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Plasma-particulate interactions in nonuniform plasmas with finite flows 
s. Hamaguchi and R. T. Farouki 
IBM Thomas J. Watson Research Center, P.O Box 218, Yorktown Heights, New York 10598 

(Received 22 December 1993; accepted 10 March 1994) 

The polarization force on a charged particulate or "dust" grain in a nonuniform plasma with finite 
ion flows and an external electric field is derived, based on a fluid approximation for the background 
plasma. This polarization force is proportional to the magnitude of the spatial gradient of the Debye 
length, and acts in the direction of decreasing Debye length. When the ion flow velocity is 
sufficiently large compared to ion thermal velocities, ions do not participate in the formation of 
sheaths around negatively charged particulates and the electron Debye length must be employed, 
since sheaths comprise only a deficiency of electrons. If the ion flow velocity is small, the 
contribution of the ion flow to the polarization force is proportional to the spatial gradient of the 
flow kinetic energy and is thus usually negligible. The expressions describing the 
plasma-particulate interaction may be applied to the modeling of contaminant behavior in 
materials-processing plasmas. 

I. INTRODUCTION 

If "mesoscopic" particles (i.e., particles that are small 
on the macroscopic scale but much larger than molecular 
sizes) are introduced into a plasma, they typically acquire 
negative charges due to the attachment of high-mobility 
plasma electrons. When the particle density is low, electro
static interactions between particles will be negligible, and 
their transport is essentially governed by the interaction be
tween individual particles and the ambient plasma. 1 When 
the density is sufficiently high, on the other hand, the inter
particle potential energies may substantially exceed their 
thermal kinetic energies; the particle system then exhibits 
behavior similar to a liquid or the classical one-component 
plasma.2- 7 

Small charged particles or "particulates" are observed in 
a variety of plasma environments, ranging from the interstel
lar medium8

-
10 to the low-pressure discharges widely used in 

processing semiconductor materialsY-15 Our interest here is 
in the transport of charged particulates under typical glow 
discharge conditions, where they may experience strong 
electric fields, ion flows, and plasma density gradients. 

The total force on a charged particulate in an unmagne
tized plasma may be considered to compromise (i) the nomi
nal electrostatic force (-Q)Eo, where -Q is the (negative) 
particulate charge and Eo is the external field; (ii) the polar
ization force, i.e., the electrostatic force due to any deforma
tion of the Debye sheath around the particulate; (iii) the net 
plasma pressure force exerted on the particulate surface; and 
(iv) the ion drag force, i.e., the effect of Coulomb collisions 
with ions flowing past the particulate. 

We have recently obtained an expression for the force on 
a particulate in the absence of plasma flows 1 that includes 
components (i)-(iil) above. In this paper, we extend our ear
lier study by investigating the plasma-particulate interaction 
in the presence of finite plasma flows. Since the sizes of 
particulates that we are concerned with are sufficiently small 
compared to the Debye length of the background plasma, we 
consider only the case of infinitesimal particulates in this 
paper. As in Ref. 1, we shall use a fluid model for the plasma, 

and thus the ion drag force-which arises from diffusion of 
the ion distribution function in velocity space due to Cou
lomb collisions-must be obtained separately from kinetic 
theories. The main issue addressed here is the question of 
how the polarization force obtained in Ref. 1 is modified by 
the presence of finite plasma flows. 

Since plasma flows will contribute to the deformation of 
Debye sheaths surrounding particulates, the polarization 
force is expected to be dependent on the flow velocity and/or 
flow-velocity gradients. Unlike the ion drag force, the defor
mation of the sheath due to a finite plasma flow may be well 
described by a fluid model of the plasma. Based on the fluid 
approximation presented in the following section, we shall 
discuss the plasma-particulate interaction in detail, and sys
tematically derive an expression for the total force exerted on 
the particulate. 

II. FLUID MODEL OF THE PLASMA 

Consider an unmagnetized plasma containing a particu
late of negative charge -Q(Q>O) at position rp. Assuming 
the particulate is of negligible size on the macroscopic scale, 
we employ a fluid model for the plasma 16 defined by the 
following equations: 

atni+ V ·(nivi) =Si' 

atne+ V .(neve) =Se, 

mini(atVi+Vi"VV;) = -kBTi Vni-qni V<I> 

(1) 

(2) 

(3) 

-EO a <I> = -Q8(r-rp)+qni-ene> (5) 

where the subscripts i and e denote ion and electron quanti
ties. Here n, v, m, <1>, T, S, and v represent density, flow 
velocity, mass, electric potential, temperature, particle source 
rate, and frequency of collisions with neutral species, respec-
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tively. Constant ion and electron temperatures are assumed, 
and ion and electron viscosities are neglected for the sake of 
simplicity. 

In typical glow discharge or interstellar plasma environ
ments, the sizes of particulates and their Debye sheaths are 
small compared to the ion mean-free path in the ambient 
plasma. For such systems, a fluid description of the plasma 
(the ions, especially) does not fully account for the interac
tion between a particulate and the background plasma. As 
noted in the previous section, for example, a fluid model 
cannot properly account for the ion drag force due to Cou
lomb scattering of ions by the charged particulate. 

Recently, Northrop and Birminghaml7 have obtained the 
total interaction, including the ion drag force, between a mi
croscopic dust grain and a uniform background plasma, 
based on the kinetic theories developed by Hubbardl8 and 
Kihara and Aono. 19 Because of the plasma uniformity, how
ever, the polarization force vanishes in their system: the total 
interaction between a particulate and a uniform plasma is due 
to the ion drag force and "plasma collective effects" (which 
together may be considered to include pressure forces). 

We are concerned here with nonuniform plasmas, for 
which a kinetic treatment of the system is substantially more 
complex, and thus the simpler system defined by Eqs. (1)
(5) is a reasonable alternative to study. As noted in the pre
ceding section, deformations of the sheath due to density 
gradients and finite plasma flows are well described by this 
fluid model (which is a generalization of the model used in 
Ref. 1 to estimate the polarization force in the absence of 
plasma flows). 

III. EQUILIBRIUM AND ELECTROSTATIC 
PERTURBATION 

We consider first a steady-state (i.e., Bt=O), unperturbed, 
nonuniform plasma that contains no particulates. From Eqs. 
(1)-(5), the set of equations governing the equilibrium state 
is 

meneOVeO.VVeO= -kBTeO Vneo+eneo V<I>o 

(6) 

(7) 

(8) 

- vemeneOveO-meSeveO' (9) 

-EO il<l>O=qniO-eneO' (10) 

Here the subscript 0 denotes the unperturbed (i.e., equilib
rium) state. 

In this paper we are not directly concerned with solving 
Eqs. (6)-(10). Instead, we shall assume that an equilibrium 
plasma state satisfying these equations is given, and then 
determine how the introduction of a charged particulate per
turbs the system. Denoting the perturbed density, potential, 
and flow velocity by ii, ¢J, and V, respectively, we may write 

Phys. Plasmas, Vol. 1, No.7, July 1994 

n=no+n, <I>=<I>o+¢, and v=vo+v. Assuming that these 
perturbations are small, we now linearize Eqs. (1)-(5) with 
respect to them. 

From Eq. (3), for example, we obtain 

miniO BtVi+ miniO[ (ViO' V)Vi+ (Vi' V)ViO] + m/ii(ViO· V)ViO 

= -kBTi Viii-qniO V ¢J-qni V<I>o 

- vimi(niOvi+iiiViO)' 

Eliminating the term (v iO . V)v iO from the above by using Eq. 
(8), we obtain Eq. (12) below. Similarly, from Eq. (4) and (9) 
with me---+O, we obtain 

- k BT e V ( n e ) + e V ¢J = O. 
neO 

Upon integration, this yields the Boltzmann relation for the 
electron density given by Eq. (14) below. 

The linearized equations for the perturbed quantities are 
thus given by 

(11) 

1 (n.) m· B V·= -- V -' -q V¢J+m.(v·o·Vv+v·.Vv·o) 
• t. f3i niO I. I I • 

- EO il¢J= - Q 8(r- rp) +qni- ene' 

iie= e f3eneo¢J. 

(12) 

(13) 

(14) 

Here f3i= l/kBTi and f3e= l/kBTe' Note that the equation 
determining the electron flow velocity ve is decoupled from 
the system (11)-(14). 

In the case of zero ion flow velocity, Eq. (12) gives the 
Boltzmann relation ni= -qf3iniO¢J for the ions, and the sys
tem reduces to that discussed in Ref. 1. In other words, Eqs. 
(11)-(14), which include the effects of finite plasma flows, 
represent a generalization of the model used in Ref. 1. 

IV. STEADY-STATE SOLUTIONS 

We now solve Eqs. (11)-(14) in a steady state to obtain 
the Debye sheath surrounding a particle under the influence 
of an external field '1'0' a density gradient Vno, and an ion 
flow ViO' Since plasma perturbations due to the charged par
ticulate are confined within a small volume (the Debye 
sheath), it is natural to assume that the spatial variations of 
perturbed quantities are much larger than those of the corre
sponding eqUilibrium quantities, in the sense that, for ex
ample, IViil~IVnol. 

To make the system of equations more tractable, we se
lect a local coordinate system by setting rp=O and choosing 
the z axis parallel to the direction of gradients of equilibrium 
quantities (we assume for simplicity that the ion flow veloc
ity and the gradients of all eqUilibrium quantities, such as no, 
Yo, and '1'0' are parallel). Then, to accuracy 6'{b), where 
8= 'AoIL, with L being a representative macroscopic scale 
(e.g., the density gradient scale IV In niOl-I), the equilibrium 
quantities in Eqs (11)-(14) will depend only on z, and are 
given by niO(z) = niO(O) + n;o(O)z, ViO(Z) = v iO(Z)Z 
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=[ViQ(O)+V!o(O)z]z, ... , etc., where the primes denote de
rivatives with respect to z and z is a unit vector in the z 
direction. 

Using the following normalized variables: 

r 
p=>: ' 

e 

nj 
n=--niQ(O) , 

where r is the position vector in the new local coordinate 
system, Vi,th = (kBT;/mi)1/2 is the ion thermal velocity, 
Ae= K; 1 = [Eole2 ,BeneO(O)] 1/2 and Ki 1 = [Eolq2 ,BiniQ(O)] 1/2 

are the electron and ion Debye lengths evaluated at the par
ticulate position r=O, we may rewrite Eqs. (11)-(13) in the 
steady state as 

_ an _ a 
v ·u+uo - = - JLV ·(~u)-ub - (~n) 

a~ a~ , (15) 

_ _ a 
Vn+VI/I+uo a~ u 

(16) 

3,.1/1-1/1+ an = - Q * o(p) + JLe~l/I. (17) 

Here u z is the z component of u and 6. = V2 is the normalized 
Laplacian. Note that JL, JLe' and ub are &(b). 

In the last term of Eq. (16), the coefficient is 
vjAelv i,th = AelAmfp ~ 1, where Amfp denotes the mean-free 
path for collisions between ions and neutral species (which is 
usually large compared to the electron Debye length). In 
other words, the effects of collision between ions and neutral 
species may be ignored for dynamics on the scale of the 
Debye length. Thus, the last term of Eq. (16) (i.e., the term 
proportional to v;) will be dropped henceforth. 

To solve Eqs. (15)-(17), we use the Fourier transforma
tion defined by 

j(k) = J f(p)exp(ik·p)dp, 

where f(p) is an arbitrary function and the integration is over 
all space. Note that under this transformation, V f -+ - ikj, 
U-+ - i dl!dkz , and O\P)-+1. The Fourier transformation of 
Eqs. (15)-(17) is then readily obtained as 

dii dn 
k.ii+uokzn=iJLk· dk +iubkz dk ' 

z z 
(18) 
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2 A d A 

(k +1)I/I-an=Q*+iJLe dk 1/1. (20) 
z 

Since the system is symmetric about the z axis, we may 
choose a unit vector e 1. orthogonal to Z, such that 
u=u1.e1. +uzz and k=k1.e1. +kzz. Equations (18)-(20) may 
then be written in matrix form as 

where 

~=[~] Md b=UJ 
Also, 

M= 

A 1= 

and 

A2= 

k1. kz uokz 0 

uokz 0 k1. k1. 

0 uokz kz kz 

0 0 -a 1 +k2 

0 0 o 0 

- (ub + JLUo) 0 

0 - (2ub + JLUo) 

o 0 

JL JL 

o 0 0 0 

JLk1. JLkz ubkz 

- (~b+ JLuo)kz 0 0 

0 - (ub + JLuo)kz 0 

0 0 0 

(21) 

0 

JLk1. 

JLkz 

JLe 

where k = Ikl. Note that each nonzero entry of A 1 and A 2 is 
o(b). 

The solution to Eq. (21) may be given in the form 
~=gO)+gJ), where gO)=t"(I) and gl)=(J(b). The zeroth
order solution gm to Eq. (21) then evidently satisfies 
MgO)=b, or, from Eqs. (18)-(20). 

k·ii(O) + uokzn(O) = 0, 

kfI(O) + kif,(O) + uokzii(O) = 0, 

(k2+ 1 )if,(01- an(O)= Q*. 

(22) 

(23) 

(24) 

Solving the above equations, we obtain the zeroth-order po
tential, 

(25) 
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-4 -2 o 2 4 

-2 

-4 

-4 -2 o 2 4 

Z / AD 

FIG. 1. The potential contours around an infinitesimal particle (located at 
the origin) obtained from Eq. (27). Here u6=O.1 and KD=K; are assumed. 
The potential is normalized by QKrJa7T€Q. Note that the contours are on a 
logarithmic scale. 

where cos 8=kz/k. In dimensional form, the equation above 
becomes 

where k= Kek. Note that, when uo<l, the ion Debye length 
h;= K;-l is effectively replaced by h;(1-u6 cos2 8)112. 
Namely the sheath thickness around the particle is reduced 
most along the z axis (i.e., 8=0 and 7T). 

In coordinate space, the sheath potential is given to low
est order by 

In particular, if uo~l, this potential becomes 

Q QK.
V2

0 {( Z2) c;b(O)(r)= --4-- exp( - Kor)+ 16 1 12 1-::z-
7TEor 7TEOV;,th r 

8 ( 3Z
2

) [ X exp( - Kor) - 3'3 1 - -=z 1 - exp( - Kor) 
Kor r 

(27) 

where r=lrl and KO=(K?+K;)1I2. The derivation of this ex
pression is given in Appendix A. The first term of Eq. (27) 
represents the well-known screened Coulomb potential. Fig
ure 1 illustrates Eq. (27) for u6 = (Vi,O/V;,th)2 = 0.1, and 
K;lKo= 1. 

The force exerted on the particulate by the electrostatic 
field is given by 
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F=(-Q)Elr=o=Qv(c;b(r)-4-
Q

)1 -QEo(O), 
, 7TEar r=O 

(28) 

(29) 

The term -Q/47TEor in Eq. (28) represents the self-energy 
of the particulate, which must be subtracted out in the force 
calculation. Note that the Fourier transform of lI47TP is lie. 

By substituting Eq. (25) into Eq. (29), we find that the 
force FP=F+QEo(O) due to the lowest-order sheath field 
potential c;b(O)(r) vanishes, i.e., FP =0, since the integral over 
the polar angle 8 vanishes. Indeed, as may be easily seen 
from Eq. (26), the lowest-order sheath potential c;b(O) is sym
metric about the x-y plane-c;b(O)(r) is invariant under the 
map z ........ - z. In other words, the Debye sheath does not be
come polarized in the presence of a uniform ion flow via, 
although the sheath may be somewhat squeezed in the z 
direction, as depicted in Fig. 1. No charge separation is as
sociated with this symmetric deformation of the Debye 
sheath, and thus no net electrostatic force is exerted on the 
particulate. The first term FP of Eq. (29) may be called a 
polarization force, since it becomes nonzero only when there 
is a charge separation (i.e., polarization) of the sheath sur
rounding the particulate. 

Uniform ion flows thus exert no net force on particulates 
in the fluid approximation. In kinetic treatments, however, 
Coulomb collisions between the flowing ions and particu
lates cause an asymmetry in the ion distribution function and 
give rise to a nonzero ion drag force.2o (The situation here is 
somewhat different from the well-known d'Alembert para
dox in fluid dynamics, which states that two-dimensional, 
incompressible, irrotational, inviscid flows exert no drag 
forces.) In our fluid model, although the size of the particu
late is infinitesimal, we nevertheless assume that it is a 
"small" macroscopic object immersed in the plasma. Under 
such conditions, the force due to the non uniformity of the 
background plasma-such as the polarization force
becomes the dominant force exerted on the particulate. We 
therefore proceed to higher-order calculations. 

V. FORCES DUE TO PLASMA NONUNIFORMITY 

As shown in the previous section, the effects of plasma 
nonuniformity are contained in the first-order solution 1ft) to 
Eq. (21)-a uniform plasma with finite flows, as represented 
by the zeroth-order solution If 0) , does not exert a polarization 
force on the particulate. Therefore, we now solve Eq. (21) to 
&( S) to obtain the nonzero polarization force. The algebraic 
manipulations in this section were mostly performed using 
the AXIOM system.21 

By solving M IfO)=b, or Eqs. (22)-(24), we obtain 

(30) 

where 
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p= -(1 +e)(k2-k;u~)- ak2. 

Then, from Eq. (21), the first-order solution t1l satisfies 

d 
Mtl)=iA to)+iA - to) 

I 2 dk
z 

• 

Substituting Eq. (30) into the equation above and inverting 
the matrix M, we readily obtain the solution tl). 

In particular, the first-order potential perturbation may be 
given as 

where 

(p", = 2akzk
6

- akzk2[6k: + (3ki - 2a- 2)k;- 3ki 

- {5 a+ 3 )ki]u~+ ak;[ 4k: + (5ki - 2)k; 

(32) 

(33) 

(34) 

It is neither easy nor practical to use the full solution for 
ifjl){k) given by Eqs. (31)-{34) to estimate the polarization 
force. Instead, we shall consider two important limiting 
cases, in which the expression for the polarization force pro
vides clearer physical insight and concise formulas that may 
be used in macroscopic (e.g., fluid or particle-in-cell) simu
lations to determine overall particulate transport characteris
tics in the plasma. 

VI. SMALL FLOW LIMIT 

In order to elucidate the relation between the complete 
solution obtained in the preceding section and that given in 
Ref. 1, we first take the limit of a small ion flow (Le., uo~l) 
in Eq. (31): 

~(l) . *(2(aJL + JLe)kz , 2akz 
t/J (k)= -IQ (k2+ a+ 1)3 +uouo k2(k 2+ a+ 1)2 

+&(u~»). (35) 

Here we have assumed that o=AoIL=uo~l and u~ 
= &( 8), rather than u~ = &( ouo) (Le., the ion flow velocity 
is assumed to have a steep gradient near the particle), to 
clarify the effects of the ion flow gradient. Note that 
aJL+JLe= &(8). 

The inverse Fourier transform of Eq. (35) yields 
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FIG. 2. The total potential </>(Q)+q)1) obtained from Eqs. (27) and (36). To 
emphasize the ion flow effects, we have assumed 0'=0 and v:.o 
= v i.olL > 0, with AoiL =0.3. The other parameters are the same as those 
in Fig. 1. Note that the contours are on a logarithmic scale. 

where Kn=(K;+ K;)l!2 as before, and a=dK5{z)/dz. De
tails of the above calculation are given in Appendix B. The 
first term in Eq. (36) represents the potential perturbation due 
to the density gradient (Le., the gradient of the Debye length 
An=Kj)l), while the second is due to the gradient of the ion 
flow velocity. Hence, polarizations of the Debye sheath rep
resented by the first and second terms of Eq. (36) may be 
called the density-gradient and ion-flow-gradient polariza
tions, respectively. In the case of zero ion flow or flow gra
dient, Eq. (36) evidently reduces to the first-order potential 
perturbation given in Ref. 1. 

Figure 2 shows the total potential (except for that of the 
applied electric field Eo), i.e., l/J(O) + qP), derived from Eqs. 
(27) and (36). The particle is located at the origin. To em
phasize the ion flow effects, we have assumed a=O and 
v;,o = vi,olL > 0, with AoiL =0.3. The other parameters are 
the same as those in Fig. 1. Note that, since v: 0 > 0 (and thus 
v i,O, is larger in the region z>O than in z<O), the sheath 
thickness is smaller for z>O than for z<O. 

As remarked in Sec. IV, the zeroth-order solution (P(O){k) 
does not contribute to the polarization force. Therefore, from 
Eq. (29), the z component of the polarization force FP may 
be obtained from 
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(37) 

where E == Uo == viOlvi,tb [the derivation ofEq. (37) is given 
in Appendix B]. As in Eq. (36), the first and second terms of 
Eq. (37) represent the density-gradient and ion-flow-gradient 
polarization forces, respectively. Again, in the case E==O, the 
above polarization force agrees with that given in Ref. 1. 

To obtain the total force, one needs to also consider the 
contribution of pressure forces. As in Ref. 1, however, a 
direct calculation of the plasma pressure shows that the pres
sure force on an infinitesimal particle is zero. Therefore, 
aside from the ion drag force that needs to be obtained from 
kinetic theories, the total force F is given by the sum of the 
direct electrostatic force (-Q)Eo and the polarization force 
given by Eq. (37). In vector form, we may write 

VAD Q2 
F== -QEo-~ -- [1 +O(E2)] 

AD 81TEO 

Vlv 12 Q2A 
+~ D 2 [1+0(E2

)]. 
Vi,tb 241TEOAi 

(38) 

Here we have used 0'==-2Aj)3 dAo/dz. Note that, in Eq. 
(38), all plasma quantities are evaluated at the position of the 
particulate. 

Under typical plasma flow conditions, the flow velocity 
gradient v:o is expected to be of order viOl L (where L is the 
macroscopic length scale), rather than v;o = v iol AD, as as
sumed above. In this case u~ = F( OE), where o=AofL and 
E=ViOIVi,th. and therefore IVADI=fv'(b) and ADIVvf,ol/vr,th 
== r:( o~). Then Eq. (38) may be written as 

Q2 VAD 
F== -QEo---~ +O(o~), 

81TEO AD 
(39) 

where the first two terms are the same as the total force 
obtained in Ref. 1. In other words, if the ion flow velocity is 
small compared to the ion thermal velocity, the ion-flow
gradient polarization force is 6( 0';'), whereas the density 
polarization force is C(b). The force expression given by the 
first two terms of Eq. (39) is therefore a good approximation 
for a nonuniform plasma with small ion flows. 

VII. LARGE FLOW LIMIT 

In typical glow discharges used in industrial applica
tions, particulates become "trapped" at the plasma-sheath 
boundary-Le., the boundary between the bulk plasma and 
the sheath adjacent to the electrode.14 Ions in the presheath 
region are accelerated toward the plasma-sheath boundary 
and the ion flow velocity ViO reaches the sound (or Bohm) 
velocity Cs==(kBTelmyl2. Since T/pT i under typical condi
tions, the ion flow velocity exceeds the ion thermal velocity, 
Le.,viO = Cs ~ Vi,th' 
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In the large ion flow limit we set uoPl in Eqs. (31)-(34) 
and retain only the lowest-order terms in the expansion pa
rameter lIuo. This gives 

;;,(I)(k)- 2l'Q* I/. kz +0'( 0) 
'I' -- r-e(k2+1)3 "'~' (40) 

where J.Le=(5(b). Note that the lowest-order term is indepen
dent of uo. 

As in Eq. (36), the inverse Fourier transform of Eq. (40) 
gives the potential ¢>(1), to lowest order, as 

-/..(1)(r)= QO'ez ( ) 
'f' exp - Ker • 

161TEoKe 

where O'e== - 2A;3 dAeldz. As in Eq. (37), the z component 
of the polarization force may be obtained from Eq. (40). To 
lowest order, we have 

0' Q2 FP== __ e __ 

z 167TEOKe' 

Since the pressure force is zero for an infinitesimal particu
late, the total force in the presence of a large ion flow may be 
written in vector form as 

Q2 VA 
F= -QEo--- -;-i- +6,(E*2), 

87TEO Ae 
(41) 

where E* = lIuo = Vi,thlviQ' Note, again, that, in the limit of 
strong ion flows, the ion-flow-gradient polarization force 
vanishes to lowest order. 

Comparing expressions (39) and (41) for the opposite 
limits of small and large ion flows, we see that they differ 
only in the Debye length that is used: in the small-flow limit, 
AD is used, whereas Ae is appropriate to the large-flow limit. 
This reflects the fact that, in the absence of ion flows, the size 
of the Debye sheath surrounding a particulate is given by the 
"characteristic" Debye length AD==(1/Af+ lIA;)-1I2, while 
in the presence of large ion flows it is given by just the 
electron Debye length Ae . 

The physical reason for this is that when the ion flow is 
large compared to the ion thermal velocity (Le., UiO ~ v i,th)' 

ions cannot form a sheath, and the sheath comprises a defi
ciency of electrons. In this case, the ions are "blown away" 
by the fast ion flow, and the ion density profile around the 
particulate becomes almost uniform. In typical glow dis
charges, however, plasma flow velocities are generally small 
compared to the electron thermal velocity Ve,th 
= (kBTe1me) 1/2, so that the electron sheath, of dimension Ae, 
is hardly affected by the plasma flow. 

VIII. CONCLUDING REMARKS 

In this paper we have extended earlier results I to obtain 
the total force F exerted on a charged particulate in a non
uniform plasma under the influence of finite ion flows. We 
have rigorously demonstrated, in the context of a fluid ap
proximation of the plasma, that the expression for the polar
ization force given in Ref. 1 is a good approximation, unless 
the ion flow velocity is comparable to the ion thermal veloc
ity. 
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From Eqs. (41) and (39), we may write the total force on 
a particulate as 

Q2 VA 
F=-QEo--

8
-"""\2 +(ion drag force), (42) 
7TEO I\. 

where A represents the thickness of the Debye sheath around 
the particulate. The first term is the electrostatic force on the 
particulate charge-Q exerted by the external electric field 
Eo, while the second term is the polarization force, Le., the 
force due to the polarized Debye sheath. Note that Eo and A 
in Eq. (42) are to be evaluated at the particulate position. 

In the fluid approximation, polarization of Debye sheaths 
may be caused by density gradients and/or ion flow gradi
ents. As discussed in Secs. VI and VII, however, the ion
flow-gradient polarization force is typically small and may 
be neglected to lowest order, as shown in Eq. (42). 

If the ion flow velocity is small compared to the ion 
thermal velocity, Le., v iO ~ V i,tb, the sheath thickness is given 
by the characteristic Debye length, AD=(l/At+ l/A;)-1/2, 
and AD should be used for A in Eq. (42). Note that if Te~Ti 
(as is the case in typiciil glow discharges), we have AD=Ai . 

On the other hand, if the ion flow velocity is large com
pared to the ion thermal velocity, Le., v iO ~ Vi tb, the sheath 
thickness is given by the electron Debye length Ae. In this 
case, the ion density profile around the particulate is almost 
uniform, and the sheath comprises only a deficiency of elec
trons. The conditions for such fast ion flows arise when par
ticulates are trapped (due to a balance between electrostatic 
forces and drag forces) at the plasma-sheath boundaries of 
glow discharges, where the ion flow velocity equals the 
sound speed c s' Under such conditions, Ae should be used 
for A in Eq. (42). 

Strictly speaking, Eq. (42) holds only in these two lim
iting cases. For intermediate values of v iO, as is clear from 
Eq. (38), the contribution from the ion flow gradient to the 
polarization force may be comparable to that from the den
sity gradient. A more accurate evaluation of the total force at 
arbitrary v iO may be obtained by performing the integration 
(29) numerically, using the complete expression for ",(!)(k) 
(which is valid for any Vi,O), given by Eqs. (31)-(34). 

Note also that, as indicated in Eqs. (39) and (41), the 
errors incurred by using Eq. (42) in the tWo limiting cases 
are only of second order, Le., O(vtO/Vt,th) for ViO ~ Vi,tb and 
O(vt,twvto) for Vi,tb ~ ViO' [The ion-flow-gradient polariza
tion force is represented explicitly by the third term of Eq. 
(38) when the ion flow is relatively small.] 

It is interesting to note that, regardless of the sign of the 
particulate charge, the polarization force is always in the 
direction of decreasing Debye length. From Eq. (42), we 
may calculate the (Helmholtz) free energy F H= - IZF Z dz 

. (neglecting the ion drag force) as 

Q2 
F H =-Qqro--8 \' 

7TEOI\. 

It is evident from this expression that the particulate has a 
lower free energy when it has a thinner Debye sheath (i.e., 
smaller A). 

The magnitude of the force given by Eq. (42) may vary 
significantly, depending on the plasma conditions. For typi-
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cal glow discharges used in industrial applications, however, 
the total force F was estimated in Ref. 1, where the polariza
tion force was found to be typically a fraction of the external 
electrostatic force. 

As noted in Sec. II, in most particulate systems observed 
in laboratory or space plasmas, the sizes of the particulates 
and their Debye sheaths are small compared to the ion mean
free path for the background plasma. Therefore the fluid ap
proximation that we have employed here is not strictly valid, 
especially when it is applied to phenomena that involve sig
nificant variation of the ion distribution function. The most 
important aspect of such kinetic effects is the ion drag force, 
which needs to be obtained separately from kinetic calcula
tions and added to the fluid force, as indicated in Eq. (42). 

As shown in Sec. IV, the drag force for an infinitesimal 
particulate vanishes in the fluid approximation. However, the 
polarization force, with which we have been concerned, is 
well described by the fluid model. Although a systematic 
kinetic treatment of nonuniform plasmas is rather formi
dable, the question of whether such kinetic effects substan
tially modify the polarization force obtained from the fluid 
approximation deserves attention. 

For expressions of the ion drag force, the reader is re
ferred to Ref. 17, where large-angle Coulomb scattering,22 
dynamical friction,23,24 and collective effects20 are treated 
systematically. [In this treatment, however, the background 
plasma is assumed uniform, so the effects of external fields 
and density gradients are excluded. Thus, to obtain the total 
force in a nonuniform plasma, one needs to add the first two 
terms of Eq. (42), which represent the external electrostatic 
force and polarization force, to the drag force-assuming 
that such a superposition is a valid approximation.] The final 
expression obtained in this manner, which is a function of 
local plasma conditions, such as the electric field, plasma 
density gradients, etc., may be used in conjunction with mac
roscopic simulations to determine the overall particulate 
transport characteristics in a discharge. 

APPENDIX A: DERIVATION OF EQ. (27) 

If uo~l, Eq. (25) may be written as 

'(0) _ *( 1 au~ cos
2 e) 

r{! (k)-Q e+1+a (k2+1+a)2 . 

The first term evidently yields the screened Coulomb poten
tial [Le., the first term of Eq. (27)], so we are now only 
concerned with the inverse Fourier transform of the second 
term, Le., 

where c2=a+1. 
To perform the integration of Eq. (AI), we choose the 

direction of the position vector r as the polar direction, rather 
than that of Vi,O' Denoting the ~ngle between rand Vi,O by 8, 
and that between rand k bye, we may write 
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cos O=sin e sin 0 cos ~+cos e cos 0, 

k·r=kr cos 0, 
where the azimuthal angle ~ of k around r is chosen appro
priately. 

After integrating over the angles 0 and ~, the following 
formulas may be used to perform the integration over k in 
Eq. (A1): 

(A2) 

(00 sin ax 7T [ ( a b) ] Jo x(x2+b2)2 dx= 2b4 1- 1 +2 exp( -ab) , 

where a,b>O. 

APPENDIX B: DERIVATIONS OF EQS. (36) AND (37) 

To obtain Eq. (36) by the inverse Fourier transform, one 
needs to evaluate the integrals, 

1 I kz • 
J} = (27T)3 (k2+ c2)3 exp( -zk'p)dk, 

1 f k z • 
J 2= (27T)3 e(e+c2)2 exp( -zk'p)dk, 

where k 2=kr. +k; and c2=a+1 (c>O). Unlike Appendix A, 
here we choose the z axis (Le., the direction of the ion flow 
Vi.O) as the polar direction. 

To perform the integration of J}, we first write 

-1 
g}(k)= 4(k2+c2)2 . 

Then, using spherical polar coordinates in k space, we have 

1 I dg}(k) . 
J} = (27T)3 ~ exp( -zk'p)dk 

i( 
= - 327TC exp( - cp), 

where ( is the z component of p. Here we have used Eq. 
(A2). 

Similarly, to evaluate J 2, we use 

1 ( k
2
+c

2 
c

2
) 

g2(k)= -2?' log ----p-- k2+C2 , 

where 

dg2(k) k z 
dkz (k 2 + c2)3 • 
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Then we have 

1 f dg2(k) 
J 2= {27T)3 ~ exp( -ik·p)dk 

i( 47T ("" . 
= (27T)3 P Jo g2(k)k SIn kp dk 

= 4::lp3 [1-eXp( -CP)( 1 +cP+~ C 2p2 )]. 

Here we have used the formulas 

(00 x sin ax 7T 
Jo x 2+b2 dX="2 exp(-ab), (Bl) 

(00 (x2+a
2

) 7T Jo log x2+b2 x sinxy dx=y:[exp(-by )(1+by ) 

-exp( -ay)(1 +ay)], (B2) 

where a,b ~O and y>O. Note that Eq. (A2) may be obtained 
by differentiating Eq. (B1) with respect to b. Similarly, Eq. 
(B2) may be derived by differentiating the following identity 
with respect to y: 

Iooo IOg(:~::~)COSXy dx=i [exp(-by)-exp(-ay)], 

(B3) 

where, again, a,b~O and y>O. In deriving Eq. (36) from J 1 

and J 2, we have also used c p = Kor, KeC = KO , and 
(aJL+JLe)=<Tx';· 

To obtain Eq. (37) directly from Eq. (29), we evaluate 
the integrals, 

J 3= (2~)3 I (k2:;C2)3 dk, 

J 4 = (2~)3 I k2(k:lc2)2 dk. 

Again, using spherical polar coordinates in the k space and 
writing TJ=k/c, we may write 

1 ("" TJ4 
J 3 = 67T2C Jo (TJ2+ 1)3 dTJ 

and 

Using the formula 

(00 dx 1 ( 1-a 1- a) 
Jo x a (1 +x~y3 =}: B {3--x,-' -x,- , (B4) 

if a< 1, x',{3>0, and x'{3> 1-a, we obtain J 1 = l/327T and 
J 4=l/247T. In Eq. (B4), B is the beta function, related to the 
gamma function f by 

f(p)f(q) 
B(p,q)=B(q,p)= f(p+q) . 
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