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Thermodynamics of strongly-coupled Yukawa systems near 
the one-component-plasma limit. II. Molecular dynamics simulations 

R. T. Farouki and S. Hamaguchi 
IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598 

(Received 2 May 1994; accepted 31 August 1994) 

Molecular dynamics simulations are employed to study the equilibrium thermodynamics of 
strongly-coupled systems of particles interacting through the Yukawa potential. Such systems serve, 
under the Debye-Hiickel approximation, as a model for the physical behavior of plasma or colloidal 
suspensions of charged pruticulates. The thermodynamics may be characterized in terms of two 
dimensionless parameters-the ratio K of the mean interparticle distance to the Debye length, and 
an approximate measure r of the interparticle potential energy in units of the thermal kinetic energy. 
Employing an accurate representation of infinite periodic boundary conditions, we focus on the 
regime of weak Debye screening (K :$ I) and strong coupling cr;.:. O. Excess internal energies 
measured at many points (K,r) are fitted to simple functional forms for the fluid and solid phases, 
representing extrapolations of the classical one-component plasma (OCP) limit, K= O. Quantitative 
expressions for the Helmholtz free energy and the "equation of state" of the Yukawa system­
giving the pressure p in terms of K and r -are thus derived, and the freezing/melting curve in the 
(K,r) plane is traced as the intersection of the fluid and solid free-energy surfaces. © -]994 
American Institute of Physics. 

I. INTRODUCTION 

Pruticulate contamination in microelectronics process 
plasmas is currently attracting much attention. 1-4 The mac­
roscopic behavior of suspensions of contaminant particles in 
such plasmas is complicated by the fact that, under represen­
tative conditions, the particulates may acquire large negative 
charges and behave as a "strongly coupled" system,5-7 i.e., 
the potential energy of the (screened) Coulomb interactions 
of pruticulates can exceed their thermal kinetic energy by a 
large factor. Strongly-coupled systems arise in a variety of 
physical contexts, e.g., colloidal suspensions,s dust grains in 
planetary magnetospheres,9 and the classical "one­
component plasma" (OCp)lO-a model for the interior of 
white dwarf stars. 

Consider a system of identical particulates of mass m, 
charge Q=- Ze (Z;':'l), density n, and temperature T, im­
mersed in a neutralizing background plasma of fixed mean 
temperature and density. The pair potential that describes the 
interaction of two particulates is the Yukawa formY 

Q2 
<p(r) = -4-" -exp(-kDr), 7rEor " " (1) 

where kD is the inverse of the Debye length 

(2) 

q j, iii> and Tj being the charge, mean density, and tempera­
ture of the plasma ions, and - e, iie , and Te the corrre­
sponding quantities for plasma electrons [qjiij=e (iie+Zn) 
for overall charge neutrality J. We assume that m is much 
larger than atomic masses, so the background plasma may be 
regarded as instantaneously relaxing to form a spherical De­
bye sheath around each particulate on time-scales character­
izing the particulate motions. 

It is convenient to measure interparticle distances in 
units of the Wigner-Seitz radius a = (3/47rn) 1/3. The ther­
modynamics of the particulate system may then be described 
in terms of two dimensionless ratios: 

a 
K=- and 

)..D 
(3) 

The parameter K gives an indication of the importance of 
Debye screening, while the "coupling" parameter r is 
roughly the ratio of the (unscreened) Coulomb potential en­
ergy to the thermal kinetic energy per particle. 

Our goal is to develop quantitative thermodynamic mod­
els for the Yukawa system, based on molecular dynamics 
simulations, in the regime of strong coupling (r;.:. 1, where 
the system is far from ideal-gas behavior) and weak Debye 
screening (K:$I). Although there have been many 
studies 12

-
19 of Yukawa systems, using both molecular dy­

namics and Monte Carlo methods, they have focused mostly 
on the case of strong screening (K> 1), where the simple 
"minimum image" method20 provides a fair approximation 
to infinite periodic boundary conditions. This method does 
not yield accurate internal energy measurements if K :$ 1, 
however, since the pair potential (1) must then be augmented 
by a term that accurately reflects the interaction of one par­
ticle with all periodic images of another particle.21 

Another reason for concentrating on the weak-screening 
regime is that the OCP-a system of mobile charges im­
mersed in a smooth, strictly uniform neutralizing background 
-is the formal limit K-+O of the Yukawa system. The OCP 
thermodynamics has been extensively studied on a quantita­
tive basis,22-32 and simple functional forms are available that 
describe the free energy of its fluid and solid phases in terms 
of r to high accuracy. Thus, we can readily construct our 
thermodynamic model of the Yukawa system as an extrapo­
lation of established OCP properties to small but finite K. 

J. Chern. Phys. 101 (11), 1 December 1994 0021-9606/94/101 (11 )/9885/91$6.00 © 1994 American Institute of Physics 9885 
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II. MOLECULAR DYNAMICS SIMULATIONS 

For periodic boundary conditions appropriate to a cubi­
cal simulation volume of side L, we use in lieu of (1) the 
"effective" pair potential describing the interaction of par­
ticle k with particle j (at separation r=rk-rj) and with all 
periodic images of the latter, 

<P(r) = 4>(lrl) + L 4>(lr+nLj), (4) 
nJoO 

where the infinite sum is over vectors n=(l,m,n) with inte­
ger components. This cubically-symmetric term is approxi­
mated by a tensor-product spline function interpolating an 
array of 40X40X40 discrete values, summed to high accu­
racy. The approximation can be efficiently evaluated in the 
simulations, and has a fractional deviation from the exact 
value of no more than - 10-7 • Full details of the approxi­
mation scheme may be found in Ref. 21. 

As units of mass, length, and time, we employ the par­
ticulate mass m, the Wigner-Seitz radius a, and !3 (V; I 
where wp= ~Q2n!Eom is the plasma frequency for the par­
ticulates. The equations ot motion are then 

where gk=rk1a is the dimensionless location of particle k, 
~= wptl !3 is the dimensionless time, and 
<P=4'7TEoa <P/Q2 is the dimensionless "effective" pair po­
tential. We integrate the system (5) by a predictor-corrector 
scheme in which the variation of the force on a particle over 
each timestep is obtained by extrapolation from a quadratic 
fitting polynomial that interpolates its value at three preced­
ing instances; the "correction" stage adds a cubic term. 
Forces are obtained by pairwise summation over all particles 
-i.e., there is no cutoff radius-and the integration proceeds 
on an asynchronous timefront using individually-adjusted 
steps to ensure uniformly accurate trajectories under varying 
conditions. 

To emulate average system properties for a canonical 
ensemble with fixed r (temperature), we periodically syn­
chronize all particles and renormalize their velocities to the 
prescribed target value for r. Empirically, Ll r= I was deter­
mined to be the optimum interval for evolution of the system 
between temperature adjustments; measurements of thermo­
dynamic properties were essentially unchanged upon adopt­
ing smaller integration periods. Typically, the total system 
energy was conserved to a fractional accuracy of 10-5 to 
10-6 over each integration period. 

In the case K= 0 the infinite sum in (4) does not con­
verge, and this effective potential must be replaced by the 
well-known Ewald potential for the OCP. In dimensionless 
form, the Ewald potential is given22 by 

A • _ erfc( {; g/A) _ ~ '" rerfce {;lg+nAI/A) 
<I>ocp( g) - g A + ::0 I g+ nAl 

exp( - '7TlnI 2)cose2'7Tn· g! A)] 
+ '7Tlnl 2A ' 

(6) 

where g=gk-gj denotes the position of particle k relative to 
particle j, erfc(·) is the complementary error function, and 
A = L/ a = ( 4 '7T N 13) 113 is the size of the cubical simulation 
volume. The infinite sum in (6) is approximated in the same 
manner as that in (4)-unlike (4), however, the sum in (6) 
should not be interpreted as simply representing the effect of 
"image" particles. 

The simulations commenced with particles positioned on 
a bcc lattice, which is the equilibrium configuration of the 
frozen Yukawa system for small K-the bcc form has lower 
Madelung energyl5,33-35 than the fcc form for K :5 1.066. 
To allow many runs at different K and r values, we use 
N = 686 (corresponding to a 7 X 7 X 7 bcc lattice) for the 
simulations reported here. All runs were evolved for 300 
time units, allowing the system to equilibriate to the desired 
r for 100 units before averaging its properties over 
100< r< 300. Cases that melted to a fluid state did so well 
before r= 100. 

As shown in the companion paper,36 the potential or 
"excess" energy per particle of the Yukawa system, includ­
ing contributions of the background plasma, may be ex­
pressed in units of kT as 

(7) 

[this is the dimensionless form of equation (28) in Ref. 36]. 
The above expression is valid only for K>O; for K=O, we 
use:22 

(8) 

where 

(
AI ) - 2.837297479 

Em = J~ <I>ocp(g) - g = A . 

It may be verified36 that U-+Uocp as K--+O. 
The inclusion of accurate periodic-correction terms in 

(4) and (6) allows energy data representative of infinite sys­
tems to be obtained with relatively small particle numbers.21 
By way of empirical corroboration, we compare in Table I 
energy measurements for the solid OCP phase from indepen­
dent runs with N = 686 and N = 1024. The agreement is seen 
to be excellent, indicating that the measured energies are of 
much greater accuracy than the quoted fIllS thermal fluctua­
tions seem to suggest (these fluctuations may be somewhat 
influenced by the adopted interval Ll r= I between tempera-

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
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TABLE 1. ocp excess energy per particle utI' obtained with N=686 and 
1024. 

f N=686 N=1024 

200 ~0.887997 ::!:0.000195 -0.888007::!:0.000163· 
240 -0.889426::!:0.000 157 -0.889421::!:0.000126 
300 -0.890781±0.000124 -0.890776±0.000101 
400 -0.892098±0.000088 -0.892097::!:0.000084 
500 -0.892879::!:0.000079 ··0.892878±0.000059 
600 -0.893396::!:0.000065 -0.893395 ::!:0.000054 
800 -0.894036±0.000050 -0.894036±0.000041 

1000 -0.894418±0.000040 -0.894418::!:0.000040 

ture adjustments). Consequently, we shall use only un­
weighted least-squares fits to the measured energy data. 

III. THERMODYNAMIC PROPERTIES 

A wide range of physical conditions may be described 
by simple relations if we choose the dimensionless quantities 
K and r, in lieu of the particle density n and temperature T, 
as independent thermodynamic variables. 

However, we must first specify a model for the depen­
dence of the Debye length AD, given by Eq. (2), upon nand 
T. We shall assume that Ti and T~ are fixed and independent 
of T, while iii and ii~ are in constant proportion to n. The 
transformation of standard thermodynamic equations to di­
mensionless form is then governed by the relations 

BK K aK 
-=~ -=0 
an 6n' aT 

ar r 
and -a =:--3 ' n .n 

ar r 
aT T' 

(9) 

An extensive system comprising N particles at tempera­
ture T occupying a volume V has Helmholtz free energy 
F=U-TS, where U and S denote the internal energy and 
entropy of the system. (Note that F is the free energy with 
respect to the temperature T of the particulates, it being un­
derstood that the background ion and electron temperatures 
are fixed. This F should not be confused with the free energy 
with respect to the background temperatures, as discussed in 
Ref. 36.) If F is known as a function of T and V, the rela­
tions p=- caF/aVh and S=- caF/aT)v give the pres­
sure and entropy of the system. These relations can be recast 
in terms of dimensionless intensive variables as 

p=n( af) 
an T 

and s= - f-T( ;~) , 
n 

(10) 

where n=N/V is the particle number density, and 

U F PV S 
u= NkT' f= NkT' p= NkT' and s=Nk (11) 

denote the internal energy and free energy per particle in 
units of kT, the pressure in units of nkT, and the entropy per 
particle in units of k. 

If we know the free energy asa function f(K,r) of the 
parameters (3), we can determine the pressure p and entropy 
s as functions of these variables by making use of (9) and the 
chain rule to rewrite expressions (10) as 

TABLE II. Equilibrium excess energy per particle, utf (N=686). 

r K=O.O K=0.2 

~ 0.57173 ± 0.0 l388 - 0.57866 ± 0.01429 - 0.59912 ± 0.01449 
2 - 0.65983 ± 0.00800 
5 -0.75101±0.00419 

10 -0.79954±0.00235 
20 -0.83340±0.00l36 
40 - 0.85648± 0.00078 

- 0.66589 ± 0.00785 - 0.68345 ± 0.00775 
- 0.75677 ± 0.00425 - 0.77038± 0.00396 
- 0.80447 ± 0.00250 - 0.81795 ± 0.00235 
-0.83783 ± 0.00147 -0.85100±0.00143 
- 0.86064::!: 0.00086 - 0.87340± 0.00078 

60 
80 

100 
120 
140 

- 0.86595 ± 0.00052 - 0.87029± 0.00056 
-0.87156±0.00046 -0.87578±0.00047 
- 0.87519± 0.00035 - 0.87944± 0.00041 
- 0.87786± 0.00033 - 0.88200± 0.00031 
- 0.87982± 0.00031 - 0.88404± 0.00029 

- 0.88290 ± 0.00060 
··0.88841 ± 0.00049 
-0.89196±0.00033 
- 0.89444± 0.00035 
- 0.89656 ± 0.00029 

160 - 0.88561 ± 0.00027 - 0.88930± 0.00065 - 0.90216± 0.00030 
180 -0.88706±0.00021 -0.89118±0.00023 
200 - 0.88800± 0.00020 - 0.89214± 0.00020 
240 -0.88943±0.00016 -0.89357±0.00014 
300 - 0.89078 ± 0.00012 - 0.89492± 0.000 12 
400 -0.89210;1:0.00009 -0.89624±0.00009 
500 - 0.89288 ± 0.00008 - 0.89702± 0.00008 
600 -0.89340±0.00007 -0.89754±0.00007 

-0.90352±0.00019 
- 0.90449 ± 0.00023 
-0.90593±0.00015 
- 0.90729 ± 0.00012 
-0.90861±0.00012 
- 0.90939 ± 0.00008 
-0.90991±0.0000L 

800 -0.89404±0.00005 -0.89818±0.00005 -0.91055±0.00005 
1000 - 0.89442± 0.00004 - 0.89856± 0.00004 - 0.91093 ± 0.00004 

co -0.89593 -0.90007 -0.91245 

I' K=0.6 K=0.8 K= 1.0 

-0.631613±0.01266 -0.67876±0.01273 -0.73423±0.01155 
2 - 0.71215± 0.00876 - 0.75145± 0.00761 - 0.79866± 0.00718 
5 - 0.79536:!: 0.00380 - 0.82793 ± 0.00395 - 0.87127 ± 0.00396 

10 - 0.84051 ± 0.00240· 0.87192± 0.00245 '0.911 03 ± 0.00238 
20 - 0.S7284± 0.00136 -0.90269± 0.00145 -0.94029± 0.00143 
40 -0.89471±0.00078 -0.92372±0.00080 -0.96063±0.00080 
60 -0.90385±0.00061 -0.93265±0.00060 -0.96910±0.00059 
80 

100 
120 
140 
160 
180 
200 
240 
300 
400 
500 
600 
800 

1000 

- 0.90907± 0.00044 - 0.93773 ± 0.00043 
-0.91261±0.00036 -0.94126±0.00034 
-0.91523±0.00032 -0.94366±0.00033 
-0.Y1718±0.00029 ~0.94556±0.00028 

-0.91874±0.00027 -0.94705±0.00025 
-0.92377±0.00022 -0.95173±0.00026 
- 0.92488± 0.00021 - 0.95304± 0.00020 
-0.92634±0.00016 -0.95451±0.00016 
-O.92770±O.000I2 -0.95590±0.00011 
- 0.92903 ± 0.00009 - 0.95723 ± 0.00009 
- 0.92982± 0.00007 - 0.95802± 0.00008 
- 0.93034± 0.00006· - 0.95854± 0.00007 
- 0.93098 ± 0.00004 - 0.95919 ± 0.00005 
- 0.93136± 0.00004- 0.95957 ± 0.00004 

-0.93288 -0.96109 

~. 0.97408 ± 0.00049 
- 0.97735 ± 0.00036 
- 0.97976± 0.00030 
- 0.98156 ± 0.00029 
- 0.98303 ± 0.00025 
- 0.98423 ± 0.00022 
- 0.98821 ± 0.00030 
- 0.99008 ± 0.00017 
-0.99149±0.00015 
- 0.99284± 0.00010 . 
. 0.99364± 0.00007 

- 0.99416± 0.00006 
- 0.99480 ± 0.00005 
- 0.99519±.0.00004 

-0.99671 

K af. r af 
p ="6 aK +"3 ar and 

af 
.I'=-f+ r ar' (12) 

The function p(K,r) is the "equation of state" for the 
Yukawa system-its difference from unity describes the de­
viation from ideal-gas behavior (which is recovered in the 
limit r·-+O). An accurate representation for p(K,r) is of 
practical interest in, for example,the formulation of macro­
scopic descriptions for the behavior of dust/plasma suspen­
sions that can help in understanding and controlling particu­
late contamination in industrial process plasmas. 

Simulations were run over a wide range of r for each of 
the values K = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. The resulting 
time-averaged measurements of u/r -i.e., the excess energy 
per particle in units of Q2/41TEoa-as computed from (7) 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
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TABLE III. Madelung energies for bee and fee Yukawa lattices. 

K E(bce) E(fee) 

0.0 -0.895929 -0.895873 
0.1 -0.896966" -0.896911 
0.2 -0.900074 -0.900020 
0.3 -0.905240 -0.905190 
0.4 -0.912448 -0.912402 
0.5 -0.921671 -0.921631 
0.6 -0.932879 -0.932844 
0.7 -0.946032 -0.946004 
0.8 -0.961088 -0.961067 
0.9 -0.977997 -0.977984 
1.0 -0.996706 -0.996701· 
1.1 -1.017158 -1.017161 . 
1.2 -1.039292 -1.039302 

and (8), are listed in Table II. Runs that melted to the fluid 
state are as follows: for K=O.O, 0.2, and 0.4, all runs with 
f< 160; for K=0.6 and 0.8; all runs with f< 180; and for 
K= 1.0, all runs with 1'<200. 

We can determine the free energy f(K,r) from the simu­
lation data by expressing it as an integral of the measured 
internal energy U(K,r) over f. In terms of the dimension­
less quantities (11), the free energy becomes 

f = u-s, (13) 

and making use of the relations (9) and (10) we have 

af u(K,f) 

af f 
(14) 

Integrating from the appropriate limit (f =0 for the fluid 
phase, 1'=00 for the solid phase) then gives the desired free 
energy expressions. These are derived in Sec. III B and Sec. 
m C, based on least-squares-fitting formulas for u(K,f). 

A. The Madelung energy 

Our approach is based on assuming that the Yukawa­
system excess energy has an analytic dependence on K,. in 
both the fluid and solid phases, and thus expanding the co­
efficients of established forms3

! for U in the OCP case as 
power series about K=O. It is convenient to fit to the "ther­
mal" cbmponentof the excess energy, defined by 

Uth(K,r) = U(K,r)-Uoo(K), 

where U",,(K) represents the bcc Madelung energy per par­
ticle in units of kT. Table III gives the values 

. u(K,f) 
E(K) = i~ f ' 

which represent the Madelung energy per particle in units of 
Q2/47TEOCl, so that um(K)=E(K) f. The variation of E(K) 
is illustrated in Fig. 1. By least-squares fitting, we find that 
E(K) can be represented to an accuracy of ~ 10-6 for 
O~K~ 1 by the quartic polynomial 

E(K)= -0.895929 + 0.000025 K - 0.103950 K2 

+ 0.000579 K3 + 0.002570 K4 • (15) 

-0.88 

-0.90 

-0.92 

-0.94 

E(IC) -0.96 

-0.98 

-1.00 

-1.02 

-1.04 
0.0 0.25 0.50 0.75 1.00 1.25 

IC 

FIG. 1. Madelung energy per particle (in units of Q2/41T€oa; see Table III) 
of tbe Yukawa system as a funetion of K. The bec and fce Madelung ener­
gies are indistinguishable on tbe seale of tbe graph; tbey cross at 
K""" 1.066. 

B. Free energy of the fluid phase 

For the fluid phase, we fit the measured excess energies 
to the expression 

Uth(K,r) = 8a(K)f+b(K)fS+c(K)+d(K)f- S (16) 

based on the variational hard sphere approach26 (which gives 
the exponent s = l/4). The total excess energy is then 
u=a f+b fS+c+df-', where a(K)=E(K)+b"'a(K). 

Since the simulation data is rather sparse and of limited 
range, we take the dependence of the coefficients 8a,b,c,d 
in (16) on "K to be no more than quadratic, i.e., we write 

8a( K) = 8ao + 8a! K+ 8a2K2 , 

and similarly for b(K), C(K), and d(K). 
Twelve-term fits of the fluid data to expression (16) were 

performed for exponents s=O.25, 0.3, 1/3,0.4, and 0.5. The 
value s = 113 was found to give the best overall fit, with 
cr= 0.0041 as the square root of the sample variance in 
Uth. The coefficients c 2 and d 2 were poorly determined, 
however, and omitting these terms gives the ten-term fit 
(with cr= 0.0040): 

oao= -0.003256±0.000121, 

oa! = - 0.000482± 0.000267, 

8a2 = - 0.000964± 0.000176, 

bo= -0.559934±0.006253, 

hI = -0.026341 ± 0.010536, 

h z= -0.050644±0.003815, 

co= -0.192006±0.020737, 

cl = - 0.082556± 0.032185, 

do= -0.040346±O.016406, 

d 1 = -O.044115±0.025824. (17) 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
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TABLE rv. Excess energy per particle ulr at small r values (N=500). 

r K=O.O K=0.2 K=0.4 K=O.6 K=O.8 K=l.O 

0.00 0.0000 -0.1000 -0.2000 -0.3000 -0.4000 --0.5000 
0.10 --0.2652 -0.2809 -0.3294 -·0.3920 -0.4750 -0.5578 
0.20 -0.3483 -0.3600 -0.3940 -0.4520 -0.5195 -0.5964 
0.40 -0.4431 -0.4509 -0.4794 -0.5251 -0.5799 -0.6481 
0.60 -0.4962 -0.5088 -0.5319 -0.5732 -0.6238 --0.6846 
0.80 -0.5406 -0.5476 -0.5708 -0.6087 -0.6561 -0.7139 
LOO -0.5717 -0.5787 -0.5991 -0.6317 -0.6788 -0.7342 

f(K,I) -0.4368 -0.4495 -0.4809 -0.5284 -0.5866 -0.6541 

Fitting to just OCP data gives values that agree well with the 
above: oa = - 0.003242, b = 0.559336, c = - 0.189080, 
d= -0.044085 (with 0"=0.0030). 

The coefficients of terms that are linear in K evidently 
have relatively large fractional uncertainties in the fit (17). 
Dropping these terms results in a six-parameter expression, 
with least-squares coefficients 

Sao = - 0.003584± 0.000076 , 

oaz = - O.001050± 0.000056, 

bo= -0.576529±0.003890, 

bz= -0.053157±0.001227, 

Cn= -O.240624±0.012969 , 

do= -0.013147±O.010389 (18) 

that appear to be more precisely determined, although the 
quality of the fit is somewhat impaired (0"=0.0047). 

We write the excess free energy in the fluid phase as 

Ir df' 
f(K,f)= 1 u(K,f') F+f(K,l) , 

where f(K,l) is the free energy at f= 1. Substituting from 
(16) then gives 

P-l 
f(K,f)=a(K)(f-:-l) + b(K) -~. 

S 

r- s-l 
+c(K)lnf - d(K) + f{K,I). (19) 

s 

For f~ 1, the termf(K,I) is a relatively minor contribution 
to the excess free energy. We estimate this term by perform­
ing a few N =7 500 runs from random initial configurations. 
The ulf values obtained from these runs are given in Table 
IV (note that u/f -+ - K12, which represents the energy of 
the Debye sheaths,36 as r -+ 0). For each K, Tab Ie IV also 
gives a value for f(I<.,1), as determined by a Simpson-rule 
quadrature. We find that the least-squares cubic 

f(K,l) = -0.4368 - 0.0105 K - 0.2801 K2'-j- 0.0733 K3 

reproduces· the simulation data to nearly four decimal places. 
The ocp data in Table IV are in fair agreement with earlier 
studies?7 . 

To obtain the total free energy for the fluid phase, we 
must add the ideal-gas contribution fO(K,f) to the excess 
free energy (19). From the expression for the entropy of an 
ideal gas37 we may write this in the form 

fO(K,f)=ln[ (~7T:;r2n ]-1 
3 

= 3 In K+2"ln f -1 + In ~7T16 

-3In Q2 
47TEO n WpAD . 

(20) 

(Note that, in the final term, the product 

of the particulate plasma frequency and_ the Debye length is 
independent of K and f under the assumption that n;ln, 
ne1n are constants, and T;. Te are unrelated to T.) Corre­
spondingly, ideal-gas contributionsPo(K,f)=1 and 

3 5 CIC 
SO(K,f) = -3 In K- 2 1n r+ 2-ln Y1T16 

+3 In Q2 
41TEO n WpAD 

must be added to expressions (12) to obtain the total pressure 
and entropy in the fluid phase. 

For finite n, the ocp limit K=O is realized as AD--+oo. 

The singUlarity of the first term in expression (20) is thus 
cancelled by the last term, and in this limit the ideal-gas free 
energy may be written as:23 

3 3 .J1T 
fo(O,r)= 3 In f +2 ln(kT)Ry-l + In 4 

where (kT)R~ denotes kT measured in Rydberg units. 
~(Q2/4'lTEon)-m, for the particulates. 

c. Free energy of the solid phase 

For the solid phase, we expand the excess thermal en­
ergyas 

(21) 
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where 3/2 is the harmonic component, and the power series 
in f - I represents the anharmonic terms. Again, we take the 
dependence of the coefficients_ of these terms on K to be 
quadratic: 

Aj(K) = Ajo+AjIK+AjZKZ j= 1,2, .... 

The lowest-f runs that did not melt to the fluid state 
(f=160 for K=O.O, 0.2, and 0.4; f=180 for K=0.6 and 
0.8; and r=200 for K= 1.0) produced conspicuously 
"noisy" energy values, and were therefore omitted from the 
least-squares fit to expression (21). 

Keeping only the r -I and r -z terms in the expansion 
(21) for the solid phase, an unweighted fino all six coeffi­
cients Ajk for j= 1,2 and k=0,1,2 was first attempted. While 
this gave reasonably good agreement with the data (0-
=0.0024), the estimated uncertainties of the linear coeffi­
cients A II , A 21 were large compared to their nominal values. 
Consequently, these terms were dropped and the resulting 
four-term fit gave 

AIO= 9.l3±0.52, A. 12 = 4.37±1.16, 

A 20 = l526± 117, AZ2 = 479±30l, (22) 

with 0-=0.0024 again (the above values do not differ signifi­
cantly from those obtained with the .six-term fit-moreover, 
fitting only the OCPdata gives A lO=9.07±0.77 and 
A 20= 1500± 168 with 0-=0.0021). 

The A 10 quoted above is in fair agreement with the OCP 
value of 10.645 (for N = 686) predicted by thermodynamic 
perturbation theory38. Note, however, that coefficients ob­
tained by fitting to simulation data are somewhat sensitive to 
the number of terms retained in (21) and the range of f 
covered by the data [for 170",;r",;2000, a previous OCP 
study32 gave A IO =8.19±0.20, A 20= 1697±44 for a two­
term fit, and AIO=9.65±0.32, A zo=840± 171, A30 
=(LlOl ±0.216) X 105 for a three-term fit]. 

In the classical limit, the free energy associated with 
harmonic lattice vibrations can be expressed24 for large N as 

13~3 Wk fiwp 
Jhann(K,f) = E(K) r + N,L.; In - + 3ln kT ' 

k=1 wp 

where the sum is taken over the 3N - 3 normal-mode fre­
quencies Wk for the oscillation of a bcc lattice of N particles. 
Denoting the N --tOO limit of this sum by 2 ( K), and writing 
InCnwp/kT)=In K + In r -In(Q2141TEofiw pAD)' we obtain 

J(K,f)=E(K) r + 2(K) + 3ln K + 3ln r 

QZ AI(K) A 2(K) 
-31n 4 fi \ --r--~r -

1TEO wp/~D -

(23) 

as the total free energy for the solid phase. Here the contri­
bution of the anharmonic terms in (21) has been included 
(assuming that the harmonic approximation becomes exact 
as r --too). 

The eigenfrequencies Wk of an N-particle bcc Yukawa 
lattice may, in principle, be computed using standard 
techniques,39 and the quantity !(K) can then be estimated 
for various K values by letting N--t oo • However, since the 

2.5 

r 
300 400 

FIG. 2. Fitted thermal excess energy surfaces for fluid and solid phases of 
the Yukawa system, as defined by expressions (16) and (21) together with 
the coefficients (17) and (22). Also displayed are the simulation data. The 
fluid energy surface is shown for I,..; r,..; 180 and the solid energy surface 
for 180,..;f,..;400. 

calculations are not trivial, and the "static" (Madelung) term 
E(K) r dominates the K-dependence of expression (23), we 
shall be content at present to set.the !(K) term identically 
equal to the OCP value 2(0) = - 2.4938 computed by Pol­
lock and Hansen.24 

In the OCP case (K=O) it is more convenient to re-write 
expression (23) in the nonsingular form 

9 3 
J(O,f)=ECK) r + !(K) + '2ln r + '2 In (kT)Ry 

3 3 A 1(K) A 2(K) 
+ '2 In '2 - -r- - 2 r 2 - (24) 

D. The phase transition 

The fitted thermal energy surfaces for the fluid and solid 
phases, as defined by expressions (16) and (21) and the co­
efficients (17) and (22), are shown together with the simula­
tion data in Fig. 2. Near the phase transition, the fluid ther­
mal energy surface curves slightly downward with increasing 
K, while the solid thermal energy surface curves slightly 
upward. This may be seen more clearly in Fig. 3, which 
shows constant-r contours on these surfaces. Note, however, 
that the variation in the static (Madelung) energy E( K) will 
dominate these mild trends. 

The intersection of the derived free energy surfaces for 
the solid and fluid phases, given by expression (23) and the 
sum of expressions (19) and (20), respectively, was com­
puted to determine the freezing/melting curve r m(K) in the 
(K,r) plane. This is illustrated in Fig. 4. 

For the OCP, we obtain f m(O)-I71, in agreement with 
recent estimates.32,38,40 As K increases, r m exhibits a mono­
tonic increase that becomes increasingly pronounced­
representative values are r m=179, 200, 237, 293, and 378 
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Ie 

FIG. 3. Constant-r contours on fitted thermal energy surfaces for the fluid 
and solid phases of the Yukawa system, together with simulation data. For 
the fluid phase, the lowermost contour is r = I and the uppermost is 
r= 180. For the solid phase, the contours range from r= 180 to r= 1000 
(the solid data is shown on a greatly magnified scale). 

for K= 0.2, 0.4, 0.6, 0.8, and 1.0. Note that, for larger K 
values, the parameter r is no longer a fair measure of the 
ratio of the particle kinetic energy to the pair potential en­
ergy. The quantity 

(25) 

is perhaps a better "coupling parameter" in this respect. The 
dotted curve in Fig. 4 shows the freezing/melting curve in 
terms of this quantity, indicating that the phase transition 

400~~~~~~-.~----.------.----~ 

300 
solid 

r 200 

100 r:n 

OL-____ J-____ -L ____ ~ ______ L_ __ ~ 

0.0 0.2 0.4 0.6 0.8 1.0 

BG. 4. The freezing/melting curve r m(K). as determined by intersecting the 
solid and fluid free energy surfaces obtained from the simulation data. The 
dashed curve represents f~(K), where f*=f exp(-K). 

occurs at a reasonably constant coupling strength [there is 
perhaps a slight decline or dip in the r~(K) curve; whether 
this is a genuine physical effect or an artifact of the fitting is 
unclear]. 

It is interesting to compare our results on the phase tran­
sition with those of Robbins, Kremer, and Grest. 15 These 
authors represent the freezing/ melting curve in the form 

_ (3 )713 kT (4'lT) 1/3 
T = 4'lT ma2wl = 0.00246+ 0.000274 3 K, 

(26) 

where WE is the Einstein frequency for a bcc lattice, and the 
fractional powers of 4'lT/3 arise since n -113, rather than 
(4'lTn/3)-I13, is used for a in Ref. 15. Nots! that the param­
eter }.. adopted in Ref. 15 is proportional to our K, namely, 
K= (3/4'lT) 113}.. -0.62035 }... 

The formula (26) was based on an extrapolation of simu­
lation data for K ;C; 1 to the OCP transition determined by 
Pollock and Hansen.24 The r m values it predicts are system­
atically somewhat lower than those shown in Fig. 4. For 
example, using the values of (4 'IT/3) 713 ma2w~ in units of 
(3/4'lT) 113 Q2/4'lTEoa listed in Table I of Ref. 15 we find that 
r m= 168 atA= 1 (K=0.62) and r m=228 atA=2 (K=1.24), 
which may be compared with our present values r m =293 at 
K=0.6 and r m=378 at K= 1.0. 

Several factors may contribute to the observed discrep­
ancy: 

• No data for 0 < K< 1 was used in deducing the for­
mula (26), and the Pollock and Hansen value24 

r m = 155 adopted for K= 0 is too small according to 
recent OCP studies;32,38,40 one should therefore not ex­
pect accurate predictions from this formula when K 

:51. 

• The simulations in Ref. 15 employed only the 
"minimum-image method" -with a cutoff radius r c 

for particle interactions-to emulate infinite periodic 
boundary conditions, rather than the "etIective" pair 
potential (4) with summation over all pairwise interac­
tions; this dm be expected to introduce some system­
atic error unless K~ 1. 

• Equation (26) was based on the Lindemann criterion 
and observations of which runs melted from crystal­
line initial configurations, rather than the intersection 
of fitted free-energy surfaces as used here. 

Overall, we believe that our results present a more accu­
rate picture for the Yukawa-system phase transition in the 
regime of weak screening (K :5 1), although the accuracy of 
the graph in Fig. 4 is perhaps suspect at the largest K values. 
The principal factors motivating this cautionary remark are: 
(i) concerns over the validity of expanding the OCP free­
energy coefficients as quadratic polynomials up to K= I; (li) 
our neglect of the K-dependence of the k ( K) term in the 
solid free energy (23); and (iii) relatively large uncertainties 
in the coefficients of the least-squares fitting formulas. 

We note that, for K~0.6, only one or two runs with 
r < r m did not melt from a crystalline initial configuration 
within the duration of the simulation, whereas for K=0.8 
Cf m=293) the f= 180, 200, and 240 runs did not melt 
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FIG. 5. Normalized pressure p(K,f) for the fluid phase of the Yukawa 
system as a function of r for K values 0.0, 0.2, 004, 0.6, 0.8, and 1.0. 

within the prescribed simulation time, and for K= 1.0 
(1' m= 378) the 1'=200, 240, and 300 cases had not melted 
before termination. 

E. Equation of state for the fluid phase 

In the context of particulate contamination in process 
plasmas, the equation of state for the fluid phase is of prac­
tical interest, since it provides a means of describing the 
transport of particulates on a simple continuum basis. 

From Eqs. (19), (20), and (12) the fluid equation of state 
is given by 

1 
p(K,f)=l +3"[a1'+brs+e+dr-'J 

K[da dbfS-l de 
+6" dK (1' - 1) + dK -s-· + dK In l' 

_ ~~ 1'-s-I + d/CK,I)} 
dK S dK (27) 

where a=E+ 8a, the coefficients of E, 8a, b, e, d; and 
I(K,I) as polynomials in K being given inSecs. rnA and 
III B. Note that the above expression does not include the 
(ideal gas) pressure due to the homogeneous background 
plasma. This must be added to give the total pressure (for the 
OCP it becomes infinite if K-+O at constant n, i.e., 
Ti,Te-+oo). We shall assume here that Ti,Te and 
iiJn,iielnare fixed, so that the term dependent OnWpA.D in 
(20) is a constant, and changes in K and r correspond to 
changes in the density and temperature of the particulates. 

Several constant-K contours on the computed equation­
of-state surface are shown in Fig. 5. It is seen that, in the 
strongly-coupled regime (1';;;'1), the pressure is less than the 
ideal gas value p(K,f)= I for all r and becomes strongly 
negative as one approaches the phase transition. 

For K :5 1, the presence of Debye screening does not 
appear to incur a pronounced departure from the behavior of 
the unscreened (OCP) system, at least in terms of the equa-

1.5 
1'=40 

1.0 

g(r) 

0.5 

0.0 \-"'--4----l-----f----+-----I------j---J 

1.5 

g(r) 1.0 

0.5 

0.0 '--_...lA'-___ .... _ ... L __ -L.._--''--_-L.._--' __ --' 

023 4 5 6 7 
rIa 

FIG. 6. Comparison of pair correlation functions for the OCP (solid curve) 
and K= 1 Yukawa system (dashed curve) obtained at r=40 and 120. 

tion of state Csee Fig. 5). This is also evident upon comparing 
the time-averaged corrylation functions g(r) obtained for 
K=O and K= 1, as shown in Fig. 6-the change is more 
significant, however, if one compares }?(r) at equal values of 
1'* rather than 1'. 

IV. CONCLUDING REMARKS 

We have presented a quantitative model for the thermo­
dynamics of strongly-coupled systems of charged particles 
immersed in a responsive neutralizing background plasma, in 
the weakly-screened regime where the ratio K=alA.D of the 
interparticle spacing to the Debye length does not exceed 
unity. The model was constructed as an extrapolation of the 
extensively-studied case K=O-the classical one-component 
plasma-corresponding to a strictly homogeneous back­
ground. Expressions for the Helmholtz free energy of the 
fluid and solid phases were derived, and in terms of the cou­
pling parameter l' = Q2/47fEoakT (where Q and T are the 
particle charge and temperature), the location of the phase 
transition was found to increase from 1'm= 171 at K=O to 
1'm =378 at K= 1. An equation of state for the fluid phase 
was also presented, suitable for use in continuum descrip­
tions of the transport of charged particle suspensions, indi­
cating a pressure somewhat below the ideal-gas value at 
1'= 1 and becoming strongly negative as r -+ r m • 
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