|um magnet_|c configuration
represent the ballooning perturbation, and has solved the iflue to the precession motion of the ballooning mode struc-
compressible higm ballooning equations as an initial-value ture induced by the flow-velocity shear. In Sec. lll, the effect
problem’ The obtained solution exhibits a periodically (i) is briefly explained by using equilibria with rigid toroidal
modulated exponentia| growth of perturbed energy, WhicHOtationS. As the Mach number of the flow is increased, the
has been exp|ained by Hameiri and Chun as a Consequengg)wth rate of the baIIooning mode increases in the low-beta
of the periodicity of the coefficients of the ballooning equa-regime, whereas it decreases in the high-beta regime. Here
tions in the coordinates drifting along the magnetic fieldthe beta is a ratio of the plasma pressure to the magnetic
line® Compressible higm ballooning equations were de- pressure, and the Mach number is a ratio of the toroidal flow
rived by Waelbroeck and Chérand by Grassie and Kre¢fl.  velocity to the ion thermal velocity. In Sec. 1V, the effé@

In Ref. 9, they have shown the transformation formula bedis explained by using equilibria with sheared toroidal rota-
tween the eikonal solution and the eigenmode solution. Furtions. A precession motion of a ballooning structure along a
thermore, Milleret al!* and Grassie and Krethhave sim- magnetic field line is shown numerically and the periodically
plified the compressible high-ballooning equations with modulated exponential growth of the solution is discussed.
the toroidal flow for shifted-circle equilibria given by The flow-velocity shear reduces the growth rates of the bal-
looning modes in the corresponding static equilibria by the

Present address: Naka Fusion Research Establishment, Japan Atomic E€r2gINg of the local equilibrium magnet'_c Coﬂﬁguratmn_
ergy Research Institute, Naka, Ibaraki 311-0193, Japan. which has both good and bad curvature regions in the toroi-
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le geometry. In Sec. V, .high-ballooning stapility of rgal- 08 . 10.125(1,20)

istic tokamak equilibria with reversed magnetic shear is stud- |, 4 0.5(Mo=0)

ied. It is found that the ballooning mode becomes unstable 0.6 - 1(Mo=0) i
for the larger flow-velocity-shear case in a low-aspect-ratio —e— 0.125(Mp=0.2) )

------- o 0.5(Mo=0.2)

tokamak. This is understood by the change of the local mag-
netic configuration, and by the changes of both the mode
structure and the potential function in the ballooning space.
Conclusions are given in Sec. VI.

Il. TOKAMAK EQUILIBRIA AND BALLOONING

EQUATIONS INCLUDING TOROIDAL FLOWS 0 0.5 1 1.5 2
MHD equilibria for tokamaks including toroidal flows %
are described by a second-order elliptic partial differentialrig, 1. Growth rates are plotted as a functionagffor s,,=0.125, 0.5 and
equation shown &3 1. The growth rate is larger for the equilibrium with the rigid rotation in the
2 2 smallw, regime, whereas it is larger for the static equilibrium in the large-

4 19 9 , 9P df a, regime.

e R @

JR® RJIR 9Z IX g dyx

Here R,¢,Z) are the cylindrical coordinatesy is the  The notations in Eqs3) and (4) are referred to in the Ap-
poloidal-flux function,p is the pressurey, is the vacuum pendix. The coefficients of Eqs(3) and (4) are time-
permeability, andf=RBy, whereBy is the toroidal field.  gependent through the scaled wave ve&toThusa/dt can-
When the temperature is assumedasT(x), then the pres- 4t e replaced bjw. Therefore Eqs(3) and(4) are solved

surep is expressed as as an initial-value problem.
_ [mQAR-RY)] _ o[ R?
p=pexp———r— [=PexaMi o= —1]|. (D | RIGID-ROTATION CASES
ax
Herem, is the ion massR,, is the position of the magnetic When a tokamak plasma is rotating toroidally, the

axis, p=p(x) is the pressure @®=R,, on each magnetic Plasma is pushed outward by the centrifugal force, which
Surface,Q:Q(X) is the angu|ar rotation frequency of the means that the toroidal flow effectively increases the driving
toroidal flow, andM =M (x)=v+/vy, is the Mach number, force of the ballooning mode@ressure gradientn the bad
where v1=R,Q and vy,=+2T/m;. It is noted that, ifQ curvature region. In this section, the effective pressure gra-
=0 is assumed, Eq1) becomes a Grad—Shafran¢@—9  dient is seen by studying rigidly rotating tokamaks. It is
equation. The effect of the toroidal flow is included only Noted that the coefficients of the ballooning equations be-
through theap/dx|g term in the generalized G-S equation come constant and the eigenmodes can be obtained.
(1). The MHD equilibria with toroidal flows studied in the The assumed Mach number and temperature profiles are
present article are obtained by solving E#) numerically M?=M§=const andT=T,=const. Then the rotation fre-
under the fixed boundary conditidfIn this article, the bal- dquency(} is a constant, which corresponds to a rigid rota-
looning stability is examined for these solutions. tion. Here we pick up circular cross-section equilibria with
The highn ballooning equations including toroidal the aspect ratioA=10, p(x)=po(1—x), and q(x)=1
flows can be derived from the linearized MHD equati®#®. +dix*. The parameterp, andq, are adjusted to givey,
A brief explanation of the derivation is given in the Appen- =0.125, 0.5 and 1, and,=1 at they=0.5 surface, where

dix, and the final equations are written here: Sm is the magnetic-shear parameter, angis the pressure-
2e o€ gradient parameter, which are defined as
pB2— +2pQ(k-2) —=+2pQ(VQ-2)£, 20 q'
ot ot s =_"_"_ (5)
"oa oy
B B-Vp A
=B-V|pC B-Vfl\"’Tfll_WfL Y 29 21100°P’ Ringy ©
B.Vp A P Bro Broy’
—C(B- Vp)( B-V§+ Téu— p_BZ§l> . (3)  These expressions are consistent with the usual definitions of
s=r(dqg/dr)/q and aE—Z,uOI‘Z(dp/dI‘)/RmajB,% for large-
L 0%E, . I3 .~ 0§ aspect-ratio tokamak&by assuming zy=Bromr? and q
plk|? o2 +2P(k'VQ)7_ZPQBZ(k'Z)E =IB1o/RmaBp. HereBy is the vacuum toroidal field at the
R geometrical center of the plasnR=R,,, and Bp is the
B2 k|2 poloidal magnetic field. In Eq95) and (6), the prime de-
- %B' v ?B‘Vﬁ notes the derivative with respect %o
In Fig. 1, growth ratesyr, at the x=0.5 surface are
B-Vp A plotted as a function ofa, for various s,. Here
. L A P, m- A
+CA B-VE+ p d pB? é) Ve @ =Rpai/ (Bro/Vreopo) is the Alfven time andpg is the mass
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0.2 02t
0.15 ¢ 0.15 1 FIG. 2. Local magnetic she&, for
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0.05 | 005 L the _Ioc;_al _magnetic shear b_y vawing
’ Mg is similar to that by varyingy, in
0 0 static equilibria.(a) Pressure-gradient
-0.05 ; 2005 F dependence(no flow). (b) Mach-
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density at the magnetic axis. It is noted tht=0 is as- IV. SHEARED-ROTATION CASES
sumed for simplicity. The growth rates are plotted for the
static equilibria by filled symbols, and for the equilibria with
rigid rotations ofMy=0.2 by open symbols. It is seen that,
for ap=0.5, the growth rates are larger for the rigid-rotation

case than those for the static case with the sapeFor

a,=2, the situation is the opposite. It is considered that thPecomes the same for the following two cas@st=T and
equilibria with @,~0.5 are located near the first-stability 9=0 and(ii) t=T+ 7rgand =0+ 2, whe_:reT and® are
boundary, and the growth rates are increased owing to theonstants, andq=2=/{). Therefore, solutions of Eq¢3)
increase of the effective pressure gradient. The equilibri&nd(4) seem to show periodic behavior.
with a,=2 are located near the second-stability boundary, ~ Furthermore, the ballooning structure shows a preces-
and the growth rates may be reduced by the change of th&on motion along the magnetic field life>'* Figure 3
local magnetic shear which is related to the Shafranov shifshows a schematic explanation for the precession motion
enhanced by the centrifugal force of the toroidal flow. along the magnetic field line. The magnetic field lines la-
For understanding the role of rigid rotation on the mag-Peled by(® and @ are located on neighboring magnetic
netic configuration, the local magnetic shear defined’ by surfaces. The magnetic-field structure has a shear. Toroidal
S, =—(BXVyx/|Vx|?)-VX(BXVx/|Vx|?) is shown in flows on two magnetic surfaces also have different velocities

Fig. 2. Figure 2a) showsS, in the static equilibria with ~as shown by the arrows. In deriving the highballooning

sm="0.5 for a,=1, 1.25, and 2. Also Fig.(®) showssS, in equations,B-VS=0 and &/dt=0 have been assumed.

the equilibria with rigid rotations foMy=0, 0.4, and 1,

where the magnetic-shear and pressure-gradient parameters

are fixed ats,,=0.5 ande,= 1, respectively. The change of T‘Il

S, by varying My is similar to that by varyinge,, in the '

static equilibria. Therefore, the behavior of the growth rates identical- S position

may be explained by the similar mechanism for realizing the -

second stability of ballooning modes. D U A
The slight difference of the local magnetic shear be-

tween Figs. 2a) and 2b) is understandable. The effective toroidal-flow velocities

pressure gradient is expressed as ) | on neighboring
constant-S lines magnetic surfaces

on neighboring .
2 2
dp _dv*/R magnetic surfaces As time evol.ves,

| constant-S lines move

—~tpPp—— ( =7 — ) }
dy  dx Ry i with different velocities.

R2
xexp{Mz(—z—l)
Rax

For equilibria  with  rigid rotations, pv-Vv+Vp
= (dp/di)exd M3(R?/RZ,— 1)1V %. Thus, the pressure gradi-
ent is effectively increased by the flow in the outer region of

the torqs- The Change of pressure gradient is not constant @i 3. A schematic explanation for the precession motion of the ballooning
the entire magnetic surface. structure on the magnetic surface.

In this section, effects of flow-velocity shear on growth
rates of ballooning modes are discussed. In the hidial-
looning equationg3) and (4), the coefficients are time de-

pendent through the scaled wave vedtoit is noted thatk

pv-Vv+Vp=

Vi. @)

i identical- S position
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FIG. 4. Time evolution of perturba-
0.5 tions is shown fors,,=1, a,=1, and
Q' 7,=0.0779. Periodically modu-

0 lated exponential growth of the per-
1/74=284 turbed energy is seen i@). The time
05 evolution of mode structure is shown
1e-75 1 in (b), where the mode amplitude is

7

- 0
IEl, 1/Ta=300 normalized.(a) Time evolution of per-
= 1e-80 0.5 turbed energy(b) Mode structure at
= s 1 0 the times shown by the arrows (a).
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5 le90 05
E / 0 1
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Therefore, the magnetic field line is identical to the constant-  For the equilibria studied in this section, the growth rates
Sline. It is assumed that initiall on the line(D is equal to  may be affected by both the flow-velocity shear and the
that on the line®2) at 9=0. As time evolves, the constaBt- change of the equilibrium magnetic configuration due to the
lines move in the toroidal direction with different velocities, toroidal flow.

and the identica$ position moves in thej-direction. There- First, circular cross-section equilibria withA=10,
fore, the precession motion of the ballooning structure ocp(y)=py(1—%), and q(x)=do+a.¥> are studied. The
curs. magnetic-shear parametsy, and the pressure-gradient pa-

As the identicalS position moves in thej-space, the rametera,, are assumed as follow§) s;,,=0.125, a,= 1, (ii)
ballooning mode feels the good and bad curvature alternas_—0.5, ap=1, and(iii) s,=1, @,=1. In order to study the
tively. Since the mode grows in the bad curvature region, thefect of flow-velocity shear, a particular flow profile is as-
destabilizing effect decreases when it moves to the good cugymed. The Mach number and temperature profiles are as-
vature region. Thus, the time evolution of the mode ampli-g;med asM(¥)=Mo(1—2%) and T=const, respectively.
tude shows periodic behavior and the resultant growth rat§nen the rotation frequency 8=Q,(1—2%), andQ =0 at
may be reduced by the flow-velocity shear, which will bethe5(=0.5 surface wherea®' #0. It is noted that the effec-

show_n later in t_h|5 work. tive pressure gradient on thie=0.5 surface does not change

Since solutions of Eqs(3} and (4) may not show a by varying M, from Eq. (7), although the local magnetic
simple exponential growth fof)#0, an appropriate defini- configuration at they=0.5 surface is related to the other
tion of a growth rate is required. Here the energy of themagnetic surfaces to maintain the global equilibrium.

perturbation is introduced d&= [dd(v]+v? + &+ £7) and As an example, time evolution of perturbations are
an instantaneous growth ratg(t) is given as shown in Fig. 4a) for s,=1, ap=1, and Q' 7,=0.0779.
B The perturbed energy is given #X|,=/d9X? whereX
A(I)EZ_TdEInE(t)' (8  representst, , &, v,, oruv,. It is clearly seen that the

perturbed quantities show a periodically modulated exponen-
Then, the growth ratey is defined as the time average of tial growth. The period of the modulation i/ 7,=107 in

A(t) as this case. In Fig. @), the associated time-dependent mode
4 structure of¢, at the times shown by the arrows in Figay
Y= f dtA(t), (9) s plotted as a function off during approximately one time
170t period 4. It is noted thatt, is normalized so that the maxi-

wherev =&, /dt, v, =€, 1t, ty is taken as the time when mum value of¢, is unity. At t/7o=220, the peak of, is
the time evolution of the perturbation enters the growthlocated at a bad curvature region, whereas it movesr in
phase with periodic modulation, ang=Nr74. HereN is an  the 9¥-space at/r4=332.

integer which is taken as large as possible. In Fig. 5, the growth rategr, are plotted as a function
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0.5 Py —— structure of¢, and the potential function given by (V
0.5 --0n- — CA?/pB?) 74/ p|k|? are shown in Fig. 6. Although the bal-
04 & J— looning equations are a fourth-order system, the potential
03 | function is defined by viewing only the equation %r, Eq.
e (4), in a form ¢2¢, /9t?>=(second-order spacial derivative of
&

&) — (potential functionX &, + (remaining terms) for sim-
plicity. It is seen that the mode structure is localized in the
region with negative potential function. The mode structure
and the potential function are takentat3 74, and are plot-
ted with translation of X 2 in the J-space fol)’' 7, # 0. It
is noted that the ballooning mode is moving in the
— d-direction. ForQ)' 7,=0, &, is the eigenfunction. In this
FIG. 5. Growth ratesyr, are plotted as a function dd'r, for equilibria  case, the mode structure and the potential both change
with sheared toroidal rotations. Magnetic—shegr parameters are (;hanged §ﬁghtly asQ’ 7, is varied. The depth of the potential func-
Sn=0.125, 0.5 and 1, and the pressure-gradient parameter is fixeq at .tion becomes deeper and the width of the mode becomes
=1. The ballooning modes are stabilized by the flow-velocity shear approxi- oF ) )
mately greater than the growth rate in the static equilibria. narrower ad)’ 7, is increased. It is considered that the bal-
looning stability is determined by the balance between the
changes of the mode structure and the potential function.
On the other hand, in the low-magnetic-shear case,
=0.125, there is no significant reduction pf, . It is noted
that the mode structure is extended in thespace fors,
=0.125. Thus the unstable mode already feels both good and
bad curvature in the absence of the precession moation.

of Q' 7,, whereQ)'=dQ/dy. It is noted that the definition
of yr, is different between()’ 7,=0 and Q' 7,#0, and
therefore yr, at O’ 7o=0 is not connected with that for
Q'7,#0. It is also noted that the calculation efr, for

smallerQ)’ 7, is time consuming in the initial value approach . . i
A g bp Therefore, even if the precession motion occurs (orry

for the ballooning stability. It is seen that the ballooning £0. the averaging effect due to the precession motion ma
modes are completely stabilized by the flow-velocity shearb ' I Th 9 fg it id g that the stabilizati Y
for Q' 7, larger than the growth rate fdn’'r,=0 for s, € smaif. 1heretore, 1L 1s consiaered that the stabiiization

—0.125. 05. and 1 mainly results from the change of the equilibrium magnetic

The reduction rate of 4 from that in the static equilib- field. In Fig. 7, the mode structure and the potential function
rium to that in the equilibria with small)’ 7, is the largest &r€ plotted as a function af for s;,=0.125 andu,=1. The
for s,=1. The different behavior of the reduction rate of Mode structure and the potential function are takert at
y7a May be understood from the localization of the mode=107q for 1" 7,#0. Here the ballooning mode is moving in
structure. In the high-magnetic-shear case suc,asl, the the — J-direction. It is noted that the mode structure and the
mode structure is sufficiently localized in tilespace. Thus, Potential function are plotted with translation of2@ in
the unstable mode feels only the bad curvature in the absendee 9-space for()’ 7, #0. As ("7, is varied, the potential
of the toroidal flow. When the precession motion occurs forfunction does not change substantially, whereas the mode
Q' 7,#0, the ballooning mode feels the good and bad curstructure changes significantly. The peak of the mode located
vature of the magnetic field line alternatively during the timeat the minimum position of the potential function decreases
evolution. Therefore the significant reduction of the growthas{)' 7, is increased. Therefore, stabilization is related to the
rate is realizable even for relatively slow rotation. The modechange of the mode structure.

)13 /pIk?

W05t

)

- (V- CAYpB

FIG. 6. Mode structure and potential functiontat3 7, are plotted as a function af for s,,=1 anda,=1. ForQ)'7,=0, &, is the eigenfunction. Here the
mode structure and the potential function are plotted with translationxd® 3 in the 9-space for)' 7, # 0. (a) Mode structure(b) Potential function.
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FIG. 7. Mode structure and potential functiontat107, are plotted as a function af for s,=0.125 andxp,=1. ForQ)'7,=0, £, is the eigenfunction. Here
the mode structure and the potential function are plotted with translation>2#0in the d9-space for)’ 7, # 0. () Mode structure(b) Potential function.

V. REALISTIC-ASPECT-RATIO EQUILIBRIA WITH |R|2
REVERSED MAGNETIC SHEAR B.V ?ng)
In a reversed-magnetic-shear equilibrium with an inter-
nal transport barriefi TB), the steep pressure gradient is usu-
ally located in the small positive or negative-magnetic-shear
region. Therefore, it is expected that highballooning
modes are stable in this region. However, in the outer region (10
with positive magnetic shear, they may become unstabldgs solved with magnetic configurations of the equilibria in-
Also for H-mode plasmas, stability analysis of ballooningcluding toroidal flows. Herew is a frequency. For small
modes becomes important in the edge region. Here we cof’ 75, the precession motion of a ballooning mode is slow,
sider the former case and discuss the stability of ballooninghus the behavior of the mode is considered to be approxi-
modes in the region with positive magnetic shear. mately the same as in the static case Wit Qt for each
The aspect ratios of the equilibria studied here Are instance. It is noted that the pressure gradient is fixed at the
=1.5 and 3. The ellipticity isc=1.54, and the triangularity value of the static equilibrium. In the equilibria with flows,
is =0.2. The central toroidal beta is assumed todg  the pressure gradient is effectively increased. Thus the driv-
=240Po/B3,=20.7% forA=1.5, andBro=5% for A=3. ing force may be estimated smaller in the calculations for the
The profiles of pressurp, square of Mach numbevi?,  rotating equilibria. In Fig. 9, the growth rate is plotted as a
and temperatureT are given as follows:pxtanf5(y  function of 8, for various()’ 7, . It is noted that the balloon-
—-0.25)], MZ?xtanf12(}¥—0.25)], and Txtan{2(Y ing mode is stable fof)’ 7,=<0.056. As{)’ 7, is increased,
—0.25)]. When the Mach number is varied, th€? profile is  the unstable region ig, increases, and also the growth rate
fixed and the value at the magnetic axis is changed. Thihcreases. Therefore, this may be related to the appearance of
safety factorg at the magnetic axis igo= 10, the minimum  the instability around 0.0ZQ’' 7,=<0.111.
value isqni,=2.1 aty=0.35, and the edge value of safety
factor isg,=5. In the following, the results of the stability
calculations are shown, which are carried out at fhe 0.06

/-LoP||2|2
BZ w2 EJ_ZO

2/.LO A~ ~
+ F(BXkVp)(BXkK)'F

A=1.5—e—

=0.45 surface. 005 | 3-0-- |
In Fig. 8, the growth rates are plotted as a function of ’

Q' 75. ForA=3, itis seen that the unstable ballooning mode 0.04 |

is stabilized forQ)" 7,=0.03. It is noted thay7,=0.059 for -

the static equilibrium. The result is similar to the high- & 0037

magnetic-shear case in Sec. IV. The flow-velocity shear of
Q' 7,=0.03 corresponds tM,=0.2 for the assumed flow
profile, which has been obtained in experiments. It is noted 001 | 1
that the magnetic-shear parameter is about 0.88, and the i i >
mode structure is well localized around the bad curvature 0;) 002 004 006 008 01 012
region. Qs
For A=1.5, the ballooning mode becomes unstable by
increasing)’ 5. It is noted that the ballooning mode is FIG- 8. Growth rates are plotted as a function@fr, at the y=0.45
stable for the static equilibrium. To understand the reason fo;sf_rface for theA=1.5 and 3 equilibria with re\fers_ed magnetic shear. For
. . . =3, the highn ballooning mode unstable fd2’' 7,=0 is stabilized by a
the behavior of the growth rate, the highballooning equa-  shear flow with relatively smal}’ r, . However, forA=1.5, the ballooning
tion without a flow mode becomes unstable for large 7, .

0.02
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FIG. 9. Incompressible high-ballooning equation for static equilibria is Qry

solved by using magnetic configurations of rotating equilibria, and the . . . . .

growth rate is obtained as a function @f. The pressure gradient is fixed at F'C- 11. Space-averaged potential function for higballooning modes is

the value of the static equilibrium. plotted as a function of)’'7, for A=1.5. The space-averaged potential
function decreases &3’ 7, is increased, which may be related to the stabi-
lization at}’ 7,=0.111.

If the growth rateyr, in Fig. 8 is approximated by the
0.-average of yr, in Fig. 9, i.e.,, yra (in Fig. 8
= (1/27) $dby7a (in Fig. 9), theny7, in Fig. 8 is expected
to become large aQ' 7, is increased. Howevetyr, in Fig.
8 is decreased fdR’ 7,=0.1. Thus the flow shear must have
any stabilizing effect other than the averaging effect of the!- CONCLUSIONS

magnetic configuration. The effects of toroidal flows on high-ballooning modes

In Fig. 10, the mode structure and the potential functionhave been studied. When the time-dependent eikonal repre-
att=5r4are plotted as a function af. The ballooning mode sentation is used for the perturbations, the ballooning mode
structure forQ)’ 7,# 0 is moving in the—9-direction, and it exhibits a precession motion along the magnetic field line

is plotted with translation of 2= in the J-space. The and the perturbed energy shows a periodically modulated
mode structure is sufficiently localized in the bad curvatureaxponential growth.

region. Therefore, the behavior of the mode structure and the  The effects of toroidal flow come from two part$) the
potential function is similar to the high-magnetic-shear caseffective pressure gradient due to the centrifugal force of the
in Sec. IV. The width of the mode becomes narrower and theoroidal flow and the corresponding change of the equilib-
depth of the potential becomes deepefs-, is increased.  rium magnetic configuration, an@) the averaging effect of
The ballooning stability is determined by these changes. Fuithe local magnetic configuration due to the flow-velocity
thermore, the space-averaged potential function weighted bynhear.

&, given by |& (V—CA%pB?)ralplk|3l /€ ll1, is In order to examine these effects separately, the equilib-
shown in Fig. 11. HerdX||;=[d9X. This quantity may be ria with rigid rotations have been studied first. In this case,
related to the growth rate of the perturbed energy, since ththe effect of the flow-velocity shear is absent. As the Mach
perturbed energy is a space-integrated quantity. In fact, theumber is increased, the effective pressure gradient in-
role of the space-averaged potential function is decreasing aseases, and the growth rate increases in the low-beta regime
Q'7, is increased. Therefore, the stabilization aroundwhereas it decreases in the high-beta regime. This behavior

' 7,=0.111 is understandable by the changes of the mode
structure and the potential function due to the shear flow.

1 .
— QtA=0.084
=
&
B
e | G
w 0.5 N -
=
i
3}
=27 — ('1,=0.084]
A 0.097
L ——0.111
0. B 05 0 05 1
v/n
(b)

FIG. 10. Mode structure and potential functiort &5 4 are plotted as a function af for A=1.5. It is noted that the mode structure and the potential function
are plotted with translation of 824 in the 9-space.(a) Mode structure(b) Potential function.
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of the growth rate can be explained by the similar mechaACKNOWLEDGMENTS
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perturbed energy for the period of the precession motion

over 2 in the J-space. The mode feels not only bad curva-

ture but also good curvature as a result of the precessiohPPENDIX: BALLOONING EQUATIONS INCLUDING

motion. Therefore, the growth rate becomes smaller than thatOROIDAL FLOWS

for the static equilibrium. The reduction of the growth rate It is known that linearized MHD equations including
due to the averaging effect of the precession motion becomesyuilibrium plasma flows can be reduced to the Frieman—
larger for equilibria with higher magnetic shear, since therotenberg F—R) equatiori®

mode structure is localized in the bad curvature region. In the

- ic- isal- 9¢ 23
low-magnetic shgar cqse, hoyvevgr, the mode structure is al p?+2pV-V—t=f(§), (A1)
ready extended in a wide region in tlespace even for the d d

static case. Therefore, even if the precession motion is inghere
duced, the growth rate may not be reduced significantly.

In addition to the averaging effect by the flow-velocity F &)= i(VxQ)x B+ i(VXB)XQ-ﬁ-V(‘ypV-f
shear, the growth rate of the ballooning mode is affected by Mo Mo

the changes of the mode structure and the potential function +EVP)+Y-(ptv-Vv—pw-V§) (A2)
as shown in Fig. 6 for the high-magnetic-shear case. In the ’
low-magnetic-shear case, the change of the potential func- Q=V X (&XB). (A3)

tion by varying the flow-velocity shear is not significant, and
the stabilization is caused by the change of the mode stru

ture as shown _|n_F|g. 7. _ » sure, respectivelyy is the specific heat ratio, andl is the
As a realistic example, the ballooning stability of Lagrangian displacement vector.

D-shaped equilibria with reversed magnetic shear has been High-n ballooning equations for MHD equilibria includ-
studied. Here the pressure and the Mach number have strofigyy purely toroidal flows are derived from the F—R equation
gradient in the core region. In the region where the magnetigy using an eikonal representation #shown as
shear is negative, the ballooning modes are stable. However, . .
at the region slightly farther out than thg,, surface, the X0, a.t) =&k, 9, t)enseet, (A4)
ballooning modes become unstable. For a conventional tokgyneren is the toroidal mode numbes is the eikonal, and
mak with A=3, it has been shown that the ballooning modethe wave vector is defined ak=VS. The coordinates
which is unstable in the static equilibrium can be stabilized(3, 9, ) are introduced for the covering space. By using
by the flow-velocity shear. Here the mode structure is suffithese coordinates, the magnetic field is expressed as
ciently localized, and the situation is similar to the high- = — 'V yXVa. Here the prime denotes the derivative with
magnetic-shear case explained in Sec. IV. respect toy. The radial coordinat& is defined as the nor-
For a low-aspect-ratio tokamak with= 1.5, it has been malized poloidal fluxy=0 at the magnetic axis arjg=1 at
found that the ballooning instabilities appear for largerthe plasma edged is the extended poloidal angle, ands
Q' 7,. Itis considered that the behavior of the growth rate isthe coordinate labeling magnetic field lines. It is noted that
explained by the change of the local magnetic configurationthe domain of is —co<§<e, which is called a covering

and by the the changes of the mode structure and the potefiPace- By using the usual mAagnetic coordinatf:s, the magnetic
tial function. When the static ballooning equation is solved,l1€ld iS expressed aB=y'VixXVo+ x'V{xXVy, wherey

the unstableg, region increases aQ’r, is increased as is the toroidal-flux function and ({) is the poloidal(toroi-

shown in Fig. 9. On the other hand, it is also found that thedal) angle, which |ncrease§772along Fhe shortlong) way
. ! . .around the torus. The toroidal angieis related to¢ by ¢
space-averaged potential function for the ballooning mode is’

decreasing a$)’ 75 is increased fof)’' 7,=0.084—0.111 as g etwdza ef:])(r aggl;/ |2rg]1da(1 § Zflg\r/:_giszwtsyjﬁajzb;% Jzéieqlztjons
shown. in Fig. 11. L o _ whereq=dy/dy is a safety factor.

It is noted that this instability is not induced by the The eikonalS is assumed to satisfy
Kelvin—Helmholtz drive, since the second-order derivative
of flow velocity is not included in the present analysis. Tat-  B-VS=0, (A5)
suno et al. have studied interchange instabilities in a slab ds
plasma with a shear floff They have shown that the com- — =0,
bined effect of shear flow mixing and Alfmewave propaga- ct
tion overcomes the instability driving force asymptotically. It since the perturbation satisfying Eq45) and(A6) may be
is considered that the stabilization of the ballooning modesnost dangerous. The toroidal flow velocity is given Wy
for large )’ 7, is also related to this mechanism. =—R?QV¢. According to Ref. 78=k, (a+ Qt)+ kqg and

Here B andv are the equilibrium magnetic field and flow
l?/'elocity, respectivelyp andp are the mass density and pres-

(AB)
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k=VS=k,Va+(kg+k,Qt)Vq are chosen, where()
=dQ/dg. With the scaled wave vectdr=k/ k, and the bal-
looning angleg, =k, /k,, k is given by

k=V{—qVe—(6—6,—Qt)Vq. (A7)

Substituting Eq(A4) into Eq.(A1) and collectingd(n?)
terms yieldZ- VS=0 for n>1. Thus£ is shown as

B0+ E), (A8)
where
" BxVS
=g, B2k +§B, (A9)
. VS
)y
él —§k|VS|2- (AlO)

Using Eqs.(A8)—(A10) and collecting®(n) terms yield

1
B/ 1o+ yP

+ 'ypV%(O)-l-%(O)-Vp}.

- iB-[Vx(?g(o)x B)]

&=
Mo

(A11)

By collecting O(1) terms,
(92’\ O) (9’\ 0)
Pz +2pv- V—-i-pv V(v-VE)
1 A 1 N
=—(VXQ)XB+—(VXB)XQ
Mo Mo
+V(ypV - &0+ . Vp)+ ED.V(pv-Vv)
- 1 -
+(V-&9)pv.Vv+ M—{B-[Vx(g(l)x B)]VS
0

—BX[VX(&B)]=&BX(VXB)} =V (ypée)

—yp(V-EV)VS—(EV-Vp)VS—p&v-Vv  (A12)

and
O=Vx(&9%B)=V¢, Xk (A13)

are obtained.

Here closed higm ballooning equations are obtained for |

the variablest; and¢, by calculating theB andBx k com-
ponents of Eq(A12) as
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9% 23
pB2—5 -z +2pQ (k- Z)—+2pQ(VQ )¢,
_B.v|pc|Bve B P A
=B-V|p : gH"_TgH_ng
Vp A
—C(B-Vp)|B-V{+ ——&——=8. |, (Al4)
p pB
2
N oA O
plk|? iﬂzp(k VQ)i—ZpQBZ(k-Z)%
—BZB V(' |ZB \5 )
L0 BZ 1L
Vp
+CA B'V§H+—§H_W§L +V¢E,  (AlD)
where
A(x, 9,t)=(BXK)-(2pk—pRO?R), (A16)
B . ap ApR2QY| R
V(x,9,t)=(BXk)-| 2—|g —TRﬁ
2pi) B-2)V A17
BZ d ( ) X\ ( )
BZ/MO
C(X,ﬁ)=m- (A18)

Here Rand Zare the unit vectors in the directions Rfand
Z, respectively, ande=(B/B)-V(B/B) is the curvature of
the magnetic field. It is noted that=1 is assumed for sim-
plicity. Equations(A14) and (A15) are the same as Eg®)
and(4).
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