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Thermodynamics of strongly-coupled Yukawa systems near the one
component-plasma limit. I. Derivation of the excess energy 

s. Hamaguchi and R. T. Farouki 
IBM Thomas 1. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598 

(Received 2 May 1994; accepted 31 August 1994) 

The excess energy for a system of charged mesoscopic particles or "particulates" immersed in a 
neutralizing background medium is derived analytically, and is shown to approach that of the 
classical one-component plasma in the limit of high background temperatures. Examples of such 
systems, which are known as Yukawa systems due to the form of the interparticle pair potential, 
include dusty plasmas and colloidal suspensions. The expression for the excess energy allows 
thermodynamic properties of Yukawa systems to be determined from Monte Carlo or 
molecular-dynamics simulations. © 1994 American Tnstitute of Physics. 

I. INTRODUCTION 

Systems of charged "mesoscopic" particles (particles 
that are small on the macroscopic scale but significantly 
larger than molecular sizes) immersed in a smooth neutraliz
ing medium are commonly observed in nature. One example 
of such systems is a suspension of dust grains in a plasma
charged "cosmic" or interstellar grains in space plasmas 
have long interested astrophysicists.1-2 Recently, charged 
dust grains in process plasmas have been recognized as a 
major source of contamination in microelectronics fabrica
tion systems.3

-
7 Another example is the colloidal solution, 

which has been extensively studied on account of its wide
ranging technological uses.8 

To investigate the behavior of such systems, we shall 
consider an idealized model comprising N identical point 
charges (representing the particulates) immersed in a 
"smooth" (i.e., statistically-averaged) neutralizing back
ground medium. This background may be a mixture of dif
ferent media, each assumed to be in thermal eqUilibrium at a 
given temperature. 

The electric potential at position r in this system is given 
by the Yukawa (i.e., screened Coulomb) potential 
ifJ(r) = - (QI4'TTBor)exp( -kDr), where r= Irf and k; 1 is the 
characteristic Debye length for the background medium, if a 
point charge - Q is located at r= 0 and the effect of all other 
point charges is ignored. This represents a linearized solution 
(the Debye-Hiickel approximation) of the Poisson
Boltzmann system. There have been several Monte Carlo 
(MC) and molecular-dynamics (MD) simulations of 
"Yukawa systems," i.e., systems of particles that interact 
through a pair potential given by the Yukawa form or some 
variant thereof (e.g., Refs. 9-13). 

These earlier studies, however, do not take proper ac
count of the energy due to the charged background medium 
in the analysis of simulation data. The contribution of the 
background to the total energy becomes particularly impor
tant when one evaluates thermodynamical quantities from 
MC or MD simulations in the case of weak screening. As 
will be explained in detail later, the total Yukawa-system 
potential energy diverges in the weak screening limit. To 
obtain physical quantities in such a case, one must therefore 
subtract the correct infinite energy due to the background 

charge from the total Yukawa potential energy. 
In the companion paper,14 we shall present MD simula

tions for Yukawa systems in the weak-screening regime. If 
the screening vanishes completely, the system is called the 
one-component plasma (OCP).15-21 In the present paper, we 
derive an expression for the total excess energy of Yukawa 
systems that converges to that of the OCP system. This ex
pression is used to calculate various thermodynamical quan
tities in the companion paper. In the derivation of the excess 
energy, we employ full periodic boundary conditions (which 
are also used in the MD simulations presented in the com
panion paper) and establish the correct relation between the 
Yukawa pair potential and the Ewald potential used for the 
OCP system. 

In the dusty plasma system, the dust grains are nega
tively charged due to the high electron mobility, and sur
rounded by Debye sheaths of radius comparable to the De
bye length kD 1. If the plasma consists of electrons and a 
single species of ions, the characteristic Debye length is re
lated to the ion and electron Debye lengths Ai and A" by 
kZ;l=(lIA;+lIA;)-II2. In process plasmas, the electron 
temperature Te is typically much higher than the ion tem
perature Ti , so that Ai~Ae and kD""" Ai-I. 

If the Yukawa particulate system is in thermodynamic 
eqUilibrium, it may be characterized in terms of two dimen
sionless parameters: 12.22 the ratio K=kDa of the inter
particulate distance a = (3/4'TTn) 1/3 (where n is the particulate 
density) to the screening length k; 1, and the normalized 
inverse temperature 

(1) 

[' represents the Coulomb energy of a pair of particulates 
measured in units kBT, although the real pair potential en
ergy is smaller by factor exp( - K) due to the Debye shield
ing. [Note that in some earlier work, e.g., Refs. 12,13,22, the 
quantity 

is used instead of Eq. (1). In the companion paper, however, 
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f as defined by Eq. (1) is -mainly used, since the particulate 
temperature-kinetic energy-and screening length are then 
conveniently represented by f - 1 and K - J .] 

For example, for ion density n;= 109 cm-3
, temperature 

T;=O.1 eV (~Te)' and charge q=Zie=e, and particulate 
density n= 106 cm" 3, temperature (i.e., kinetic energy) 
T=O.l eV, and charge -Q=-ZDe= -103e, we have 
K=O.83, f=232, and f*=101. The system may be called 
"strongly coupled" since the ratio of the typical interparticle 
energy to the thermal energy (6.< f*) is sufficiently larger than 
1. The free electron density is determined by charge neutral
ity: ne=Zini-ZDn-O in this case, i.e., all electrons are at
tached to dust grains. The example is typical of process plas
mas, but K and f may vary widely depending on the plasma 
state. 

If the system is not in thermodynamic equilibrium, par
ticulates may be subject to various forces, including drag 
forces23 and polarization forces,24.25 in addition to the inter
particle forces. The collective behavior of such systems will 
be the subject of future studies. 

II. DERIVATION OF THE FIELD POTENTIAL 

We first derive the electrostatic potential generated by 
charged particulates and a neutralizing background medium 
confined to a cubical domain V of side length L (V=L3 ). 

The potential satisfies periodic boundary conditions. 
Consider a system of N identical, infinitesimally small 

dust grains of mass m and charge - Q = - Z De. The average 
density of dust grains is then given by n=NIV. The poten
tial '¥(r) satisfies Poisson's equation 

per) 
6.'¥(r) = - -, 

So 

where the charge density per) is given by 

N 

p(r) = -QL: o(r-rj)+qni(r)-ene(r). 
j=l 

(2) 

Here q=Zie denotes the charge on each ion, and n;Cr) and 
ll,,(r) are the ion and electron densities at position r. The 
overall charge neutrality condition requires f vp(r)dr= O. 
We shall assume ions of a single species; the extension to 
multiple species is straightforward. 

Assuming that motion of charged particulates is suffi
ciently slow so that the background plasma may be consid
ered in thermal eqUilibrium at each time instance, we may 
employ Boltzmann distributions for ions and electrons, i.e., 
n",(r) oc exp(-q",~a'l") for a~i,e where qi=q, qe= -e, 
and ~a= l/kBT a' 26 The ion and electron temperatures, Ti 
and Te , are assumed to be constant throughout V. Defining 
the mean ion and electron densities by 

n", =~ ivna(r) dr for a=i,e, 

we have 

ii",exp( - q a~a('IJr(r) - C» 
na(r) = V I J yexP(-Q",f3a('l'(r)-C)) dr' (3) 

where C is an arbitrary constant. If the constant C may be 
chosen in such a way that the conditions 

Iq",~a('¥(r)-C)I q; I (4) 

hold everywhere for a= i and e [i.e., the variation of 'VCr) 
over V is much smaller than the thermal energy kBT a], Eq. 
(3) may be linearized to obtain 

(5) 

where 

and 

cp(r) ='l"(r)-qr 

- If 'l" = V v'l"(r) dr. 

Using Eq. (5), we rewrite the charge density as 

N 

(6) 

per) = - QL o(r-r)+Qn-eok1cp(r). (7) 
j= 1 

Here k1=2,,,,q~na~aleo= lfA;+ VA; (where Ai and Ae are 
the ion and electron Debye lengths) and we have used the 
condition of overall charge neutrality, 

Qn = qni-ene' 

The first term of Eq. (7) 

N 

PD= - Q 2: o(r-rj ) 

j=l 

(8) 

obviously represents the particulate charge density. The sec
ond term 

(9) 

represents the constant background charges that neutralize 
the particulate charges, and the third term 

opbg= - eok~cp(r) (10) 

represents the background plasma density perturbation due to 
the electrostatic perturbation. Note that the space average of 
opbg vanishes; there is no net charge contribution from Eq. 
(10). Note also that the charge perturbation Opbg vanishes in 
the high plasma temperature limit (i.e., Ti ,Te--oo and there
fore kD--O) since the background plasma becomes so mo
bile in this limit that it can maintain a uniform density. As 
mentioned in the previous section, this is the OCP limit. 

Under the linear response conditions (5), Eq. (2) may be 
rewritten as 

(11) 

Periodic boundary conditions for a cube of side length L 
(V= L3 ) require 

cp(r+nL) = cp(r) , (12) 

where n= (/",m,n) denotes an integer triplet. This periodic 
boundary condition may be used in MC or MD simulations 
to emulate an infinite system. 

J. Chern. Phys., Vol. 101, No. 11, 1 December 1994 
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The Green's function G(r,r') for the operator A - k~ 
defined on the unit cell D={(x,y,z) I O";;x',y,z,,;;;L} with 
periodic boundary conditions is given by 

, _ 1 ~ exp(-kDlr-r'-nLl) 
G(r,r ) - 4- £.J I ' nLl 'IT r- r -

n 

(r,r' ED), 

where Ln denotes the sum over all integer triplets n. Using 
this Green's function, one may express the solution to Eq. 
(11) as 

.. - -Q ~ J ~ exp(-kDlr-r'-nL/) 
<p(r) - 41Te £.J kJ Ir- r' - nLl 

o j=! D n 

x[ oCr' -rj)- :b]dr' 

== -Q :i 2: J exp(-kDlr-pl) 

4'ITeo j=! n Dn Ir-pl 

x[ o(p-rj-nL)- :bjdP, (13) 

where p=r'+nL and Dn=D+nL ={(x+/L,y+mL,z 
+nL) I (x,y,z) ED}. Note that, for a given n and p 
E D n , the equation o(p-rj-n'L)=O holds for all n'*n 
since rj ED. Thus we have 

oCr' - rj) = o(p-rj- nL) = 2: o(p- rj-n' L). 
n' 

Using this relation and the fact that LnI D = I v with v,,, be-
n '" 

ing the entire space R3
, we obtain from Eq. (13) 

-Q f exp(-kDlr-pl)~ [~ 
<p(r)=-4- I I £.J £.J o(p-(rj+nL» 

'lTeo v., r-p j=! n 

-b]dP 

=_~± L exp(-kDlr-rr nL\) + ~. 
41Teoj= 1 n Ir- rj- nLl eOkD 

(14) 

From the above it is easy to verify that I D<P(r) dr=O. From 
Eq. (6), we obtain 

Q ~ ~ exp(-kDlr-rj-nLl) 
''IF(r) = - ~-£.J £.J (15) 

4'ITeOj =1 n Ir-rj-nLl ' 

and 

_ Qn 
''IF = - -:-') . 

eok'D 

As might be expected, the potential ''IF(r) given above com
prises Yukawa potentials q,Clrl) for all the particulates (at 
rj) in D and all their images (at rj+nL) under periodic 
boundary conditions. 

III. HAMILTONIAN FOR YUKAWA SYSTEMS 

As shown in Appendix A, the Hamiltonian for the sys
tem of N particulates is given by 

_ N IpJI 
H-2:"2+ Uex , (16) 

j=l m 

where Pj is the momentum of the jth particulate and U ex is 
the Helmholtz free energy of the particulates and background 
plasma. The term Uex. is also called the "excess energy" 
since it represents the energy in excess of the thermal (ki
netic) energy of the particulates. 

The excess energy has the form 

U -Fbg+Fbg 
ex- id int' (17) 

where 

r , 
F~!= 2: kBT", J n",(r)[ln n",(r)A~", - 1] dr 

a=i,e V 
(18) 

denotes the ideal gas contribution to the background free 
energy and 

b If Q2 ~ J' o(r-r) 
Fh~= -2 p(r)"lF(r) dr- -8 - £.J I I dr 

v 'lTeo j=l V r- rj 

(19) 

represents the electrostatic potential energy of all the charged 
species. In Eq. (18), AT",=(hz/2'ITmakBTcrJ!/z denotes the 
thermal de Broglie wavelength. The second term in Eq. (19) 
serves to subtract the infinite self-energy of each dust grain, 
which is formally included ifi the first term. 

Substituting the linear response relation (5) into (18) and 
taking the terms up to the second order in q af3 'P( r) , we 
obtain 

F bg - Fbg + 1 k 2 I Z() d id - unif :2 eo D <p r r, 
v", 

(20) 

where 

F~~if= v2: kBTal/a(ln n",A~a-l) (21) 
", 

is the free energy of the uniform (i.e., unperturbed) back
ground plasma. Since F~~ only provides obvious thermody
namical information on the unperturbed (ideal gas) back
ground plasma, we shall drop this term from the U ex. 

expression in the following argument for simplicity. 
If the linear response relation (5) holds, we may write 

Eq. (20) (after ignoring the term F~~) as 

F~! = - ~ Iv opbg(r)"lF(r) dr. (22) 

Clearly this free energy is equal in size but opposite in sign 
to the potential energy of background plasma perturbations. 
Note that F~! vanishes as kD-tO, i.e., in the OCP limit (see 
Appendix B). 

Substituing Eqs. (8)-(10) into Eqs. (19) and (22), we 
obtain the excess energy of the Yukawa system as 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
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Uex = - ~ fv#r [8(r-rj)- ~]'I'(r) dr 

2 N ) 
~~~ I 8(r-rj dr 

8 'lTSO
j

= 1 v Ir-rjl . 
(23) 

From Eq. (15), it is straightforward to confirm that Eq. (23) 
may be written as 

(24) 

with the pair potential 

l/F(R) = --- ~ 8(p- nL) - T'J Q2 I [ 1 j' 
4'ITso v"" n L 

exp( - kDlp- Rj) 
X Ip-RI dp, (25) 

and the constant 

1 ( Q2 ) 
Uo=? N lim !/I(R) - 4 IRI' 

~ IRI->o 'ITS 0 
(26) 

Carrying out the integration in Eq. (25), we obtain 

Q2 ~ exp(-kDIR-nLl) Q2 
!/I(R) = 4;Te-;; n IR-nLl sok1L3 (27) 

and the energy constant 

Uo=-~- NQ
2
kD+ Q

2
N ~ exp(-kDLlnj) (28) 

2sokD 8 'ITS 0 8'ITson ,to InlL 

It is easy to confirm that !/I( R) = !/IC - R). 
From Eqs. (24), (27), and (28), it is sometimes more 

convenient to express the excess energy in terms of the pe
riodic Yukawa pair potential 

_ Q2 "V exp( -kDIR-nLj) 
<P(R)- 4'ITso":; IR-nLl 

as 

_ NQ2kD + Q 2N ~ exp( -kDLlnJ) 

8 'ITS 0 8'ITson ,to InlL 
(29) 

In Eq. (29), the second term on the right-hand side represents 
the free energy (excluding the uniform ideal-gas free energy) 
of the background plasma that, on average, neutralizes the 
charge of the particulates. The third term represents the free 
energy of each sheath [see Eq. (17) of Ref. 24], and the 
fourth term represents the energy of interaction of every par
ticulate and its own images under periodic boundary condi
tions. 

The equation of motion of each particulate may be ob
tained directly from the Hamiltonian, Le., Eqs. (16) and (29), 
as 

This is the equation for the ith particulate that will be used in 
the MD simulations described in the companion paper.14 
Note that particulates interact with each other through the 
Yukawa potential. 

The Yukawa pair potential may also be derived from the 
density functional approach27 under the conditions that we 
have stated above; e.g., sufficiently high background-plasma 
temperatures Eq. (4), which allows the linearization of the 
density perturbation Eq. (5)-this is often referred to as 
small "inhomogeneity" -and weak coupling of the 
background-plasma, which allows us to neglect the correla
tion term discussed in Appendix A. Under more general con
ditions, of course, the true interparticle potential deviates 
from the Yukawa potential. To study such a general system, 
one may use ab initio numerical simulations.28 

IV. CLASSICAL OCP LIMIT 

If the background screening is sufficiently weak 
(K = k Da ~ 1 ), one expects the densities of the background 
species, ni(r) and ne(r), to become almost uniform due to 
the rapid thermal motions of these species, and thus the sys
tem will approach the classical one-component plasma. 
However, this is not immediately apparent from the pair po
tential expressions given in Eq. (27) since both the first and 
second terms diverge as kD-70. We now show that the form 
(27) of the pair potential appropriate to periodic boundary 
conditions does in fact reduce to the standard Ewald poten
tial 15,16,29,30 for the classical OCP in the limit K--+O. 

The classical OCP consists of ions (which correspond to 
our dust grains) of charge Q and a uniform electron back
ground giving overall charge neutrality. The ions interact 
with each other through the Coulomb potential, and thus the 
pair potential for the OCP is given by 

The second term in the square bracket is proportional to the 
charge due to the uniform background. The infinite lattice 
sum in this expression is only conditionally convergent, and 
the physically-meaningful convergent sum is given by the 
Ewald potential: 

oCP _~[erfc(~IRI/L) _~] 
!/I (R)- 4'ITso IRI L 

+ Q2 ~ [erfC(~IR+nLl/L) 
4 'ITS 0n,t0 IR+nLl 

exp( - 'lTlnI2)cos(2'ITn· RI L)] 
+ 'lTlnl 2L ' 

(31) 

where erfcC') is the complementary error function. The ex
cess energy is then given by; 15,16 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
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where, as in Eq. (26), 

U~cP = .!.. N lim ( ifpcP(R) _ Q2 )""" 
2 iRj-..o 4m>olRI 

Q2N 
=-1.4186487-- . 

41TBOL 

(32) 

(33) 

The pair potential for the Yukawa system is given by Eq. 
(25), or equivalently Eq. (27). It is evident from Eq. (25) and 
Eq. (30) that Ij!(R)-+ifPCP(R) as kD---->O. However, it is not 
clear how each term of the Ewald potential (31) corresponds 
to the terms of the Yukawa pair potential. To establish this 
correspondence, we now derive an alternative expression for 
the Yuka wa pair potential Ij!( r) . 

Let us split Ij!(R) in Eq. (25) into the following two 
parts: 

where 

Q2 . 
1j!2(R) = -4 -J w(p)[} - 1](lp-RJ)] 

1TBO V"" 

exp( - kDlp- RJ) 
X Ip- RI dp. (35) 

In these expressions we have introduced the functions 

1 
w(p)= ~ 8(p-oL)~'-

" o· . L 3 ' 

where 

2yB ( k~ )" A=--exp -~ 
.[; 4y~ 

I 
and B = ~"~----

1 +erf(kDl2y)' 

Here y is a positive constant (which will be set to be 
.[;/ L later) and erf( . ) is the error function: 
erf(x) = 1- erfc(x). Note that 

1](O)=A Io'" exp(kDt- y 2t 2
) dt= 1 , 

and 

lim 1](x)=erfc(yx). 
kD--+O 

Evaluating the integral in Eq; (34) yields 

41T "[ exp( - k~/4y2) ( kD )]) 
- k1L3 1- 1 +erf(kD/2y) 1 + .[;-y 

Q2 q(IR-nLl) 
+ 41TB ~ iR-nLl exp( -kDIR-nLJ). 

00 *0 

(36) 

By setting y= .[;/ L, one can readily confirm that the first 
term (i.e., all the terms in the brackets) of Eq. (36) corre
sponds to the first term of the Ewald potential (31) in the 
kD->O limit, and the second term corresponds to the first 
term in the second square bracket of Eq. (31): 

. "Q2 [erfc('[;IRIIL) 1] 
hmIj!1(R)=4····- I I --

kD-+O . 1TBO R L 

+ ~~ erfc(~IR+nLl/L) 
41TBOj:"O IR+nLl 

To evaluate 1j!2(R) in Eq. (35) we use Parseval's identity. 
The Fourier transform of w(R) is 

w(k) = ~ exp(21TiLr· 0) - -b 8(k). 
o 

Since the Poisson sum formula yields 

we obtain 

(37) 

On the other hand, the Fourier transform of the term 

may be calculated by means of integration by parts: 

2A r'" 
F(k)= Texp(21Tik. R) Jo dx sin(21Tkx) 

+21Tk cos 21Tkx)exp(-y2x 2 ) 

2A exp(21Tik· R) exp( _1T2k2/y2) 

T k1+41Tk2 Y 

[ 

r7rk/y ] 
X 1T~k+ kf) J 0 dt exp(t2

) , 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 
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where k= Ikl. Therefore, from Parseval's identity, we obtain 

Q2 1 ( n) 
rfJ2(R) = -4-uL 8 k- L F(k) 

7TSo n*O 

Noting the asymptotic expansion 

, ~ IX "asymp 00 (2m -1) ! ! 
expt -x~) exp(t~)dt "'" L 2m+I 2m+l 

o m=O X 

1 1 
=-+..-::3+'" 2x 4x 

(38) 

as x-t OO 

one can see that the infinite sum over n * 0 of the second 
term in the square brackets of Eq. (38) converges algebra
ically. Therefore, with y= {;IL, the potential "'2(R) corre
sponds to the second term in the second square bracket of the 
Ewald potential (31), i.e, 

. Q2 '" exp(27Tin. RlL)exp( -7TlnI 2
) 

lim '{',>(R) = --L.J 2 
'f'_ 47TS 7Tlnl L 

kD-tO 0n*O 

(39) 

Note that the functions exp(27Tin· RlL) in Eqs. (38) and (39) 
may be replaced by their real parts cos(27TD' RlL), since the 
imaginary parts cancel when the summations are taken over 
n. 

It is evident that U o-t U~cP since Eqs. (26) and (32) 
hold and rfJ(R)-t ",oCP(R). Although both the first and third 
terms of Eq. (28) diverge as kD~~O, the difference of these 
terms converges to the constant given by Eq. (33). 

V. CONCLUDING REMARKS 

We have derived the excess energy U ex [i.e., Eq. (29)] of 
the Yukawa system under periodic boundary conditions, tak
ing into account the energy contributions from the back
ground charges. It was also demonstrated that U ex converges 
to the excess energy U~xcp of the OCP system in the weak 
screening limit (i.e .• K=kDa-tO). The derived excess en
ergy serves as a basis for calculating various thermodynami
cal quantities from simulation data, especially near the OCP 
limit, as demonstrated in the companion paper. 14 [Note that 
the obvious contributions from the unperturbed ideal-gas 
background to the excess energy, which is given by Eq. (21), 
is not included in Uex of Eq. (29) for simplicity.] 

It is interesting to note that the excess energy U ex is the 
Helmholtz free energy of the system, rather than the internal 
energy (Hmicro), as shown in Appendix A. This is of course 
due to the fact that the background species are continuously 
exchanging energy with a heat bath so as to maintain con-

stant temperature during the particulate motion. Historically, 
there was some confusion in this respect: at an early stage of 
the development of lyophobic colloid theory, erroneous pair 
potentials were derived from the total potential energy. The 
errors were later corrected when the use of Helmholtz free 
energy was suggested by Derjaguin31 and Verwey and 
Overbeek.32,33 

The pair potentials that may be derived from the total 
potential energy (H micro) exhibits an attractive potential .su
perimposed on the Yukawa repulsive potential [see Eq. (B7) 
in Appendix B J. This fallacious attractive potential was once 
used to account for the experimentally observed attraction 
b~tween colloid particles, which is now essentially explained 
by the van der Waals interactions. The attractive potential 
reflects the electrostatic potential between the space. charge 
in the Debye sheath of one particulate and the opposite 
charge on another particulate. 

This potential would incur an attractive force between 
particulates if the space charges were "attached" to the par
ticulate and thus the particulate and its Debyesheath formed 
an inseparable single system. In reality, however, the sheath 
space charge is merely a perturbation of the background 
plasma induced by the charge on the particulate. If the par
ticulate moves from position A to position B, the plasma will 
relax to the unperturbed state around A and a new perturba
tion will be formed around B. The Debye sheaths are thus 
not "attached" to the particulates at all. 

The true behavior of the background charges is indeed 
thermodynamically expressed by the second term of Eq. 
(A4), i.e., the heat gain by the system from the heat bath. The 
ideal-gas contribution to the Helmholtz free energy Ffl of 
Eq. (22)-which is essentially the heat term of Eq. (A4)
exactly cancels the attractive potential energy included in 
(Hmicro). The resulting true pair potential then becomes the 
Yukawa potential. 

In the OCP limit, the ideal-gas Helmholtz free energy 
F~l vanishes, as demonstrated in Appendix B. Consequently, 
for the OCP system, the excess energy u~2P indeed agrees 
with its total potential energy. Therefore, in most studies of 
the OCP system, the excess energy u~2P is simply derived 
from the total potential energy (e.g., Ref. 15) although its 
physical meaning should be the Helmholtz free energy, as 
has been discussed in this paper. 
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APPENDIX A: INTERMEDIATE-SCALE HAMILTONIAN 

In this Appendix, we show under what conditions the 
Hamiltonian (16) adequately describes the motion of charged 
mesoscopic particles immersed in a charge-neutralizing 
background. In such systems there are three distinct length 
scales: the microscopic scale, in which particulates and back
ground charges are all regarded as individual particles; the 
intermediate scale, in which the particulates act as individual 
particles whereas the background species are statistically av
eraged and treated as a smooth field; and the macroscopic 
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scale, in which all particles-the particulates and back
ground species-may be statistically averaged. 

The Hamiltonian relevant to the intermediate length 
scale may therefore be obtained from 11 statistical average 
over a more detailed microscopic Hamiltonian. In the aver
aging process, however, we assume that the background spe
cies are in contact with a large heat bath, so that the back
ground temperatures (T i and Te in the plasma-dust system) 
remain uniform in space and constant in time. The micro
scopic Hamiltonian-i.e., the sum of the total kinetic energy 
and electrostatic potential energy for all the particles-is 
therefore not a constant of motion on the microscopic scale. 
The heat exchanged by the system and the heat bath during 
the particulate motion must be taken into account in the av
eraging process. 

On the intermediate scale, therefore, the work done by 
the system to displace particulates through the. electrostatic 
interactions is given by the change of its Helmholtz free 
energy F, rather than its electrostatic potential energy. If the 
motions of heavy particulates and light background charges 
may be separated (i.e., the adiabatic approximation), then the 
change of the free energy is all used for the change of par
ticulates' kinetic energies. Therefore the intermediate-scale 
Hamiltonian H for particulates may be written as the sum of 
the particulate kinetic energy and the Helmholtz free energy 
F, as Eq. (16), where Uex=F. The Hamiltonian H is a con
stant of motion if the background temperatures, particle 
numbers, and volume are held constant. 

As in Sec. II, we again conSider a system of N identical 
negatively-charged dust grains of charge ~ Q and mass m, 
and a neutralizing background of N b charged particles. The 
background is assumed to consist of Ni ions of a single spe
cies with charge q and mass mi, and Ne electrons ~ith 
charge ~e and mass me (Ni+Ne=Nb)' which are confined 
in volume V. The extension to systems with multiple ion 
species is straightforward. 

On the microscopic scale, the state of the jth particulate 
may be represented by a point (Pj ,rj) (1 ~j~N) in phase 
space, where Pi and ri denote its momentum and position. 
Likewise, the microscopic state of the jth background par
ticle of species a( a = i and e for ions and electrons), whose 
mass and charge are ma and qa(qi=q and qe= -e) is de
fined by the phase-space point (p)a) ,r)a» (1";;'j~Na)' 

The N a-particle joint-probability distribution function of 
the background species a may be written as 

(Al) 

where p~ a and r: a denote the sets of momenta and positions 

f 11 b k d . 1 . N c£_ «a) (a) (a» o a ac groun partic es, 1.e., Pol - PI ,P2 "",PN
b 

' 

etc. In writing Eq. (Al),we have assumed that motions of 
dust grains are sufficiently slow compared to the motion of 
background species, and therefore the probability function 
laNa) explicitly depends on the instantaneous dust-grain po
sitions ~, but not their momenta pN. Note that the 
N rparticle joint-probability distribution function for all the 
background particles /Nb)(X7i ,X~' ;~y is related to f<:a} 

as, e.g., 

where we have used the abbreviated notations XN = (pN,~) 
and X(Na) = (pNa rNa). 

a a ' a 
The 2-ion joint-probability distribution function is also 

defined in the usual manner by 

/i,i)(X~i} ,x~i)~}= I ... I /;Ni)(X7i;~)dX~il 
XdX~) ... dXW. 

l 

Here Xyl = (Py) , r)i». The ion-electro~ and two-electron. 
joint-probability distribution functions /"e) and/e,e) are de
fined similarly. 

On the microscopic scale, the Hamiltonian for the back
ground ions and electrons is given by 

Na Ipjall2 
H micro = ~ ~ -2--+ U micro , 

a f=1 mj 

where La denotes the sum over all the species a (i.e., 
a=i and e) and U micro is the potential energy 

U micro = ~ IvPmicro(r)'l' micro(r) dr 

(A2) 

Here 

N Na 

Pmicro(r)=-Q~ o(r-rj) + ~ ~ qao(r-r;a» 
j=1 a j= 1 

and 

1 f Pmicro(r') , 
'l' micro(r) = 4-- I ' I dr 

7TBO V r-r 

denote the charge distribution and its electrostatic potential. 
The last two terms on the right-hand side of Eq. (A2) sub
tract the infinite self-energies of particulates and background 
charges, which are formally included in the first term. 

The statistical average < . ) of the Hamiltonian H micro over 
the probability distribution function yields the the internal 
energy of the background plasma: 

(H . ) = f .. , f H· (XNb·~)f(Nb)(XNb.~) dXNb mIcro mIcro' , . 

(A3) 

If tlie correlation between ions and electrons is assumed neg
ligible, we have fNb)=f;Ni)feNe). The Helmholtz free en
ergy is then given by 

(A4) 
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where 

denotes the entropy of the background species a. 
We now further assume that (i) each of the background 

species is in local thermal equilibrium, and (ii) pair correla
tions of the background species are negligible. Then the two
particle joint probability function la,a) becomes 

f a.a)(x(a) X(a).0')= n a(rl)n a(r2) [~]312 
1 ," 2' Na(Na-l) 2ma7T 

( 
f3cx ?) Xexp ---p- , 

2ma 
(AS) 

where na(r) denotes the density of background species a 
at position r and f3a= lIkBTa' as before. Here the depen
dence of na(r) on the particulate positions 0' is suppressed 
for brevity. 

Carrying out the integral (A3) using Eq. (AS), we obtain 
the expressions for the internal energy as 

where 

N 

per) = - Q 2: 8(r- ri) + qni(r) - eneCr) , 
j=l 

1 f per') 
'lJ'(r) = 4-- -I -'I dr' , 7TSo v r-r 

(A6) 

(A7) 

(A8) 

and the entropy of the background species a is given by 

In the equations above, K ll' = ~ N ",k B T ",denotes the kinetic 

energy for the species a. 
From Eqs. (A4), (A6)-(A9), we obtain Eq. (17). (Recall 

that the free energy F is denoted by U ex in the main text.) 
Thus the intermediate-scale Hamiltonian H is given by Eq. 
(16) with Eq. (23) if correlations among background charges 
are negligible. Note that the entropy of the background 
plasma is approximated by the local entropy (the Thomas
Fermi approximation), as shown in the second term of Eq. 
(A9). 

APPENDIX 8: THE OCP LIMIT OF THE IDEAL-GAS 
FREE ENERGY 

In this appendix, we shall show that the ideal-gas con
tribution to the free energy F~l of Eq. (22) vanishes in the 
limit kD-rO. As is readily seen from Eqs. (10) and (I5), 

8p bg-rO and 'lJ'(r)-rooin this limit. Therefore it is not im
mediately evident from Eq. (22) that F~I-rO in the OCP 
limit. 

It is straightforward to rewrite Eq. (22) as 

b I "" I.. Fil= -2 L.J L.J 1/!3(ri- rj) + -2 N hm 1/!3(R) . 
Nj IRI->o 

(BI) 

Here the pair potential 1/!3(R) is given by 

. Q2 f . exp( - kDlp- R/) 
1/!3(R) = -4- w2lp) 1 RI dp, 

7TSo v", p-
(B2) 

with 

To evaluate 1/!3(R) , we again appeal to Parseval's iden
tity. The Fourier transform of W2(P) may be calculated in a 
manner similar to that used to obtain Eq. (37): 

Similarly the Fourier transform of 

exp( - kDI r- al) 

Ir-al 

is given by 

47T exp(27Tik· r) 

47T2e+k2 
D 

Using Eqs. (B3) and (B4), we obtain 

47Tk2 

XCkh+4:k2)2dk 

(B3) 

(B4) 

Q2 47Tk1 exp(27Tin.RlL) 

= 47TSo ----u-~o (k1+47T2 InI 2/L2)2' (BS) 

From the following inequality, it is easy to see that the 
sum in Eq. (BS) converges even in the case kD=O: 

I 
exp(27Tin· R/ L) I L 4 I 

~o (k1+47T2InI 2/L2)2 ~ 167T4~o In14' 

where the sum 2:0;"01 nl-4 is clearly convergent. Therefore, 
we have 

lim 1/!3(R)=O. 
kD--+O 

From Eqs. (B1) and (B6), we thus readily obtain 

Ffl-rO as kD-rO. 

Using the identity 

(B6) 
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J exp( ~kDlr-al-kDlr- bl) 

v'" Ir-allr- bl 
dr 

2n 
= kD exp(-kDla-bl), 

we may evaluate l/I3(r) as 

. Q2kD . Q2 
l/I3(R) = -8 -~ exp( -kDIR-nLl)- k 2 L3' 

neo n eo D 

It then follows from Eq. (B 1) that 

b Q
2
k D ~ ~ ~ 

Fil=-16 ~.~ ~ exp(-kDIR-nLl) 
neo i* j n 

NQ 2 n NQ2kD 
-~ + ---~ exp( - kDlnlL) . 

2eokiJ 8 neo n 

Since (H micro) = Uex. ~ F~l, the "pair-potential" form of the 
internal energy (H micro) becomes 

(Hmicro) = ~ ~*~ CRi;~nLl - k;)exPC-kDlnIL) 

_ 3NQ2kD + Q
2
N ~ (_1 __ kD) 

16neo 8neon*o InlL 2 

Xexp(-kDLlni) , (B7) 
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