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Triple point of Yukawa systems
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The molecular dynamics simulations of Yukawa~i.e., screened-Coulomb! systems that were applied to the
regime of weak screening in an earlier study@S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, J. Chem. Phys.
105, 7641~1996!# are extended to the strong screening regime. Transition temperatures at the fluid-solid phase
boundary and the solid-solid phase boundary are obtained as functions of the screening parameterk5a/lD

~i.e., the ratio of the Wigner-Seitz radiusa to the Debye lengthlD!. The resulting phase diagram also covers
the triple point—the intersection of the fluid-solid and solid-solid phase boundaries—atk54.28 andG55.6
3103, where G is the ratio of the Coulomb potential energy to the kinetic energy per particle~i.e., G
5Q2/4pe0akT, whereQ is the charge of each Yukawa particle andT is the system temperature!. Yukawa
systems serve as models for plasmas and colloidal suspensions of charged particulates.
@S1063-651X~97!11310-1#

PACS number~s!: 52.25.Vy, 64.60.2i, 82.70.Dd, 98.38.Cp
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I. INTRODUCTION

Small charged ‘‘dust’’ grains are observed in a wide v
riety of plasma environments, ranging from the interste
medium to gas discharges used in materials process
Small particles immersed in a plasma typically acquire ne
tive charges, due to the high mobility of plasma electro
The Coulomb interactions between such particles are m
fied by their Debye sheaths, and the interparticle poten
may be approximated by a Yukawa-type~screened Cou-
lomb! pair potential@1–3# as given in Eq.~1! below.

Laboratory experiments have recently demonstrated t
when the interparticle potential energy exceeds the kin
energy, particulates in plasmas may form crystalline str
tures~Coulomb crystals! @4–10#. Similar crystals have bee
observed in colloidal suspensions of charged particles@11#.
As in our earlier report@1#, we shall employ Yukawa sys
tems as a model for plasma~or colloidal! suspensions o
charged particles. In the present study, however, we ex
our molecular dynamics~MD! simulations to the regime o
strong screening of the Yukawa potential, and determine
conditions under which dust particles in a plasma will fo
Coulomb crystals.

We consider a system of identical particles of massm and
charge2Q52Ze (Z@1), immersed in a neutralizing back
ground plasma. The inter-particle potential is assumed to
of the Yukawa type,

f~r !5
Q2

4pe0r
exp~2kDr !, ~1!

where r denotes the radial distance between two partic
The Debye lengthlD5kD

21 of the background plasma i
defined by
561063-651X/97/56~4!/4671~12!/$10.00
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lD5S qi
2n̄i

«0kTi
1

e2n̄e

«0kTe
D 21/2

,

qi , n̄i , andTi being the charge, mean density, and tempe
ture of plasma ions, and2e, n̄e , andTe the corresponding
quantities for plasma electrons. The thermodynamics of
Yukawa system can be characterized by two dimension
parameters:

k5
a

lD
and G5

Q2

4pe0akT
, ~2!

wherea5(3/4pn)1/3 is the Wigner-Seitz radius andn is the
particle number density. The Wigner-Seitz radius represe
the mean interparticle distance, andG is roughly the ratio of
the ~unscreened! Coulomb potential energy to the kinetic en
ergy per particle.

In our earlier study@1# we focused on the regime of wea
Debye screening, including the limitk→0, i.e., the classica
one-component plasma~OCP! system@12–18#. In our MD
simulation method, long-range particle interactions are ac
rately accounted for over the entire range ofk, without in-
troducing a cutoff radius for the pair potential. In this pap
we apply this MD method to more strongly screen
Yukawa systems, up tok55, and compare the results wit
those of earlier MD and Monte Carlo~MC! simulations@19–
23# of Yukawa systems. These earlier simulations employ
potential cutoffs, and are therefore applicable only to
regimek@1.

II. EXCESS ENERGY AND FREE ENERGY

In MD simulations, one can calculate the potential
‘‘excess’’ energyU of the model system in the simulatio
4671 © 1997 The American Physical Society
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4672 56S. HAMAGUCHI, R. T. FAROUKI, AND D. H. E. DUBIN
volume, under appropriate boundary conditions, for a giv
system temperatureT. The method of calculatingU from
MD is briefly discussed in the following section. In this se
tion we shall derive the Helmholtz free energyF in the simu-
lation volume from a knowledge ofU as a function of the
temperatureT. We denote the internal energy and Helmho
free energy per particle in units ofkT by

u5
U

NkT
, f 5

F

NkT
, ~3!

whereN is the number of particles in the simulation volum
The thermal component of the potential energy is defined

uth~k,G!5u~k,G!2u`~k!,

whereu`(k) represents the Madelung energy~for an appro-
priate lattice! per particle in units ofkT. We also define

E~k!5 lim
G→`

u~k,G!

G
,

i.e., the Madelung energy per particle in units ofQ2/4pe0a,
so that u`(k)5E(k)G. Evidently u(k,`)5u`(k) in the
limit of zero temperature~i.e.,G→`!. The values for the bcc
and fcc Madelung energies,Ebcc(k) and Efcc(k), are listed
in Table I. Note that the bcc Madelung energy is smaller th
the fcc Madelung energy@1# @Ebcc(k),Efcc(k)# for k
,1.066.

Since ] f /]G5u(k,G)/G, the dimensionless Helmholt
free energy for the fluid phase may be defined@3# by

f fluid~k,G!5E
0

G

u~k,G8!
dG8

G8
1 f ideal~G!. ~4!

TABLE I. Madelung energies for bcc and fcc Yukawa lattic
~for k<1.0, see Table III of Ref.@3#!.

k Ebcc Efcc

1.2 21.039 292 21.039 302
1.4 21.088 350 21.088 374
1.6 21.143 352 21.143 389
1.8 21.203 757 21.203 803
2.0 21.269 026 21.269 079
2.2 21.338 637 21.338 694
2.4 21.412 096 21.412 154
2.6 21.488 941 21.488 998
2.8 21.568 750 21.568 804
3.0 21.651 144 21.651 194
3.2 21.735 781 21.735 826
3.4 21.822 360 21.822 400
3.6 21.910 618 21.910 653
3.8 22.000 326 22.000 356
4.0 22.091 283 22.091 309
4.2 22.183 319 22.183 341
4.4 22.276 286 22.276 304
4.6 22.370 058 22.370 072
4.8 22.464 525 22.464 537
5.0 22.559 596 22.559 606
n

.
y

n

Here the last term represents the ideal-gas contribution to
total free energy, i.e.,

f ideal~G!5 lnF S 2p\2

mkT D 3/2

nG21

53 lnG1
3

2
ln~kT!Ry211 ln

3Ap

4
, ~5!

where (kT)Ry denotes kT measured in Rydberg units
1
2 (Q2/4pe0\)2m, for the particles@1#. Although f ideal de-
pends on (kT)Ry as well asG, we do not explicitly express
the dependence on the former for the sake of simplicity.

For the solid phase, we use@3#

f solid~k,G!5 ÈGS uth~k,G8!2
3

2D dG8

G8
1 f harm~k,G!, ~6!

whereuth2
3
2 is the anharmonic component of the potent

energy in units ofkT. The free energy of the harmonic la
tice vibrations for a given lattice may be written as

f harm~k,G!5E~k!G1S~k!1 9
2 lnG1 3

2 ln~kT!Ry1
3
2 ln3

2 ,
~7!

whereS~k! denotes the harmonic entropy constant, i.e.,

S~k!5 lim
N→`

1

N (
k51

3N23

ln
vk

vp
. ~8!

Here the sum is taken over the 3N23 normal-mode frequen
ciesvk for the oscillation of anN-particle lattice. Note that
the values ofE(k) and S~k! depend on the chosen lattic
structure. The eigenfrequenciesvk of an N-particle Yukawa
lattice may be computed by standard techniques@24#, and the
quantityS~k! can then be estimated for variousk values by
letting N→`. Table II gives the values ofS~k! for bcc and
fcc Yukawa lattices, i.e.,Sbcc(k) andS fcc(k), obtained from
lattice-dynamics calculations. Note that fork.4.76 the bcc
structure is unstable against shear in the~110! direction@20#.

III. MD SIMULATION METHOD

MC and MD simulations can handle only a finite numb
of particles in the direct pairwise summation of interpartic
potential energies. In order to emulate a system with an
finite number of particles, one may apply periodic bounda
conditions to the simulation volume. For a cubical simulati
box of side lengthL, the effective pair potential@3# under
periodic boundary conditions becomes

F~r !5f~ ur u!1(
nÞ0

f~ ur1nLu!. ~9!

In the above equation,F~r ! represents the interaction energ
of particlei with particle j ~at separationr5r j2r i! and with
all periodic images of the latter. The infinite sum off over
integer vectorsn5( l ,m,n) represents the periodic images.
our MD simulations, this periodic image potential is appro
mated numerically by a tensor-product spline function@25#
interpolating an array of 40340340 discrete values
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56 4673TRIPLE POINT OF YUKAWA SYSTEMS
summed to high accuracy. The approximation can be e
ciently evaluated in the simulations, and has a fractional
viation from the exact value of no more than;1027. Full
details of the approximation scheme may be found in R
@26#.

The total potential energy~or ‘‘excess energy’’! U in the
simulation box with periodic boundary conditions is th
given by the expression@1#

U

NkT
5GF 1

N (
j 51

N21

(
k5 j 11

N

F̂~jk2jj !2
3

2k22
k

2

1
1

2 (
nÞ0

exp~2kunuL!

unuL G , ~10!

whereL5L/a5(4pN/3)1/3 is the size of the cubical simu
lation volume in units of the Wigner-Seitz radius,ji5r i /a is
the dimensionless location of particle i , and
F̂54p«0aF/Q2.

As in the earlier study@1#, we employ MD simulations
with the effective pair potentialF~r ! given by Eq.~9! to
evaluate the potential energyu for given values of the ther
modynamic variablesk andG. The equations of motion

d2r i

dt2
52 (

j ~Þ i !

N

“F~r i2r j ! for i 51, . . . ,N

are integrated, and the velocities of all particles are ren
malized periodically to bring the system kinetic energy in
agreement with the targetG value. The number of particlesN
used for the simulations reported here areN5686 for a bcc
andN5500 for a fcc lattice. These lattices are used as ini

TABLE II. Harmonic entropy constants for bcc and fcc Yukaw
lattices. Fork<1.0, see Table I of Ref.@1#. Note that fork.4.76
the bcc structure becomes unstable against shear in the~110! direc-
tion @20#.

k Sbcc S fcc

1.2 23.1773 23.1236
1.4 23.3950 23.3366
1.6 23.6350 23.5714
1.8 23.8953 23.8259
2.0 24.1740 24.0985
2.2 24.4697 24.3876
2.4 24.7805 24.6916
2.6 25.1054 25.0095
2.8 25.4430 25.3398
3.0 25.7922 25.6817
3.2 26.1522 26.0341
3.4 26.5220 26.3962
3.6 26.9008 26.7673
3.8 27.2878 27.1466
4.0 27.6826 27.5334
4.2 28.0847 27.9273
4.4 28.4936 28.3275
4.6 28.9095 28.7337
4.8 29.1455
5.0 29.5625
-
e-

f.

r-

l

conditions, and the system is allowed to equilibrate to
desiredG for typically 100 time units before averaging it
properties over 100,t,300. Here the time unit is defined t
be)vp

21, wherevp5AQ2n/e0m is the plasma frequency
for the particles, so thatt5vpt/). For some largeG values,
we allowed the the system to equilibrate initially for 30
time units. Cases that melted to a fluid state did so w
beforet5100.

The excess energy per particle in units ofQ2/4pe0a ~i.e.,
u/G! obtained from the MD simulations is listed for variou
G andk values in Tables III–V. For each of the runs in the
tables, the initial state is either a bcc (N5686) or a fcc (N
5500) lattice, and therefore in the solid state the struct
remains in the form of the chosen lattice.

For the fluid phase, we assume that the potential ene
depends onG as

u~k,G!5a~k!G1b~k!Gs1c~k!1d~k!G2s, ~11!

with s51/3, forG>1. The coefficientsa, b, c, andd, which
are functions ofk, are determined by fitting measured pote
tial energies given in Table III to the above expression. T
functional form of Eq.~11! has been applied to internal en
ergy fitting of various OCP simulations@16#. The well-
defined dependence ofu on G given in Eq. ~11! makes it
easier to evaluate the integral in Eq.~4!. Since Eq.~11! di-
verges asG→0, we evaluate the integral in Eq.~4! by a
direct numerical quadrature forG<1:

f fluid~k,G!5E
1

G

u~k,G8!
dG8

G8
1 f 1~k!1 f ideal~G!, ~12!

with

f 1~k!5E
0

1

u~k,G8!
dG8

G8
, ~13!

where Eq.~11! is used to evaluate the first integral in E
~12!, and f 1(k) is evaluated through a Simpson-rule quad
ture of theu/G values given in Table VI. Note thatu/G→
2k/2 asG→0 @27#. The numerical values off 1(k) are listed
in Table VII.

For the solid phase, the following form for the therm
potential energy is assumed:

uth~k,G!5
3

2
1

A1~k!

G
1

A2~k!

G2 , ~14!

where 3
2 is the harmonic component, and the power series

G21 represents the anharmonic terms.
To determine the fitting parametersa, b, c, d, A1 , and

A2 for eachk value, we fit the potential energy functiona
forms, Eqs.~11! and ~14!, to the simulation data given in
Tables III–V, using least-squares fitting. The resulting co
ficient values are given in Tables VIII and IX fork>1.2.
Figure 1 presents examples of least-squares fitting to
fluid and solid phases atk53.0. The dotted lines represen
the ranges of fitting uncertainties, which will be discussed
the next section.

For k<1, we assume a polynomial dependence of
normalized potential energyu on k ~i.e., a Taylor series ex-
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TABLE III. Excess energy per particle,u/G, obtained from MD simulations. The numbers after6
indicate fluctuation levels. The number of simulation particles isN5686 fork54.0 and 5.0, andN5500 for
all otherk values. Fork<1.0, see Table II of Ref.@3#.

G k51.2 k51.4 k52.0

1 20.797 09760.010 904 20.869 74660.011 675 21.110 06660.009 674
2 20.855 43960.009 179 20.920 09760.008 272
5 20.921 13860.004 200 20.978 64260.004 510 21.184 37860.003 545

10 20.958 56160.002 799 21.012 02260.002 587 21.208 84660.002 178
20 20.985 48160.001 533 21.037 09560.001 467 21.227 78860.001 343
40 21.004 53660.000 893 21.055 14660.000 911 21.241 42460.000 743
60 21.012 76860.000 683 21.062 75960.000 616 21.247 83260.000 638
80 21.017 38760.000 559 21.067 14460.000 495 21.251 21060.000 509

100 21.020 68360.000 433 21.070 32260.000 426 21.253 66660.000 469
120 21.022 72660.000 427 21.072 51360.000 409
140 21.024 53560.000 353 21.074 08860.000 329
160 21.025 91960.000 310 21.075 46960.000 253
180 21.027 18860.000 249 21.076 46760.000 301
200 21.028 00560.000 250 21.077 48560.000 250 21.259 46760.000 268
240 21.078 87460.000 204

G k52.6 k53.0 k53.6

1 21.377 11560.008 032 21.563 01760.006 990 21.847 80960.005 863
5 21.427 35560.003 300 21.602 06360.002 709 21.875 60860.002 235

10 21.444 50360.002 193 21.615 66460.001 819 21.885 24960.001 503
20 21.457 55260.001 221 21.625 86260.001 042 21.892 62060.000 969
40 21.467 76360.000 669 21.633 62560.000 660 21.898 15360.000 550
60 21.472 13460.000 512 21.637 18460.000 492 21.900 55760.000 408
80 21.474 74960.000 426 21.639 30260.000 357 21.902 09460.000 293

100 21.476 61660.000 361 21.640 85060.000 293 21.903 02560.000 299
200 21.480 98860.000 187 21.644 38960.000 195 21.905 56760.000 166
400 21.484 02760.000 116 21.646 84760.000 115 21.907 29560.000 101
700 21.485 72460.000 076 21.648 28260.000 079 21.908 31260.000 057

1000 21.908 80760.000 051
2000 21.909 54160.000 025

G k54.0 k54.6 k55.0

1 22.040 28360.004 831 22.332 75660.004 502 22.528 76560.003 806
5 22.063 31360.001 730 22.350 04360.001 769 22.542 94260.001 500

10 22.070 90560.001 221 22.355 36960.001 234 22.547 65360.000 874
20 22.077 05160.000 695 22.359 64360.000 679 22.551 21460.000 552
40 22.081 24260.000 456 22.362 85160.000 449 22.553 84860.000 315
60 22.083 23660.000 332 22.364 34260.000 337 22.554 92660.000 240
80 22.084 38160.000 227 22.365 22160.000 239 22.555 67360.000 196

100 22.085 28860.000 209 22.365 72260.000 205 22.556 10560.000 173
200 22.087 22660.000 135 22.367 11960.000 122 22.557 24860.000 086
400 22.088 58660.000 082 22.368 10360.000 075 22.558 05160.000 052
700 22.089 38760.000 049 22.368 67060.000 049 22.558 47660.000 036

1 000 22.089 77960.000 040 22.368 94160.000 035 22.558 70560.000 023
2 000 22.090 33860.000 019 22.369 32960.000 018 22.559 01160.000 017
3 000 22.369 51360.000 015 22.559 14460.000 012
4 000 22.369 60960.000 014 22.559 22360.000 009
5 000 22.369 67960.000 011 22.559 27560.000 009
6 000 22.369 72760.000 010 22.559 31060.000 006
8 000 22.559 36660.000 007

10 000 22.559 41060.000 005
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TABLE IV. Equilibrium potential energy per particle,u/G, for bcc solids~with N5686!. The numbers
after 6 indicate fluctuation levels. The energy value with an asterisk~* ! was not used for fitting since this
value clearly deviates from either fitting curve, indicating that the system is in a mixed fluid-solid stat
k<1.0, see Table II of Ref.@3#.

G k51.2 k51.4 k52.0

240 21.032 521* 60.000 184
300 21.034 04460.000 117 21.083 04260.000 134
400 21.035 41460.000 103 21.084 44960.000 099
500 21.036 21460.000 072 21.085 26060.000 088
600 21.036 74260.000 064 21.085 78860.000 054
700 21.266 82260.000 063
800 21.037 38860.000 045 21.086 44460.000 042

1000 21.037 77460.000 044 21.086 82860.000 038 21.267 49760.000 040
2000 21.268 27060.000 022

` 21.039 292 21.088 350 21.269 026

G k52.6 k53.0 k53.6

1000 21.487 38660.000 041
2000 21.650 38060.000 021
3000 21.488 43760.000 017 21.650 64060.000 016
4000 21.488 56360.000 014 21.650 76760.000 016 21.910 24060.000 011
5000 21.488 63960.000 012 21.650 84360.000 014 21.910 31760.000 010
6000 21.650 89360.000 012 21.910 36860.000 010
8000 21.650 95660.000 009 21.910 43160.000 009

` 21.488 941 21.651 144 21.910 618

G k54.0

5 000 22.090 98260.000 009
6 000 22.091 03360.000 007
8 000 22.091 09760.000 006
10 000 22.091 13460.000 004
13 000 22.091 16960.000 003
16 000 22.091 19060.000 003

` 22.091 283
-

y
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f

or

a

s
re

t

t-

to
pansion aboutk50! and fit the function over the dual inde
pendent variablesk andG ~see Ref.@1# for details!.

IV. SIMULATION RESULTS AND PHASE DIAGRAM

The G values for the fluid-solid phase transition~i.e.,
melting or freezing!, which we denote byGm , are those at
which the fluid free energyf fluid equals the solid free energ
f solid for the givenk. We take the smaller off bcc and f fcc as
f solid for the givenk and G. Similarly, theG values for the
bcc-fcc phase transition, which we denote byGs , are those at
which the bcc and fcc free energies intersect. The solid
fluid free energies are calculated from Eqs.~6! and ~12!, as
discussed in the preceding section. Such calculations s
that, along the fluid-solid phase transition boundary, the f
energy of the bcc phase is lower than that of the fcc phase
k&4.3, so we use the bcc phase as the solid phase fk
&4.3 and the fcc phase fork*4.3 to obtain theG values for
the phase transition. Tables X and XI summarize the ph
boundaries~i.e., Gm andGs!, as functions ofk.

Some earlier studies@19–23# have used normalization
different from Eq.~2! to represent the particulate temperatu
T and the Debye screening lengthlD . For example, one
d

w
e
or

se

may user5n21/3 instead of the Wigner-Seitz radiusa as the
length unit, and define K5r/lD . Note then that
K5(4p/3)1/3k'1.611 99k. Kremer, Robbins, and Gres
@19# normalized the temperatureT by the typical phonon
energy of the fcc Yukawa lattice according to

T5
kT

mvE
2r2 , ~15!

wherevE is the Einstein frequency for the fcc Yukawa la
tice, defined by

vE
25

2kD
2

3m (
iÞ j

f~ ur i2r j u!,

with all particles situated at fcc lattice sites. It is easy
confirm @1# that the dimensionless temperatureT is related to
k andG as

T5
1

G S 3

4p D 2/3F2

3
k2Efcc~k!1

k3

2
11G21

. ~16!
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TABLE V. Equilibrium potential energy per particle,u/G, for fcc solids~with N5500!. The numbers
after 6 indicate fluctuation levels. The energy value with an asterisk~* ! was not used for fitting since this
value clearly deviates from either fitting curve, indicating that the system is in a mixed fluid-solid state
that u/G→Efcc(k) asG→`.

G k51.2 k51.4 k52.0

240 21.032 173* 60.000 228

300 21.034 00360.000 150 21.082 99860.000 165

400 21.035 39260.000 110 21.084 43760.000 114

500 21.036 20960.000 085 21.085 27460.000 091

600 21.036 73560.000 071 21.085 80460.000 082

700 21.266 85860.000 068

800 21.037 39060.000 058 21.086 46060.000 057

1000 21.037 77860.000 046 21.086 84960.000 049 21.267 54160.000 051

2000 21.268 32060.000 031

` 21.039 302 21.088 374 21.269 079

G k52.6 k53.0 k53.6

1000 21.487 42460.000 061

2000 21.650 42260.000 029

3000 21.488 49060.000 021 21.650 68560.000 016

4000 21.488 61860.000 017 21.650 81360.000 010 21.910 27060.000 013

5000 21.488 69560.000 015 21.650 89060.000 011 21.910 34960.000 014

6000 21.650 94160.000 010 21.910 40060.000 013

8000 21.910 46460.000 010

` 21.488 998 21.651 194 21.910 653

G k54.0 k54.6 k55.0

5 000 22.091 00060.000 010

6 000 22.091 05460.000 011

8 000 22.091 11960.000 006

10 000 22.091 15860.000 004 22.369 92060.000 006

13 000 22.091 19360.000 004 22.369 95660.000 004

16 000 22.091 21460.000 004 22.369 97960.000 003

20 000 22.369 99760.000 003 22.559 53060.000 003

25 000 22.559 54660.000 002

30 000 22.370 02260.000 002 22.559 55660.000 002

40 000 22.370 03460.000 002 22.559 56860.000 003

50 000 22.559 57660.000 002

` 22.091 309 22.370 072 22.559 606
s
c
cc

n

are
q.
The phase-transition temperatures expressed byT, denoted
by Tm andTs , are also listed in Tables X and XI.

Figure 2 shows the phase diagram of Yukawa system
the ~k,T ! plane. Here, filled circles indicate the fluid-bc
solid phase transition, filled squares identify the fluid-f
solid transition~from the last two rows of Table X!, and
filled triangles correspond to the bcc-fcc transition~from
Table XI!. To smoothly fit the fluid-solid phase transitio
data in Fig. 2, we have used the following functions:

Tm50.002 24010.000 181k10.000 209k2

for 0.0<k<1.0, ~17!
in

Tm50.003 302 2020.000 312 00~2.62k!

20.000 023 36~2.62k!220.000 027 64~2.62k!3

for 1.0<k<2.6, ~18!

Tm50.002 49110.000 312k for 2.6<k<5.0. ~19!

Equation~17! is the polynomial fit to simulation dataTm for
0.0<k<1.4 obtained in the earlier study@1#, which we have
used as the fitting curve only for 0.0<k<1.0 in Fig. 2.
Equation~19! is a linear least-squares fit of theTm values in
Table X over 1.2<k<5.0, which we have used for 2.6<k
<5.0 in Fig. 2. As a guide to the eye, these two functions
smoothly connected by the cubic polynomial given in E
~18! for 1.0<k<2.6.
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TABLE VI. Excess energy per particle,u/G, at smallG values (N5500). Fork,1.0, see Table IV of
Ref. @3#. Note thatu/G→2k/2 asG→0.

G k51.0 k51.2 k51.4 k52.0 k52.6

0.00 20.500 000 20.600 000 20.700 000 21.000 000 21.300 000
0.10 20.557 792 20.648 425 20.740 415 21.025 685 21.319 127
0.20 20.596 414 20.680 595 20.770 037 21.042 716 21.331 495
0.40 20.648 070 20.724 539 20.806 296 21.067 750 21.348 344
0.60 20.684 570 20.757 346 20.831 754 21.085 879 21.360 226
0.80 20.713 870 20.782 004 20.852 470 21.099 115 21.369 705
1.00 20.734 226 20.797 097 20.869 746 21.110 066 21.377 115

G k53.0 k53.6 k54.0 k54.6 k55.0

0.00 21.500 000 21.800 000 22.000 000 22.300 000 22.500 000
0.10 21.517 696 21.815 104 22.009 731 22.309 720 22.509 010
0.20 21.527 809 21.821 103 22.018 270 22.315 081 22.512 796
0.40 21.540 813 21.831 725 22.027 327 22.321 292 22.520 736
0.60 21.549 763 21.838 610 22.033 013 22.327 181 22.523 305
0.80 21.558 136 21.843 731 22.037 149 22.329 887 22.525 945
1.00 21.563 017 21.847 809 22.040 283 22.332 756 22.528 765
w
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The bcc-fcc phase transition curve is fitted by the follo
ing functions:

Ts50.000 963 77~k21.066! for 1.066<k<1.2,
~20!

Ts50.001 956 3120.001 198 60~2.62k!

20.000 395 99~2.62k!210.000 228 50~2.62k!3

for 1.2<k<2.6, ~21!

Ts50.001 352~k21.066!20.000 050~k21.066!2

for 2.6<k<4.2755. ~22!

Equation ~20! is a linear fit based on the quasiharmon
theory@20#. The quasiharmonic theory is known to be acc

TABLE VII. Values of f 1(k)5 f fluid(k,1)2 f ideal(1), defined by
Eq. ~13!.

k f 1(k)

0.00 20.436 765
0.20 20.449 484
0.40 20.480 913
0.60 20.528 365
0.80 20.586 650
1.00 20.654 089
1.20 20.730 380
1.40 20.810 280
2.00 21.070 980
2.60 21.350 351
3.00 21.542 363
3.60 21.832 581
4.00 22.027 406
4.60 22.322 260
5.00 22.519 954
-

-

rate neark51.066~whereEbcc5Efcc!, so we have used Eq
~20! as the fitting curve for 1.066<k<1.2. Equation~22! is
a quadratic least-squares fit to theTs values for 1.066<k
<4.0 given in Table XI. Although data neark51.066 were
used to obtain Eq.~22!, it does not reproduce theTm values
neark51.066 very well. Therefore, in Fig. 2, we use E
~22! as the fitting curve fork>2.6 only. The cubic polyno-
mial given in Eq.~21! is used to smoothly connect these tw
functions over 1.2<k<2.6. The point where the thre
phases~fluid, bcc, and fcc lattices! meet—i.e., the triple
point—is the intersection of Eqs.~19! and ~22!, which is
given ask54.28 (K56.90) andT50.0038.

It is not easy to accurately estimate the magnitude of
errors in the phase-transition boundary curves. There ma
several possible sources of uncertainties. In the case of l
G, for example, the potential energyu is very close to the
Madelung energyu` and the numerical value for the differ
enceuth5u2u` , which is used to determine the phase d
gram, has fewer meaningful digits. Furthermore, ifk andG
are large~and therefore the interparticle interaction is we
and the system has a low thermal energy!, it takes longer~in
terms of the time unit)vp

21! for the system to attain ther

TABLE VIII. Fluid fitting parameters,a, b, c, andd defined by
Eq. ~11!. For k<1.0, see Ref.@3#.

k a b c d

1.2 21.041 816 0.522 733 20.305 649 0.026 740
1.4 21.090 801 0.514 325 20.344 195 0.049 258
2.0 21.270 571 0.442 193 20.382 900 0.100 506
2.6 21.489 806 0.366 308 20.411 566 0.159 826
3.0 21.651 703 0.312 503 20.394 913 0.173 963
3.6 21.910 871 0.239 251 20.362 000 0.195 448
4.0 22.091 363 0.182 517 20.257 154 0.131 096
4.6 22.370 109 0.139 276 20.232 476 0.142 315
5.0 22.559 633 0.115 580 20.215 437 0.149 102
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mal equilibrium. Consequently, the measured energy data
prone to errors due to numerical averaging over finite ti
intervals.

Therefore we take a pragmatic approach to estimating
uncertainties associated with the phase boundaries. Ass
ing the measured energy values have uniform errors give
the square root of the sample variance, one can estimat
uncertainties of the fitting parameters@18,28#. For example,
for the bcc solid phase atk53.0, we obtainA155.344
63.462 andA2599 742.368643.8, the numbers after6
representing the range of the uncertainties. In the fluid ph
it follows from Eq. ~11! that the energy valueu is most
sensitive to variation in the coefficienta(k) for large G.
Its uncertainty under the same assumption

FIG. 1. ~a! The thermal potential energy in the fluid phas
defined byuth5u2EfccG, at k53.0. The filled circles are data
obtained from Table III. The solid line is the least-squares fit to
data; the dotted lines represent the range of uncertainties due t
coefficienta521.651 70360.000 037. ~b! The thermal potential
energies atk53.0, defined byuth5u2EbccG for the bcc lattice and
uth5u2EfccG for the fcc lattice. The filled circles are bcc da
obtained from Table IV, and the filled squares are fcc data obta
from Table V. The solid lines are the least-squares fits to these d
The dotted lines represent the ranges of uncertainties due to
coefficientsA155.34463.462,A2599 742.368643.8 for the bcc
lattice, andA1577.82266.653, A2516 822.5616 374.6 for the
fcc lattice.
re
e

e
m-
by
the

e,

s

a521.651 70360.000 037@see Fig. 1~a!#.
If we choose the most probable values ofa,b,c,d at

k53.0, as given in Table VIII, and varyA1 andA2 as indi-
cated above, the range of uncertainties for the melting p
becomes 3.46831023,Tm,3.52931023 at k53.0. On the
other hand, if we use the most probable valuesA155.344
and A2599 742.3 and varya in the range21.651 703
60.000 037, the uncertainty in the melting point atk53.0
becomes 3.27431023,Tm,3.71931023. The error bar on
the melting curve in Fig. 2 represents the latter range
uncertainty—the larger of the two.

Similarly, for the solid phases atk53.0, we obtainA1
55.34463.462, A2599 742.368643.8 for the bcc lattice
andA1577.82266.653,A2516 822.5616 374.6 for the fcc
lattice @see Fig. 1~b!#. If we choose the most probable value
of A1 andA2 given in Table IX for the bcc phase and va
A1 andA2 for the fcc phase, and vice versa, the range ofTs
at k53.0 is found to be 2.32231023,Ts,2.90131023.
The error bar on the bcc-fcc phase transition curve in Fig
represents this range.

Figure 3 shows the same data as Fig. 2, plotted in
~k,G! plane. The phase boundariesGm andGs are also con-
verted fromT to G, using Eq.~16! and the fitting curves
employed in Fig. 2. The errors atk53.0 in Fig. 2 are also

TABLE IX. Solid fitting parametersA1 andA2 for bcc and fcc
Yukawa lattices defined by Eq.~14!. For k<1.0, see Ref.@3#.

k A1
bcc A2

bcc A1
fcc A2

fcc

1.2 15.42 2 042.56 21.13 1 712.24
1.4 16.12 3 398.78 17.87 4 735.20
2.0 23.53 4 526.98 37.68 414.70
2.6 30.16 24 377.67 67.44 5 735.30
3.0 5.34 99 742.33 77.82 16 822.48
3.6 245.39 392 246.46 91.35 151 465.97
4.0 2175.68 1 067 933.16 25.63 904 495.83
4.6 2114.88 2 828 867.93
5.0 21069.10 27 561 540.63

TABLE X. The fluid-solid phase-transition valuesG andT. Note
that the solid phase at the phase boundary is bcc fork<4.0 and fcc
for k>4.6 in this table. The normalized temperatureT is defined by
Eq. ~15!.

k Gm Tm

0.0 171.8 2.24031023

0.2 173.5 2.26731023

0.4 178.6 2.33231023

0.6 187.1 2.42531023

0.8 199.6 2.53531023

1.0 217.4 2.64731023

1.2 243.3 2.73631023

1.4 268.8 2.90731023

2.0 440.1 3.09531023

2.6 758.9 3.42031023

3.0 1185 3.49831023

3.6 2378 3.68231023

4.0 3837 3.85131023

4.6 8609 3.88131023

5.0 1.5063104 3.88831023
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plotted in Fig. 3; these errors are less prominent due to
logarithmic scale forG. The triple point is given byG55.6
3103 at k54.28(K56.90). Both the fluid-solid and bcc-fc
phase transitions are of first order@1,20,29#.

V. COMPARISON WITH EARLIER WORK

In Fig. 4, we compare our MD simulation results wi
those from earlier MD and MC simulations, based on diff
ent methods@19–23#. These earlier MD and MC simulation
do not include the infinite sum for periodic bounda
conditions—i.e., the second term in Eq.~9!—and are thus
valid only in the largek regime ~i.e., k*1!. In Fig. 4, the
linear fit given by Eq.~19! is extrapolated tok58.0. The
filled marks and solid lines are the same as those used in
2. The crosses, together with the error bars, are the fl
solid phase boundary points obtained by Meijer and Fren
@21#. These values were obtained from a modified Frenk
Ladd lattice-coupling method@30# and MC simulation for
systems of 256 or fewer particles. The error bars show
statistical errors. The open rectangles, triangles, and
monds indicate stable fluid, bcc, and fcc states, respectiv

FIG. 2. Phase diagram of Yukawa systems in the~k,T! plane.
The filled circles are fluid-bcc phase boundary points (k,4.3), the
filled squares are fluid-fcc phase boundary points (k.4.3), and the
filled triangles are bcc-fcc phase boundary points~see Tables X and
XI !. The solid lines represent the curves fitted to these data po

TABLE XI. Transition values ofG andT at the bcc-fcc phase
boundary. The normalized temperatureT is defined by Eq.~15!.

k Gs Ts

1.066 ` 0.000
1.2 5070 1.31331024

1.4 2325 3.36131024

2.0 1228 1.10931024

2.6 1273 2.04031024

3.0 1634 2.53731024

3.6 2884 3.03631024

4.0 4185 3.53131024
e
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obtained by Stevens and Robbins@22#. These authors use
MD simulations and observed the time evolution of the sta
starting from fluid-solid coexistent initial conditions~phe-
nomenological melting tests!—the number of particles use
in their simulations are 432 for bcc lattices and 500 for f
lattices.

The bcc-fcc phase boundary obtained from lattic
dynamics calculations~quasiharmonic theory! by Robbins,

ts.

FIG. 3. Phase diagram of Yukawa systems in the~k,G! plane.
The filled circles and solid lines are the same as those used in
2, converted toG from T through Eq.~16!.

FIG. 4. Phase diagram of Yukawa systems in the~k,T! plane.
The filled symbols and solid lines are from Fig. 2. The crosses~3!
with error bars are fluid-solid phase boundary points obtained
Meijer and Frenkel@21#. The open rectangles~h!, triangles~n!,
and diamonds~L! indicate fluid, bcc, and fcc states, respective
obtained by Stevens and Robbins@22#. The open circle~s!, plus
~1!, and open inverted triangle~,! are a fluid-bcc boundary point
a bcc-fcc phase boundary point, and the triple point, respectiv
obtained by DuPontet al. @23#. The dashed line is the bcc-fcc phas
boundary obtained by Robbins, Kremer, and Grest@20#, based on
the quasiharmonic theory~lattice-dynamics calculations!. The dot-
ted line is also a bcc-fcc phase boundary obtained by these au
@20#, based on MD simulations and the energy-distribution-funct
method@20,31#.
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Kremer, and Grest@20# is plotted as the dashed line in Fig.
The dotted line is the bcc-fcc phase boundary, also obta
by Robbins, Kremer, and Grest@20#, based on MD simula-
tions and the energy-distribution-function method@20,31#.
Using this bcc-fcc phase boundary, Stevens and Robbins
timated the triple point—i.e., the boundary point of flui
bcc, and fcc phases—ask52.85 andT50.0032. This triple
point is located at much smallerk than that obtained in the
present study.

DuPont, Moulinasse, Ryckaert, and Baus@23# used MC
simulation and the Frenkel-Ladd lattice-coupling meth
@32# to evaluate solid free energies. Using the free energ
of the fluid phase obtained by Meijer and Frenkel@21#, Du-
Pont et al. obtained a fluid-bcc boundary point, a bcc-f
phase boundary point, and the triple point, denoted, res
tively, by the open circle, plus, and open inverted triangle
Fig. 4. This triple point—atk54.19 (K56.75) and T
50.0034 (G55.63103)—is close to the one obtained in th
present study, namely,k54.28 (K56.90) andT50.0038
(G55.63103).

It is interesting to note that the triple-pointk andG values
obtained by DuPontet al. and in the present study are ve
close~within 2%!, although theT values differ by over 10%.
This is becauseT is a sensitive function ofk whenk*1.0, as
shown below. From Eq.~16!, one can write

dT
T 52

dG

G
1

k

T
]T
]k

dk

k
. ~23!

It follows from Eq. ~16! that the coefficient of the secon
term (k/T )(]T/]k) above depends only onk, and notG.
The values of this coefficient are 2.02, 5.32, 8.88, and 12.
k52.0, 4.0, 6.0, and 8.0, respectively. For example, ifk
54.0, a 2% error in thek value results in more than 10%
error in the correspondingT value for a givenG.

The fluid-solid phase-transition temperatures obtained
this study are systematically higher~by about 5% inT ! than
those obtained by Meijer and Frenkel. With their modifi
Frenkel-Ladd lattice-coupling method@30#, Meijer and Fren-
kel obtained the Gibbs free energy by integrating a poly
mial fit to the density-pressure data obtained from MC sim
lations. In addition to this different methodology, oth
factors may have contributed to the systematic discrepa
First, the MC simulations by Meijer and Frenkel employ
relatively small numbers of particles (N<256). Second,
Meijer and Frenkel assumed that the solid phase at their
points ofk53.30 (K55.33) andk54.20 (K56.77) is fcc.
However, our simulations, as well as those by DuPontet al.
@23#, indicate that this phase is actually bcc.

The stable fluid phase data presented by Stevens and
bins, which are considered to give an upper bound of
fluid-solid transition phase, lie more or less on or above
fitted fluid-solid phase boundary, suggesting good agreem
with our data. Only two data points given by Stevens a
Robbins—those atk52.067 and 2.597~K53.332 and
4.186!—are slightly lower than our fitted phase-transitio
curve. These two data are obtained from MD simulations
a system of 432 particles, with the potential truncated a
radius equal to 3r, whereas we have used MD simulations
686-particle systems for bcc lattices and 500-particle syst
for fluid phases with no potential truncation. To determi
ed
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the stable phase, Stevens and Robbins ran MD simulat
starting from a two-phase state~equally divided fluid and
solid phases! and observed its time evolution. If the differ
ence between the free energies of the two phases is
small, which is the case near the transition point, the evo
tion of the MD simulation may be sensitively dependent
the shape of the simulation box, number of particles, ini
perturbations, and the potential truncation radius.

The two fluid-solid boundary points obtained by DuPo
Moulinasse, Ryckaert, and Baus@23# @denoted by the open
circle and open inverted triangle in Fig. 4; the latter is a
the triple point# seem rather scattered if one believes that
melting temperatureTm increases linearly withk. In the
lattice-coupling calculations by DuPontet al., the free en-
ergy is obtained by integrating the energy along an isothe
Hence the actual temperature~or equivalentlyG! is fixed,
andk is computed for each phase boundary point@which is
opposite to our method: we fixk values and determine cor
responding phase-transition temperatures~or G values!#. As
discussed above, however, small errors ink can result in
largeT errors. Indeed, DuPontet al. obtainG51.73103 and
5.63103 at k53.38 and 4.19 as fluid-solid boundary point
Our k estimates on the fluid-solid boundary@from Eq. ~19!
converted toG# for G51.73103 and 5.63103 are k53.30
and 4.28, which are within 2.5% of thek values estimated by
DuPontet al.This small difference ink incurs a discrepancy
of about 10% inTm at the triple point.

The bcc-fcc phase boundary point obtained by DuP
et al. @23# @denoted by a plus in Fig. 4# is in excellent agree-
ment with the bcc-fcc phase boundary curve estimated in
study, while the bcc-fcc phase-transition temperatures
tained by Robbins, Kremer, and Grest@20# are much higher
~the dotted line in Fig. 4!. Consequently, the triple poin
suggested by Stevens and Robbins@22# is located at much
smaller k than that obtained in this study, as previous
noted. Robbins, Kremer, and Grest used the ener
distribution-function method@20,31# to obtain the free-
energy difference between fcc and bcc phases for givek
andT. To determine small differences between the free
ergies near the bcc-fcc boundary, one needs accurate s
tics for a sampling of the energy histogram in this method
is not clear from Ref.@20# that the statistics were adequa
for an accurate estimation of these values. One exam
given in Ref.@20# shows that the difference in the free ene
gies at k53.05 (K54.92) andT52.2431023 (G51.97
3103) is 0.03kBT. Our MD calculations show, however
that the difference is 0.014kBT at k53.00 ~note the slight
difference ink! andT52.2431023, which is different by a
factor of about 2. Since the measured potential energies
G*2000 give an excellent fit to the quadratic form in E
~14!, the error in our free-energy estimate due to the extra
lation of Eq.~14! at this position in the phase space~i.e., k
53.00 andT52.2431023! is expected to be very small.

Stevens and Robbins@22# showed that their MD simula-
tion starting from a mixed state of fluid and fcc phas
evolved to the fcc phase atk53.604 andT53.42931023,
which is indicated as an open diamond in Fig. 4. Howev
they do not seem to claim that the bcc phase is actually m
unstable than the fcc phase at this point.~At k52.779 and
T53.19831023, the authors of Ref.@22# show that two runs
converge to different lattices, suggesting that both the
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and fcc phases are stable.! It is not clear from Ref.@22# that
their phenomenological melting test can distinguish su
small differences in the free energy near the phase bound

To summarize, we believe that the triple point obtained
this study—which is close to the one obtained by DuP
et al.—is more accurate than that suggested by Stevens
Robbins. It may be of interest to compare the different me
ods mentioned above, using data from the same MD or
simulations. In this manner, one could ascertain whether
discrepancy arises from differences in the methodologie
evaluating free energies or from the intrinsic accuracy of
simulation data. Figure 5 plots the same data as for Fig. 4
the ~k,G! plane. The error bars are omitted in Fig. 5 f
simplicity. With this logarithmic scale forG, the differences
among the data of the various authors are hardly discern

VI. CONCLUSION

We have obtained the fluid-solid phase boundary of
Yukawa system fork<5, including the weakly screened re
gime 0<k<1 ~k is the ratio of the Wigner-Seitz radius t
the Debye length!. This phase transition is of first orde
Unlike earlier MD or MC simulations@19–23#, in which
interactions were computed by pairwise summation over p
ticles within some cutoff radius, our MD simulations u
interparticle potentials summed over all particle pairs,
cluding periodic images of particles residing in the cubi
simulation box. Thus long-range particle interactions are
curately accounted for over the entire range ofk values. For
strongly screened Yukawa systems (k*1), the fluid-solid
phase-transition curve obtained here is in good agreem
with those of the earlier studies.

We have also estimated the bcc-fcc phase boundary
the MD simulation method. This phase transition is also fi
m
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order. The transition temperaturesTs obtained are in excel-
lent agreement with the results of quasiharmonic theory@20#
neark51.066, the zero-temperature bcc-fcc transition po
The bcc-fcc phase-transition point for a largerk obtained in
the recent study by DuPont, Moulinasse, Ryckaert, and B
@23# is also in excellent agreement with our present resu
The triple point~i.e., fluid-bcc-fcc phase boundary! is esti-
mated to be k54.28 (K56.90) and T50.0038 (G
55.63103), close to the one obtained by DuPontet al. @23#.
We believe that the phase diagram presented here is the
accurate one currently available@33–35#.

FIG. 5. Phase diagram of Yukawa systems in the~k,G! plane.
All symbols and lines are the same as in Fig. 2, converted fromT to
G through Eq.~16!.
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