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Phase diagram of Yukawa systems near the one-component-plasma
limit revisited

S. Hamaguchi
IBM, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

R. T. Farouki
Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor,
Michigan 48109

D. H. E. Dubin
Department of Physics, University of California at San Diego, La Jolla, California 92093

(Received 12 February 1996; accepted 25 July 1996

Transition inverse temperaturés I values at the fluid—solid phase boundary of Yukawa systems
near the one-component-plasn{®CP limit have been evaluated by molecular dynamics
simulations. These values are systematically smaller than those obtained in an earlier study by
Farouki and Hamaguchd. Chem. Physl01, 9885(1994)]. The discrepancy is attributed to the fact

that, in the earlier study, the harmonic entropy constants were approximated by that of the OCP,
whereas the new results are based on more accurate harmonic entropy constants obtained from
lattice-dynamics calculations. The new molecular dynamics simulations also confirm that the bcc—
fcc phase transition curve is in good agreement with that of the quasiharmonic theory in the regime
k<1.4, wherex is the ratio of the Wigner—Seitz radius to the Debye length. Examples of Yukawa
systems include dusty plasmas and colloidal suspensionsl99 American Institute of Physics.
[S0021-960606)51541-2

I. INTRODUCTION ing background plasma. The interparticle potential is of
Yukawa type, given by
Plasmas containing small solid particles, i.e., “dusty”
plasmas, have attracted much attention recently. In the semi-
conductor industry, such particles are known to cause dam- #(F)= drreyr exp(—kor), @
age to substrates during plasma processing. In space plas-
mas, the existence of such particles affects various opticalherer denotes the radial distance between two particles.
observations. The Debye lengtihp=kp* of the background plasma is de-
Small particles in a plasma are typically negatively fined by
charged, due to the high mobility of electrons, and they in-
teract with each other through a Yukawa-ty(e., screened o’n; €%, | Y
Coulomb pair potentialsee Eq(1) below]. Laboratory ex- Ap= ( €okT, + GOT) '
periments have recently demonstrated that, when the inter- ' ¢
particle potential energy exceeds the kinetic energy, particuyith i, n;, and T, being the charge, mean density, and
lates in plasmas may form crystalline structutes.The temperature of plasma ions, ar¢e, n,, and T, the corre-
Yukawa system is also known to model colloidal particlessponding quantities for plasma electrons.
suspended in electrolyte solutions. Crystalline structures of  Using the Wigner—Seitz radius= (3/47n)Y as the unit
colloids are also commonly observed in experiménts. of length, wheren is the particle number density, we may
In a recent study by Farouki and Hamagutthie fluid—  describe the thermodynamics of the Yukawa system in terms
solid (i.e., freezing—meltingphase transition curve was ob- of two dimensionless ratios:
tained for Yukawa systems near the one-component-plasma
(OCP limit, based on molecular dynamigdD) simula- a Q?
tions. In their derivation of the phase-transition curve, how- %=\ I'= Ame,akT’
ever, those authors used an approximate value for the har-
monic entropy constanis(x) [defined in Eq(10) in Sec. Il Note that parametdr is roughly the ratio of théunscreened
below] of Yukawa systems. The goal of this paper is to re-Coulomb potential energy to the kinetic energy per particle.
evaluate the phase-transition curve using more accurate val- In this paper, we focus on the regime of weak Debye
ues of the harmonic entropy constants obtained from latticgcreening«=<1) as in Ref. 9, which is relevant to experimen-
dynamics calculations, and thus to present more accuratel observations of strongly coupled particulate systems in
transition temperature®r I" values. plasmas. In the limik—0, the Yukawa system becomes the
As in Ref. 9, we consider a system of identical particlesOCP (a system of mobile charges immersed in a strictly uni-
of massm, chargeQ=—Z¢e(Z>1) immersed in a neutraliz- form neutralizing backgroundwhich has been extensively

2

@

)

J. Chem. Phys. 105 (17), 1 November 1996 0021-9606/96/105(17)/7641/7/$10.00 © 1996 American Institute of Physics 7641
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studied®~®as a model for the interior of white dwarf stars. the OCP potential energy given by, for example, Efsand
In this sense, the Yukawa system may be considered a claé8) of Ref. 9. As the screening length increadges., as

sical generalization of the OCP. k—0), each particulate has an increasingly strong interaction
with both the charge-neutralizing background plasma and the
Il. FREE ENERGY CALCULATIONS other charged particulates. Thus, the magnitude of the

We employ the MD technique and free energy Calcula_background—plasma free energy—the second term in Eq.

tion method described in Ref. 9. We briefly summarize thesé4)—|nqreases to cancel the Increase .Of direct € lectrostatic
Co : interactions among charged particles, i.e., the first and last
methods in this section.

. ) . . : terms in Eq.(4).
For MD simulations in the week-screening regime,
i . To see the correspondence between the Yukawa system
where the range of the interparticle force becomes compa; .\ 5cp system more clearly, one may write
rable to or greater than the sidleof the cubical simulation '
volume, one must use the effective pair potential N-1 N
U= 2 2 p(r—=r;)+Up,
®(r)=¢(|r)+ X $(lr+nL), T
n#0 where
which reflects periodic boundary conditions imposed on the ) T 3
simulation box, to emulate correct particle—particle interac- ——=_— [cp(g)— T}
tions. In the above equatiod(r) represents the interaction NkT N x°N
energy of particle with particlej (at separatiom=r;—r;) and
and with all periodic images of the latter. The infinite sum of
¢ over integer vectorsi=(I,m,n) represents the periodic i: E
images. Numerically this periodic image potential is approxi- NkT 2
mated by a tensor-product spline function interpolating an . - .
array of 40<40x40 discrete values, summed to high accu- 'hen. in the OCP limitx—0, one can show that the pair
racy. The approximation can be efficiently evaluated in thé’mem!al'l’ and §C”Per9y constaglc%converge to those of the
simulations and has a fractional deviation from the exacpcp’ Le..y—y " andUo—Ug ™", where
value of no more thar-10"". Full details of the approxima- Q2 1 1
tion scheme may be found in Ref. 17. YO = Tme. f [2 o(p—nL)— F} 1]
The total potential energipor “excess energy) U of the 7o JVa| P
model system with periodic boundary conditions is thenand

exp—k|n|A) 3

—_— Y o K|.
n70 [n|A k°N

dp

given by 1 Q?

U 1 N—-1 N ~ 3 K UOOCPZEN I|m <¢OCP(r)_4W€ |r|)
TN D 2 PEE 52 Ii=o °
NkT N =1 kS7+1 ! 2k° 2 5

Q“N
N E 2 exp( — x|n[A) @ ~—1.418 648 747TEOL'
2 770 |n|A '

For further details, the reader is referred to Ref. 18.
whereN is the number of particles) = L/a= (47N/3)*3is We denote the internal energy and Helmholtz free en-
the size of the cubical simulation volume in units of the ergy per particle in units okT by
Wigner—Seitz radius§ =r;/a is the dimensionless location U F
of particlei, and®=4mea®/Q>. U= ——  f=— (5)

The energy associated with the background plasma in NkT’ NkT
Eq. (4) is not just the potential energy, but the free energy—rhe thermal component of the potential energy is defined by
including the contribution of the entropy associated with
thermal motions of the plasma ions and electrons. Thus, the Um(x,I')=u(x,I') = U (k),
partial derivative ofU with respect ta; gives the true force
on theith particle!® In Eq. (4), the second term inside the
square bracket represents the free enéeggluding the uni-
form ideal-gas free energ@yf the background plasma that, ou(k,I)
on average, neutralizes the charge of the particulates. The E(x)= lim r

. I'—ow

third term represents the free energy of each Debye sheath
[see Eq(17) of Ref. 19, and the fourth term represents the i.e., the Madelung energy per particle in units@t/4mea,
energy of interaction of each particulate with its own imagesso thatu,,(«) =E(«)I". In the limit of zero temperatur@.e.,
under periodic boundary conditions. I'—e0), we evidently havei( «,)=u.(«). At zero tempera-

As k—0, the first, second, and last terms on the right-ture, the bcc Madelung energy is smaller than the fcc Made-
hand side of Eq(4) diverge in such a manner that the lim- lung energy [E,.{«)<E(x) for k<1.066. The bcc—fcc
iting value ofU equals the well-known expressith,cpfor  phase transition can therefore occur only k0r1.066.

whereu,.(x) represents the Madelung enerdgr an appro-
priate lattice per particle in units okT. We also define

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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TABLE I. Harmonic entropy constants for bcc and fcc Yukawa lattices. TheTABLE Ill. Equilibrium potential energy per particley/T", for bcc solids

values atx=0 are quoted from Ref. 21.

K Shee DI
0.0 —2.4939 —2.4537
0.2 —2.5172 —2.4767
0.4 —2.5808 —2.5393
0.6 —2.6829 —2.6394
0.8 —2.8185 —2.7722
1.0 —2.9843 —2.9347
1.2 —-3.1773 —3.1236
1.4 —3.3950 —3.3366

Since df/dI'=u(«x,)IT", the dimensionless Helmholtz
free energy for the fluid phase may be defined by

!

r dI’
fagia(x,I") = jo u(x,I'") F"’fidea(r)- (6)

(N=686). The numbers after indicate fluctuation levels. The energy value

with an asterisk*) was not used for fitting since the value clearly deviates
from either fitting curve, indicating the system is in a mixed fluid—solid
state.

r k=12 k=14
240 —1.03252%+0.000 184
300 —1.034 044-0.000 117 —1.083 042-0.000 134
400 —1.035414-0.000 103 —1.084 449-0.000 099
500 —1.036 214-0.000 072 —1.085 260G-0.000 088
600 —1.036 742-0.000 064 —1.085 788-0.000 054
800 —1.037 388:-0.000 045 —1.086 444-0.000 042
1000 —1.037 774-0.000 044 —1.086 828-0.000 038
o0 —1.039 292 —1.088 350
dr’

uth(KIF,)

r
faoud 1) = | T+ franf k1), @

2

whereuy,—3/2 is the anharmonic component of the potential

Here the last term represents the ideal-gas contribution to th&qergy in units ofkT. The free energy for the harmonic

total free energy, i.e.,
zﬂ_hz 3/2
( ka) :

3
=3InT+ > In(kT)gy—1+In

fidea(F)zln -1

37

1
where (T)g, denoteskT measured in Rydberg units,
3(Q%4meyh)?m, for the particle. AlthougH 4., depends on
(kT)gry as well asl’, we do not explicitly express the depen-
dence on the former for the sake of simplicity.

For the solid phase, we use

()

TABLE II. Equilibrium potential energy per particle/T’, in the fluid phase,
(N=500. The numbers after- indicate fluctuation levels. Note thatT’
——«l2 asI'—0.

r k=12 k=14

0.00 —0.600 000 —0.700 000

0.10 —0.648 425-0.025 551 —0.740 415-0.023 959
0.20 —0.680595-0.024 165 —0.770 037-0.021 136
0.40 —0.724 539-0.019 526 —0.806 296-0.016 947
0.60 —0.757 346-0.015 638 —0.831 754-0.015 606
0.80 —0.782 004-0.013 549 —0.852 47(:-0.012 292
1 —0.797 097:0.010 904 —0.869 746-0.011 675
2 —0.85543%-0.009 179 —0.920 097-0.008 272

5 —0.921 138-0.004 200 —0.978 642-0.004 510

10 —0.958 561-0.002 799 —1.012 022-0.002 587
20 —0.985 481:0.001 533 —1.037 095-0.001 467
40 —1.004 536-0.000 893 —1.055 146-0.000 911
60 —1.012 768-0.000 683 —1.062 75%-0.000 616
80 —1.017 3870.000 559 —1.067 144-0.000 495
100 —1.020 683-0.000 433 —1.070 322-0.000 426
120 —1.022 726-0.000 427 —1.072513-0.000 409
140 —1.024 535:-0.000 353 —1.074 088-0.000 329
160 —1.025919%0.000 310 —1.075 46%0.000 253
180 —1.027 188-0.000 249 —1.076 4670.000 301
200 —1.028 005-0.000 250 —1.077 485:-0.000 250
240 —1.078 874-0.000 204

lattice vibration is given by
fham{ K, T)=E(K)T+2(k)+5 In T+ 3 In(kT)gy

+3In 3, 9)
where2 (k) denotes the harmonic entropy constant, i.e.,
1 3N—-3 o
= lim — 2k
E(K)—'Jllinw N gl In oy (10)

Here w,= JQ?n/eym is the plasma frequency of the par-
ticles and the sum is taken over th&l 33 normal-mode
frequenciesw for the oscillation of a lattice oN particles.
The eigenfrequencies, of an N-particle Yukawa lattice
may be computed using standard technicf§es)d the quan-
tity 2(«) can then be estimated for variousvalues by let-
ting N—o. Table | gives the values &(«) for bcc and fcc
Yukawa lattices. The OCP valuése., k=0) in Table | are
taken from Table | of Ref. 21.

lll. PHASE TRANSITION

MD simulations are used to evaluate the potential energy
u for given values of the thermodynamic variableandI".
Details of the simulation method may be found in Refs. 9,
16, and 17. The number of particldsused for the simula-
tions reported here and in Ref. 9 a¥e=686 for a bcc and
N=500 for a fcc lattice. These lattices are used as initial
conditions, and the system is allowed to equilibrate to the
desiredI” for 100 time units before averaging its properties
over 100<7<300. Here the time unit is defined to iz@w;l,
so thatr=w,t/v3. Cases that melted to a fluid state did so
well before 7=100.

For the fluid phase, we fit measured potential energies to
the expression

u(x,T)=a(x)T+b(x)S+c(x)+d(x)T S, (11)

with s=1/3. This functional form has been applied to inter-
nal energy fitting of various OCP simulatioHs Writing

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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TABLE 1V. Equilibrium potential energy per particley/T’, for fcc solids
(N=500). The numbers aftet indicate fluctuation levels. The energy value

Hamaguchi, Farouki, and Dubin: Phase diagram of Yukawa systems

TABLE VI. Solid fitting parametersA; and A, for bcc and fcc Yukawa
lattices defined by Eq.18). For «<1.0, A;(x) and Ax(«) for bcc Yukawa

with an asterisk*) was not used for fitting since the value clearly deviates lattices are given by Eq$19) and (20).

from either fitting curve, indicating the system is in a mixed fluid—solid

state. K AECC Alz)cc Aacc Afzcc
T =12 =1.4 1.2 15.42 2042.56 21.13 1712.24
1.4 16.12 3398.78 17.87 4735.20
240 —1.032173+0.000 228
300 —1.034 003-0.000 150 —1.082 998-0.000 165
400 —1.035 392-0.000 110 —1.084 437-0.000 114
500 —1.036 209-0.000 085 —1.085 274-0.000 091 . .
600 1,036 735-0.000 071 1,085 804-0.000 082 [Note thatf,(x) is denoted a$(k,1) in Ref. 9; we employ a
800 —1.037390:0.000 058  —1.086 46(0.000 057 new notation here sincég,q(«,I') in this paper includes
1000 —1.037 778-0.000 046 —1.086 849-0.000 049 figeall)—the ideal gas contribution—whereas the fluid-

% —1.039 302 —1.088 374

a(x)=Eu.{k)+da(x) as in Ref. 9, we first apply a least-
squares fit toE,.{k) data given in Table Il of Ref. 9 and
obtain

Eped )= —0.895 929-0.103 73%2+0.003 084"

—0.000 13%% for k<1. (12

phase free energi(«,I') in Ref. 9 is defined to exclude the
ideal gas contribution. The integral f,(«) is evaluated
through a direct Simpson-rule quadrature of thE values
obtained from MD simulations.

For the solid phase, the following form for the thermal
potential energy is assumed:

Al(K) Az(K)
T T

where 3/2 is the harmonic component, and the power series

3
up(x,I')= §+ (18

~ Tofitthe fluid data given in Table Il of Ref. 9 to expres- j, -1 represents the anharmonic terms. From a least-squares
sion (11), we take the dependence of the coefficientst of the hec solid phase data given in Table I of Ref. 9 over
éa,b,c,d on « to be no more than quartic with even powers ine dual independent variablesandT’, we obtain

only, i.e., we write
da( k)= day+ da,k?+ dask?,

and similarly forb(x), c(x), andd(k). Twelve term fits of the
fluid data over the dual independent variabieandI” yield

Sa(k)=—0.003 366+ 0.000 66G>—0.000 08%*, (13
b(x)=0.565 004-0.026 134>—0.002 68%*, (14)
c(x)=—0.206 893-0.086 384>+ 0.018 27&*, (15)
d(x)=—0.031 402 0.042 42%>—0.008 03%*, (16)

A1(k)=9.13+4.37«2,

A,(k)=1526+47%2,

for bec lattices withx<1.

For k>1, we do not use Taylor-series expansionscin
for the coefficients, as defined by Eq$2)—(20). Instead we
fit the potential energy functional forms, Eq41) and(18),
directly to the simulation data for eachvalue separately.
For k=1.2 and 1.4, theu/T" values for the fluid phase, bcc
solid phase, and fcc solid phase are given in Tables I, IlI,
and IV, respectively. Note that/I'——«/2 asI'—0 (in the

(19
(20)

for k<1. Here we have employed higher-order least-squaregyid phasg. The value—«/2 represents the energy of the

polynomial fits (but with even powers onjythan those
used? in Ref. 9.

To avoid divergence on substituting expressibh), we
write Eq. (6) as

rooodr
ffluid(KaF):fl u(x,I'") F"'fl(’()"'fidea(r),
with

1 dr’
fl(K):f u(«,I'’ T (17)

0

TABLE V. Fluid fitting parameters, b, ¢, andd defined by Eq(11) for
«=1.2 and 1.4. Fok=<1.0, these parameters are given as functions loy

Egs. (13)—(16). Note that da(x) in Eq. (13) is defined as
da(k)=a(«)— Epcdx).
K a b c d
1.2 —1.041 816 0.522 733 —0.305 649 0.026 740
1.4 —1.090 801 0.514 325 —0.344195 0.049 258

Debye sheath¥

Least-squares fitting of the functional forms to these data
(I'=1) yields the coefficient values shown in Tables V and
VI. Since for k>1.066 the fcc lattice becomes more stable
than the bcc lattice at zero temperature, we have fitted the
solid-phase functiori18) to the data of bcc and fcc lattices
separately. The numerical valuesfgfx), which are listed in
Table VII, are obtained from a Simpson-rule numerical

TABLE VII. f,(x) = faig(k1)—Figea(1) defined by Eq(17).

K fa(0)

0.00 —0.436 765
0.20 —0.449 484
0.40 —0.480 913
0.60 —0.528 365
0.80 —0.586 650
1.00 —0.654 089
1.20 —0.730 380
1.40 —0.810 280

J. Chem. Phys., Vol. 105, No. 17, 1 November 1996
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TABLE VIIl. Madelung energies for bcc and fcc Yukawa lattices. Made-
lung energies fok=<1.2 are listed in Table Il of Ref. 9.

K Epec Efec
1.2 —1.039 291 99 —1.039 302 36
1.4 —1.088 349 67 —1.088 374 41

qguadrature ofi/T" (0<I'<1) given in Table IV of Ref. 9 for
k<1.0, and in Table Il fork=1.2 and 1.4. Table VIII gives

the Madelung energies for bcc and fcc Yukawa lattices for

x=1.2 and 1.4.

For a givenk, the intersection of the free energies of the
fluid and solid phases gives the transitigre., melting or
freezing I' value(i.e.,I';,). In Table IX we listI',, for vari-

ous k values. As mentioned above, we have used the dual-

value(I" and ) fitting of the free energies fot<1.0 and the
single-value(i.e., I' only) fitting for k=1.2 and 1.4 sepa-

7645
400 T T
300 | solid (bcc) 1
I 200} :
100 | fluid .
0 L L
0.0 0.5 1.0 1.5
k=a/lp

rately' To check the consistency of this approach, we aISS;IIG. 1. Phase diagram of Yukawa systems as a function of the dimension-

applied the single-value fitting method to the casedl, and
found that it gavd’,,, values very similar to those from the
dual-value fit. For exampld;,,, for k=1.0 obtained from the
single-value fit is 217.8, whered%, from the dual-value fit
is 217.4. Similarly, for the OCP ca$e=0), the single-value

less inverse screening lengtrend the dimensionless inverse temperaiure
defined in Eq.(3). The solid circles are fluid—solid phase boundary points
obtained from MD simulationgésee Table IX and the solid curve is their
least-squares fit. Note that the fcc solid phase is off-scale in this figure.

fit gives 171.2 while the dual-value fit gives 171.8. These
values are essentially in very good agreement with most rewhere o is the Einstein frequency for the fcc Yukawa lat-

centI’,, estimates for the OCP systefir>24
Figure 1 shows the phase diagram in #d’ plane. The

closed circles represent the data points given in Table IX and

the solid curve is the least-squares fit given by

', =171.8+42.46¢2+3.841* for k<1.4. (22)

IV. CONCLUDING REMARKS

Earlier studie® 2 have employed normalizations dif-
ferent from Eq(5) to represent the particulate temperattire
and the Debye screening length . For example, one may
use p=n_*3 instead of the Wigner—Seitz radias as the
length unit, and defineK=p/\p. Kremer, Robbins, and
Grest® normalized the temperatufie by the typical phonon
energy of the fcc Yukawa lattice according to

kT
T=

= 22
moZo?’ (22

TABLE IX. Transition values of" and.7" at the fluid—solid phase boundary.
These data are plotted in Figs. 1 and 2.

K I'n T m

0.0 171.8 2.24810°3
0.2 1735 2.26%1073
0.4 178.6 2.33210°°
0.6 187.1 2.42%10°3
0.8 199.6 25351073
1.0 217.4 2.64%10°3
1.2 243.3 2.7381073
14 268.8 2.90%10°3

tice, defined by

2K3
2_-D .
0E=3m & S(r-rh
with all particles at the fcc lattice sites. The Einstein fre-
guency is related to the Madelung eneigy.(x) in units of

Q%/4meqa by

mwza? 2

_Z 2
Q?/47760a 3" @3

3 K
EfCC(K)-I—ﬁ‘FE .

It follows from Egs.(3), (22), and(23) that the dimension-
less temperatureg” is related tox andI” as

1 3 2/3 2
e
Equation(23) evidently becomes 1, and=(3/4m)?3T, in

I'\4x 3
the OCP limitk—0. The Einstein phonon energies for the
fcc Yukawa lattice in units oQ%4megp, i.e.,

K3 -1

K?Egee k) + >+ 1 (24)

0? Maogp?
B Qz/47reop

are given in Table X.

Table IX also shows7,,, i.e., the dimensionless tem-
perature7 at the fluid—solid phase transition. These are plot-
ted in Fig. 2 as functions ofx or K [=(4m/3)"3«
~1.611 9%]. Here, the solid curve represents the least-
squares fit of ther, values, given by

7m=0.002 240-0.000 18% +0.000 20%2

(25

for k<1.4. (26)
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TABLE X. Normalized squares of Einstein frequencies defined by(E5). TABLE XI. Transition values ofl” and.7” at the bcc—fcc phase boundary.
These values are plotted in Fig. 2, but are off-scale in Fig. 1.

K 0?
K Iﬂs 75
0.0 4.188 790 20
0.2 4.099 427 06 1.066 o0 0.0
0.4 3.870 48594 1.2 5070 1.31%10°*
0.6 3.552 585 86 1.4 2325 3.36x10°*
0.8 3.186 040 83
1.0 2.801 738 48
1.2 2.422 250 60
1.4 2.063308 14

of Stevens and Robbins given by EQ7). For example, the

Monte Carlo (MC) simulation results by Meijer and

Frenkef’ [which are consistent with Eq(27)] show

The broken line is the fluid—solid phase boundary line estiz’ m=2-9<10 ° for k=1.82 (K=2.94 and.7,=3.1x10 °

mated by Stevens and Robbfs, for K=2.39(K=3.8@3. Our preliminary MD S|mulat|(_)£1 also
shows.7,=3.1X10"° for k=1.82 and.7 ,=3.2X10° for

7 m=0.0022+0.000 2X, (27)  k=2.39, which are in good agreement with the earlier re-

which is an extrapolation of simulation data fé&r>2.0 sults. More details of our MD simulation fot>1.4 will be

matched linearly to the OCP phase-transition value given iiPresented in a future publication.

Ref. 14. This linear extrapolation is in reasonable agreement 1able Xl lists transition values df and.”" at the bee—
with our results within the studied domairc@<1.4. fcc phase boundary, i.e., the intersection of the bcc and fcc

Interpolation formulas such as Eq€1) and(26) should solid free energies. These transition temperatures are also
not be used to extrapolate the function values as they can Hotted in Fig. 2. The dotted line represents the phase transi-
grossly erroneous outside their domains of validie.,  ton curve obtained from the quasiharmonic theBryhich
0<k<1.4). Indeed our preliminary simulation for larger is in excellent agreement with our simulation results. Note

indicates that the quadratic dependence7gfon « given in that the bcc—fcc phase transition_ curve is off_-scale_in Fig. 1.

Eq. (21) doesnot continue fork>1.4: the dependence of,, In summary, we have obtained the fluid—solid phase

on « becomes linear for larger values, similar to the result Poundary curve of the Yukawa system in the weakly
screened regiméx<1.4). Unlike other MD or MC methods

in earlier studies, where interparticle forces are calculated by
pairwise summation over particles within a cut-off radius,
our MD simulations use interparticle potentials summed over
0 all particles, including all periodic images of particles resid-
0.005 . T ing in the cubical simulation box. Thus, long-range patrticle
interactions are accurately taken into account in this method
for the entire range of, including the unscreened.e.,

0.004 1 I OCBP) limit, k=0. Our MD simulation method thus fills the
fluid’ gap between earlier extensive studies of the OCP system and
0.003 strongly screened Yukawa systems.

Earlier estimates of the melting/freezing phase boundary
for the Yukawa system in the weak-screening redimere
based on the approximate value of the harmonic entropy con-
stant, 2 (x)=—2.4938 for allk<1 (which is exact only for
x=0). In the present study, we have recalculatgd using
solid (bcc) solid (fcc) . correctX(x) values that are obtained from lattice dynamics

calculations. The new',, values are presented in Table IX
o\\*’ and Fig. 1, and are found to be systematically lower than the
0-000 0'5 1'0 = 15 earlier approximatd’,, estimates in Ref. 9.
x=a/kp _ It is !mown that thelgntropy change per particle at the
fluid—solid phase transition—i.e AS=Sq,iq—Ssoiig» Where
s=S/Nk with F=U—ST—is almost constant over a wide
FIG. 2. Phase diagram of Yukawa systems as a function of the dimensiotemperature range. Recently Rosenfeld assuthse0.75

less inverse screening lengihand the temperature” normalized by the
Einstein phonon energy, defined by E82). .7 is related tol" through Eq. (the OCP result from Refs. 14 and)2nd used the energy

(24). The closed circles are fluid—solid phase boundary points obtained frorﬁlata_ from MD S'mUIat'Ons by Farouki and Ham_agt?cm_
MD simulations(see Table 1% and the solid line represents their quadratic Obtain the meltingl” values in the weak screening region
least-squares fit. The broken line is the phase boundary suggested Ky<1)3° which are in good agreement with olif, values

Stevens and Robbins in Ref. 28. The dotted line is the bcc—fcc phase boun ; ; ;
ary obtained by Robbins, Kremer, and GréRef. 26 based on the quasi- hown in Table IX and Fig. 1. We directly calculate the

harmonic theory. The open circles on the dotted line are bcc—fcc phas@n_tmpy changeés from our MD simulations, using the re-
boundary points obtained from MD simulatioteee Table X). lation Au—As=fg,iq—fs0ig=0 atI'=I",. Table Xl shows

0.002

0.001
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