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A shock-tracking algorithm for surface evolution under reactive-ion 
etching 

S. Hamaguchi, M. Dalvie, R. T. Farouki, and S. Sethuramana) 
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 

(Received 1 September 1992; accepted for publication 4 July 1993) 

A new algorithm that determines the evolution of a surface eroding under reactive-ion etching 
is presented. The surface motion is governed by both the Hamilton-Jacobi equation and the 
entropy condition for a given etch rate. The trajectories of “shocks” and “rarefaction waves” are 
then directly tracked, and thus this method may be regarded as a generalization of the method 
of characteristics. This allows slope discontinuities to be accurately calculated without artificial 
diffusion. The algorithm is compared with “geometric” surface evolution methods, such as the 
line-segment method. 

I. lNTRODUCTlON 

An understanding of the evolution of microscopic sur- 
face features under etching or deposition processes is of 
considerable practical importance in integrated-circuit 
manufacturing. Recent progress in semiconductor fabrica- 
tion technologies has given rise to complex manufacturing 
processes, and a correspondingly increased demand for 
computational models of surface-morphology evolution 
that facilitate analysis of the ethects of variations in process- 
step parameters. In this paper, a new algorithm for evolv- 
ing surfaces is presented. The algorithm is derived from 
first principles, based on mathematical theory that de- 
scribes a well-defined physical system. 

To date, a number of surface-evolution methods have 
been proposed for microelectronics manufacturing pro- 
cesses. These techniques may be broadly categorized along 
the following lines. 

( 1) “Geometric” models-the surface evolution is 
governed by ad hoc geometric considerations. Thus, the 
surface is generally discretized into a set of %odes” con- 
nected by linear segments. Depending on the assumed rules 
for how the nodes and/or segments are moved, such meth- 
ods are called “string models,” “line-segment models,“..., 
etc. Although they appear capable of generating surface 
morphologies that are consistent with empirical micro- 
graphic cross sections, such models are fundamentally 
based on the implementer’s geometric intuition rather than 
a well-defined and self-consistent mathematical theory 
(even for idealized physical conditions). Thus, such mod- 
els suffer from a basic lack of credibility in terms of pre- 
dictive capacity, especially with regard to the formation 
and evolution of “singular” features, such as sharp corners. 

(2) Method of characteristics-as shown in Sec. II, a 
moving surface may be described by a partial differential 
equation (PDE) . If the surface velocity (i.e., the etch or 
deposition rate) does not depend on the local surface cur- 
vature, or higher-order intrinsic geometry, then the PDE is 
of first order and can be solved by the method of charac- 

‘)Permanent address: Courant Institute of Mathematical Sciences, New 
York University, New York, NY 10012. 

teristics. Problems arise, however, when discontinuities of 
the surface gradient form (i.e., two characteristics inter- 
sect). Existing models based on the method of character- 
istics of which we are aware appear to require subtle geo- 
metric “adjustments,” such as eliminating or avoiding the 
formation of nonphysical loops-“delooping”-based on 
geometric hypotheses to deal with such situations (see, for 
example, Refs. 1 and 2). 

(3) PDE solvers-there are a number of methods to 
solve the PDE directly on a (fixed) spatial grid, without 
appealing to the characteristic equations. Such methods 
are particularly appropriate when the surface velocity de- 
pends explicitly on the local curvature and the PDE is of 
second order.3” The second-order term, which typically 
originates from the curvature-dependence of the velocity, 
introduces a “diffusion” effect so that slope discontinuities 
are not formed in this case. The solution in the limit of zero 
diffusion, known as the “viscosity solution,” is the desired 
solution for systems in which the surface velocity does not 
depend on the local curvature. PDE solvers using a com- 
bination of a Lax-Wendroff-type finite-difference scheme 
with an upwind (or artificial diffusion) scheme rely on a 
small “numerical” diffusion to obtain an approximation to 
the viscosity solution. 

The method proposed in this paper employs nodal 
points connected by linear segments to represent the evolv- 
ing surface, as in the “geometric” models mentioned above. 
However, unlike the geometric models, the motion of the 
nodes and segments is derived from a PDE and an addi- 
tional condition that together govern the surface evolution. 
In fact, the use of linear segments between nodes is merely 
a consequence of the lowest-order spatial discretization of 
the system, and extending the method to higher-order 
schemes employing polynomial curve segments should be 
possible. At present we shall treat only the lowest-order 
scheme, so as to focus our attention on deriving the surface 
dynamics from the defining equations. 

Our method may be regarded as an extension of the 
method of characteristics, although explicit solutions of the 
characteristic equations are not employed by the method. 
Instead, we solve for the propagation of “shocks” (see Sec. 
II below) that emanate from each nodal point, assuming 
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that each node connecting adjacent linear segments repre- 
sents a surface-slope discontinuity. It will be shown that 
such shock trajectories are good approximations of char- 
acteristics under certain conditions. 

Another feature of our method that differentiates it 
from the usual method of characteristics is the implemen- 
tation of the entropy condition, which selects the physi- 
cally correct solution of the surface-evolution equation. As 
will be explained in detail below, the PDE that describes 
the surface evolution-such as Eq. (2) or (3)-generally 
has no unique solution, and thus an extra condition must 
be imposed to identify the physically meaningful solution. 
This additional condition is called the entropy condition, 
and is proven to select the viscosity solution mentioned 
above. Thus, the direct imposition of the entropy condition 
enables one to identify the unique physical solution, with- 
out invoking ad hoc geometric procedures to contend with 
nonphysical contingencies such as ccloop” formation. 

Since the shock (i.e., facet corner) trajectories are 
tracked explicitly, our method may be classified as a 
“shock-tracking” method. (Several different types of 
shock-tracking method exist to solve systems of conserva- 
tion laws: see, for example, Refs. 6 and 7.) Under certain 
conditions, the motion of a surface described by this shock- 
tracking method may be shown to agree with that obtained 
from “geometric” methods. Therefore, the shock-tracking 
method may also be regarded as offering a theoretical foun- 
dation for some of the “intuitive” assumptions made in 
geometric methods. 

For the sake of simplicity, we consider only the evolu- 
tion of “one-dimensional” surfaces (i.e., curves in the x-y 
plane) in this paper. Extending the shock-tracking method 
to surfaces in three dimensions should be possible, and will 
be addressed in a future paper. Furthermore, so as to focus 
on the numerical algorithm of advancing such a c’urve with 
time, we shall idealize all physical/chemical details of the 
etch process, assuming they are adequately represented by 
a simple rate function c that describes the surface velocity 
under unidirectional ion bombardment. Important physi- 
cal and chemical aspects of the problem, such as the ve- 
locity distribution and shadowing (visibility angle) of the 
incoming ion flux,‘s9 reflection, and deposition of the in- 
coming ions and sputtered materials, and diffusion and 
chemical reactions on the surface, are deferred to future 
studies that will make use of the basic algorithm described 
below. 

II. SURFACE EVOLUTION EQUATIONS 

We first derive the equation of motion for the bound- 
ary surface that separates regions of material and free 
space. In two dimensions, such a boundary surface corre- 
sponds to a piecewise-smooth curve that does not intersect 
itself. At time t, such a curve may be represented by an 
equation of the form 4(x,y,t) =0, where we assume that 
&YJ> > 0 ( < 0) represents the material (vacuum) side 
of the boundary. The velocity vector c of the boundary 
surface at the point (xg) may be written as 

c=c,a +c,i, (1) 

Y 

t I J- 
X 

FIG. 1. A slope (i.e., gradient) discontinuity at point A. The slopes on 
the left and right sides of point A are given by p, and pr . The shaded area 
represents the material. The arrows on the boundary curve denote the 
orientation. 

where B and i denote the unit normal and tangent unit 
vectors, defined by 

and &=&$/ax and #,,=a$/ay. Note that, for c,>O, the 
boundary curve moves into the material, i.e., its motion 
represents the erosion (or etching) of material. 

Introducing a parametric variable s along the bound- 
ary curve, we may represent this curve at each time t as the 
locus of points (x(s,t>,y(s,t)) for 0~~1, where the func- 
tions x and y are assumed to be continuous and piecewise 
differentiable with respect to s, and the velocity of the point 
(x(s,t),y(s,t)) with fixed s is given by Eq. (1). Clearly, 
$(x(s,t),y(s,t),t)=O. We may also choose the orientation 
of the curve-i.e., the direction of increasing s-in such a 
way that the material (vacuum) always lies to the right 
(left) of the curve (see Fig. 1). 

Differentiating the equation &(s,t>,y(s,t>,t)=O with 
respect to time t (with s fixed) and substituting the relation 
(&s/&,ay/&) =c given by Eq. ( 1) into the resulting equa- 
tion, we obtain 

4Jt+c hEGq=o, (2) 

where we write c=c,. If the normal-direction etch rate c 
depends only on time t, position (xg), the unknown func- 
tion 4 and its first derivatives ( c$, ,$), Eq. (2) is called a 
Hamilton-Jacobi equation. Equation ( 2 ) , together with 
the initial condition +(x,y,O), governs the evolution of the 
boundary curve. Note that the tangential velocity compo- 
nent (etch rate) ct does not appear in Eq. (2). The velocity 
along the curve does not alter its shape, and the motion of 
the curve is determined only by the normal component 
c=c,.‘O 
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If the “height” of the boundary curve y is uniquely 
determined by the horizontal position X, i.e., the curve at 
time t is given by a single-valued function y=u (x,t), we 
may write $(x,y,t) =u(x,t> -y, and Eq. (2) becomes 

u,+c &&o. (3) 

It is now assumed that c=c(f,x,y;u,). By differentiating 
both sides of Eq. (3) and writing p= U,,~*~ we obtain the 
conservation form 

pt+&mw,p) =Q (4) 

where f(t,x,y,p) = c m is called the “flux function” 
by analogy” with the conservation law in gas dynamics. 
We note that f is proportional to the sputtering yield (the 
number of sputtered atoms per incident ion) in the case of 
inert ion beam etching. 

III. VISCOSITY SOLUTIONS 

We now briefly discuss the viscosity solutions of the 
Hamilton-Jacobi equation. Adding a “diffusion” term to 
Eqs. (2), we obtain 

&“’ fc ,/m’=,h#‘y’, (5) 

where A=a2/dxs+a2/dy2 denotes the Laplacian, and we 
call the constant Y the diffusion constant. When Y is small, 
we may regard the right-hand side of Eq. (5) as an ap- 
proximation of the etIect of weak dependence of the etch/ 
deposition rate on the local curvature K, i.e., etch/ 
depostion rate= c -vK.~ This weak curvature dependence 
of the etch/deposition rate results in “rounding ofl” of 
sharp corners of the surface. It is known that, under ap- 
propriate initial and boundary conditions, the smooth so- 
lution +(y) to Eq. (5) exists uniquely if Y#O. Since we may 
view Eq. (2) as the y--*0 limit of Eq. (5>, we expect that 
the physically meaningful solution to Eq. (2) should be the 
limit of the unique solution +(“) to Eq. (5) as Y+O. 

The limiting solution 4(O) =lim,,,s $(“) may contain 
some sharp corners, i.e., its spatial derivatives may not 
exist at certain points, due to the absence of the diffusion 
effect. Nevertheless, such a solution [which is the physi- 
cally meaningful one that we wish to obtain from Eq. (2)], 
will satisfy Eq. (2), except at points where 4 is not differ- 
entiable (the equation is meaningless if 4, and 4Y are not 
defined). Therefore, we relax the definition of the solution 
of Eq. (2) by calling the function 4 a solution if 4 satisfies 
Eq. (2) everywhere except for those points where 4 is not 
differentiable (i.e., the locations of sharp corners). Such 
solutions with discontinuous gradients are called “weak” 
or “generalized” solutions, in contrast to the regular (i.e., 
differentiable) solutions. 

However, there are actually many different weak solu- 
tions to Eq. (2), only one of which is physically meaning- 
ful (a manifestation of such nonphysical solutions is the 
phenomenon of loop formation, observed in “geometric” 
models and the method of characteristics-see, for exam- 
ple, Refs. 12 and 13). In other words, Eq. (2) does not on 
its own constitute a complete description of the physical 
surface evolution: we need an additional condition that 
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selects the physical solution from among the many weak 
solutions admitted by Eq. (2). This condition, which is 
called the entropy condition, will be discussed in Sec. VI. 

The viscosity solution of Eq. (3) may be defined in a 
similar manner. Consider the hyperbolic equation 

lp+c ~iqT=-Ytl~~, (6) 

where Y again denotes the diffusion constant. By differen- 
tiating both sides of Eq. (6), we obtain 

p$v) + axf (t,xy,p ) = v~(Y) x.x* (7) 

The viscosity solutions to Eqs. (3) and (4) are defined as 
lim,,+e u(“) and lim,,sp(“), respectively. Further discus- 
sion of these viscosity solutions may be found in Ref. 3. 

IV. THE CHARACTERISTIC EQUATIONS 

For simplicity, we first consider Eq. (3), where the 
boundary curve is assumed to be describable by a function 
y=u(x,r) . The discussion will be later extended to the 
general case of Eq. (2). The initial value problem for the 
first-order PDE (3) may be solved by the method of char- 
acteristics as long as the curve does not intersect itself and 
remains sufficiently smooth (see, for example, Ref. 14). If 
the rate function c depends only on time, position on the 
curve, and its slope, i.e., c=c(t,x,y;p) =c(t,x,~;u~), as be- 
fore, the characteristic equations of PDE (3) are given by 

dx 
;ii=fp=c43+c~$&-p 

dv 
;ji=P&- f “Cpp m-c 

1 

W’ 

4 ’ 
‘;5;= -f,--;pf,= - (c,+pc,) 

(9) 

( 10) 

where the subscripts denote partial derivatives, e.g., 
cp=&/ap. The initial values for Eqs. (8)-( 10) are given 
by a point (xc ,yo ,ps) on the initial curve y = u (x,0), where 
yo=u(x,,O) and po=u,(xo,O). Thus, the initial-value 
problem for the first-order PDE (3) has been transformed 
into the system of ordinary differential equations (8)- 
(10). 

If we employ the angle variable 6 defined by p =tan 8, 
with --1r/2<8<7r/2, Eqs. (8)-( 10) become 

dx 
-$==C@ cos e+c sin 8, _ (11) 

de 
z=-~x~~~ e-c,sine, 

where we write c(~,x,Y;~~ 0) =c(f,x,~m and 
ce= &/a0 = cdcos’ 8. It is clear from these equations that, 
if c&O, the direction of a characteristic curve is not per- 
pendicular to the boundary curve y=u(x,t). We also note 
that if the rate function c depends only on the slope (i.e., 
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cx=cu=O), then the slope p= tan 8 of the boundary curve 
remains constant along every characteristic, and thus the 
characteristic curves become straight lines. 

It is straightforward to extend the characteristic equa- 
tions obtained above to the general case described by Eq. 
(2). If 4,,#0, Eq. (2) may be written as 

(PI 
J 0 4x to y-tce3n#y 1+ K , ( 14) 

where sgn C&Y= 1 if &,Y> 0 and sgn &,== - 1 if +,,Y< 0. Note 
that, in the case of &c,y,t)=u(x,t) -y, we have 
u,= -#1/& and p= ux= -$J&, and Eq. ( 14) is equiva- 
lent to Eq. (3). In general, we employ the definition of the 
extended angle variable 0 ( --P < 8<n) given by 

tan e= -C/J,/&, 

with 

-4e~-d2 or d26eGT, if #+=O, 

-d2686d2, if +y~o. (15) 

By comparing Eq. ( 14) with Eq. (3), we may also extend 
the definition of the flux function f to 

4xX” c 
f=-csgn& l+ F =cos. 

J 0 Y 
(16) 

If the rate function c in Eq. (2) has the form 
c=c(t,x,y;-&/4y), then it is easy to show that the char- 
acteristic equations for Eq. (2) may be reduced to Eqs. 
(ll)-(13) with the extended angle 8 (-r<86r). 

V. SLOPE DISCONTINUITIES 

We now derive the equations that govern the propaga- 
tion of slope discontinuities. Let us consider again the weak 
(generalized) solutions to Eqs. (2) and (3), i.e., continu- 
ous solutions that may have discontinuities in their first 
derivatives in space. For simplicity, we first discuss Eq. 
(3). As in the previous section, the results derived from 
Eq. (3) (where -?r/2 < t9 &r/2) can be easily extended to 
the general case (-r< e<T) of Eq. (2). 

Suppose (X(t>,Y(t)) describes the trajectory of a 
propagating slope discontinuity on the boundary curve 
y=u(x,t), i.e., Y(t)=u(X(t),t) and uJX(t) -0,t) 
+u,(X(t) +O,t). Here we use the shorthand notations 

u,(X(t) *O,f)=lim u,(X(t) &e,t) 
E+O 

for the values of u, (or other quantities) to the left 
[x <X(t)] and right [x >X(t)] of the slope discontinuity. 
Then, from Eq. (3), we have 

u,(m) -o,t)+f(t,x(t),Y(t>,Pr)=O, (17) 

u,(X(t)+O,t)+f(t~(t),Y(t),p,)=O, (18) 

where f = c m is the flux function defined in Eq. (4), 
and pr=ux(X(t) -0~) and p,=u,(X(t) +O,t). Since the 
curve y=u(x,t> is continuous at x=X(t), we have the 
relation u(X( t) - 0,t) = u(X( t) +O,t). Thus, by differen- 
tiating this equation with respect to time t, we have 

dX(t) dX(t) 
PI-&--+uiX(t) -o,r)=P,~+uXXw +w. 

Substituting Eqs. ( 17) and (18) into the above equation, 
we obtain 

dX(t) fr-fr 
---r= PI-P? ’ 

(19) 

where f~=fW(t),Y(t),pJ and f,=f(t,x(t),Y(t),p,). 
Equation ( 19) represents the x component of the velocity 
of the slope discontinuity and is called the jump condition; 
in gas dynamics it is known as the Rankine-Hugoniot con- 
dition. 

The y component of the velocity can also be easily 
determined. By differentiating Y(t) = u(X( t) -0,t) 
[=u(X( t>,O)] with respect to time t, we obtain 
dY(t)/dt=p[dX(t)/dt+u,(X(t)-O,t), i.e., 

(20) 

where we have made use of Eqs. ( 17) and ( 19). 
It is again straightforward to extend Eqs. (19) and 

(20) to the general case based on Eq. (2). Using the ex- 
tended slope angle 8 (-s-< e<rr) defined in Eq. (15) and 
the relation f =c/cos 8 [Eq. ( 16)], we may rewrite Eqs. 
(19) and (20) as 

dx(t) cos e~l-cOs egr 
t= sin(el-e8,) f c- 

dY(t) sin &+-sin 8Fr 
-z--= sin(&--8,) ’ 

(21) 

(22) 

where q=c(t,x,y;pr) and c,=c(t,xg;p,). 

VI. THE ENTROPY CONDITION 

The weak (generalized) solutions that we introduced 
in Sec. IV allow us to examine global behavior (i.e., for all 
time) of the “solutions” to Eqs. (2) and (3). In other 
words, even if the function $(x,y,t) ceases to be differen- 
tiable at certain points after some time, it may still be 
considered a solution as long as it satisfies Eq. (2) “almost 
everywhere.” As already noted, however, there are many 
generalized solutions for given initial conditions. The en- 
tropy condition is the criterion that identifies the solution 
with physical significance (the name comes from gas dy- 
namics, in which the correct discontinuous solution across 
a shock is determined by the requirement that the entropy 
of the gas must increase). 

We discuss the special case of Eq. (3), where the 
boundary surface is described by the function y= u (xJ), 
and for simplicity we assume that the rate function de- 
pends only on the slope, i.e., c=c(p>. In this section, we 
briefly sketch the entropy condition and its application to 
our problem (a concise expository discussion on the en- 
tropy condition for the boundary evolution problem can be 
found in Ref. 3; for a more detailed mathematical discus- 
sion see, for example, Refs. 11 and 15). 
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The entropy condition for Eqs. (3) and (4) may be 
given as follows.16 Suppose that a continuous function 
U(XJ) satisfies Eq. (3) (except at the points where u, is 
discontinuous). Then we choose this function u (x,t) as the 
solution if and only if the first derivative p=ux, in the 
neighborhood of each of its discontinuities, satisfies the 
following conditions. 

If pr<pI, then the graph off(p) = c(p) m over 
the interval [p,,pJ in the [p,f@)] plane must lie below the 
chord connecting (pt,fr) and @Jr), i.e., 

f[crp,+(l--a)pll<crf,+(l--cr)fi, (23) 

for O<a<l [here f,=f(p,) and f/=&Q as before]. If 
pr>pI, on the other hand, the graph off(p) over [pr,pl] 
must lie above the chord connecting (pr,fi) and (p,,f,), 
i.e., 

f[ap,+(l--a)pJ>afr+(l--cr)fi 
for O<a<l. 

(24) 

The two conditions (23) and (24) may be written as a 
single system of inequalities for all p between pl and pr: 

fr-f fr-f, fi-f - - - 
Pr-P < P*-Pr c PI-P * 

(25) 

A slope discontinuity satisfying the entropy condition is 
called a facet corner-or a “shock” by analogy with shock 
waves in gas dynamics. 

We now illustrate how the entropy condition is applied 
to the moving boundary problem. Suppose that, at time 
t= 0, there is a slope discontinuity of y = u (x,0), at which 
the slope p=u, changes from pI to pr CpPr>pJ as x in- 
creases, as shown in Fig. 1. If the flux function f(p) 

c m is convex, as in Fig. 2(a), the graph off(p) lies 
b=elow the chord connecting the points (pr, f [) and (p,, f ,), 
and condition (24) is violated. Therefore, no facet corner 
can develop from this slope discontinuity-instead, multi- 
ple characteristic lines emanate from the corner point A 
and the initial sharp cornerevolves into a smooth arc. Such 
characteristics may be calculated from Eqs. (8)-( 10) for 
all p in the range pl<p<p,, as shown in Fig. 2(b). Using 
the gas dynamics analogy again, we call a smooth curve 
developing from a sharp corner a “rarefaction wave.” 

On the other hand, if the flux function f(p) is concave, 
as in Fig. 3 (a), the graph of f(p) lies above the chord 
between the points (PI, f I> and (p,, f ,), and condition (24) 
is satisfied. Therefore, the function u(x,t) with this slope 
discontinuity is the legitimate solution and the discontinu- 
ity (facet corner) propagates according to Eqs. ( 19) and 
(20). Figure 3 (b) illustrates the characteristics and the 
propagation of the facet corner. 

A more complicated example is shown in Fig. 4(a), 
where the flux function f(p) is neither convex nor con- 
cave. In this case, we construct a convex envelope (con- 
cave envelope for the case pr<pI), as illustrated in Fig. 
4(a). It is clear from this figure that two facet corners 
(shocks), associated with the intervals [pI,p”‘] and 
[pc2’,pr] develop from the original single corner. Denoting 
the trajectories of these two facet corners by (X,,Y,) and 
(X,,Y,>, we have, from Eqs. (19) and (20), 

( > a 

L( f(p) 
I  

- P 
PI Pr 

( w 

t = At 

FIG. 2. (a) A convex flux function. (b) The characteristics and bound- 
ary curves at t=O and t=At>O. Here c,=c,=O are assumed. 

dX,(t) f(l)--f[ dY,(t) p(‘)f[-pJ”) 
dt=p(‘) -p[ ’ dr= P”‘-PI ’ 

and 

dX,id fr-ft2’ dY,(t) p@‘f -p f(2) r r 
-=p,-pc2) 9 7= dt Pr-P(Z) ’ 

where f(l) - -f(p”‘) and fc2’==f(pc2)). Values of p be- 
tween p(l) and pc2) give rise to a rarefaction wave propa- 
gating from the sharp corner of the initial curve, as in the 
case of Fig. 2. Figure 4(b) shows the resulting evolution of 
the surface in this case. 

VII. THE NUMERICAL ALGORlTHM 

We now describe an algorithm that generates numeri- 
cal solutions to the surface evolution problem, based on the 
theory of the Hamilton-Jacobi equation discussed above. 
We approximate the exact, piecewise-smooth boundary 
curve in a piecewise-linear manner, as illustrated in Fig. 5. 
The slope between consecutive nodes (xj,yi) and 
(~~+~,y~+i) is denoted by pi+1i2 In the calculations, it is 
more convenient to use the extended angle variable. 0, 
rather than the slope p, since the former variable is 
bounded ( -r < 8<~) and can systematically handle arbi- 
trary geometries, as discussed previously. From the defini- 
tion (153, we introduce the discretized extended angle 
variable as follows: 

tan ei+ l/Z=Pi+1/29 
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B FIG. 4. (a) A flux function that is neither convex nor concave. (b) The 
characteristics and boundary curve at t=O and t=At>O. The lines AB 

FIG. 3. (a) A concave flux function. (b) The characteristics and bound- and AC represent the shocks. Here c,=c,=O are assumed. 
ary curves at t=O and t=At> 0. The line AB represents the shock. Here 
c,=c,=O are assumed. 

with 

--?r/2<8[+ 1/2<r/Z if x&f+ 1 P 

-T<f31+1/2<-7T/2 or T/2<0~+1/2<77, if Xf)Xj+l. 

In other words, ei+i, is the angle that the line segment 
from (xi,yl> to (~~+~,y~+i) makes with the positive x di- 
rection. 

The central idea of our algorithm is to treat evev node 
(Xi+Vf) of the piecewise-linear discretized curve as a facet 
corner, and to then calculate the shocks and rarefaction 
waves emanating from each node using the jump condi- ’ 
tions (21) and (22) and the entropy condition (25). It will 
be shown that the propagation of discontinuities thus gen- 
erated is also a good approximation to the propagation of 
the characteristics if the nodal point, together with the 
adjacent linear segments, approximate a neighborhood of a 
smooth point of the original curve. 

A. Shocks 

If only a single shock (facet corner) is known to em- 
anate from the node (xF,yy> at time t=O, then one needs to 
use the jump conditions (21) and (22), instead of the 
characteristic equations, to evolve this facet corner. From 
Eqs. (21) and (22), the new position (xf’,y4f) of the node 
at time t= At is given by 

x+=-x;+At 
cos 8f2~-cos epr 

sin(O+3,) ’ (26) 

y$‘=yy+At 
sin 8~l-ssin 6f+ 

sin( 6$- i3,) ’ (27) 

where 0[= 8i-1,2; O,=ej+ iD, cI=c( t=O,x~,$,8,- 1,2) and 
Cr=C(t=0,X~,Y~,ei+1/2 ). Note that the rate function c used 
on the right-hand sides is evaluated on the initial point 
(xy,yy> at t=O. Thus, the integration scheme employed 
here is first order in time (higher-order schemes will be 
addressed in a future paper). 

When the rate function c depends only on the slope 13, 
the slope of the segment between adjacent nodes (xi,yi> 
and (Xi+,,yi+ t) will remain constant during the motion, 
i.e., 

@+3/2 

r \ 

?c\ (Xi+1 ,Yi+l) ----- 

Pi-112 Pi+112 

(xi-l ,Yi-1) 

\:/ 1_Y!Y!2- 

hYi) 

FIG. 5. Discretization of a curve by a piecewise-linear function. Here 
ei+ l/2 ( - T < Q,, ,,,<a) is the angle that the line segment from (xi ,J+) to 
(x,+,,y,+r) makes with the positive x direction, and related to the slope 
by PI+ I/Z =td&+ ,,d. 
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(28) 

It is easily confirmed that Eq. (28) follows directly from 
Eqs. (26) and (27). Therefore, as in the case of character- 
istics, the trajectories of nodal points (Xi,yi) are straight 
lines as long as they do not intersect other trajectories. 

If the angles on each side of node (Xi,yi) are equal, 
6i-1/2=ei+1/2= 7 6 then the characteristic equations ( 11) 
and ( 12), instead of Eqs. (26) and (27), must be used: 

x,hf=~;+Ar[c,@)cos 6+c(@sin 01, (29) 

yP’=~;+At[c~(B)sin 0-c(8)cos 61. (30) 

Again, the functions c(~)=c(~,x,JJ,~) and ce=c0(t,x,y,8) 
on the left-hand sides of Eqs. (29) and (30) are all eval- 
uated with the initial data (x~,J$‘) and t=O. Note that the 
third equation ( 13) for the evolution of the angle 8 is not 
solved her+instead, the extended angle variable 0 is cal- 
culated at each time step from 

Yi+ 1 --Yi 
a 4+1/2=--- 

-% 1 ---xi 

using the usual conventions. 
While some nodal points actually represent true facet 

corners of the moving boundary, many of them are actu- 
ally just a consequence of using piecewise-linear approxi- 
mations to smooth segments [as the spatial discretization 
about (XiSyi) is continuously refined, this node represents a 
smooth point or a true corner according to whether or not 
I &+m-%-i/2 1 -to]. The evolution of segments that re- 
main smooth over a given time interval should really be 
obtained from the characteristic equations (8)-( lo), 
rather than the jump conditions (21) and (22). However, 
as we shall demonstrate below, the discretized shock equa- 
tions (26) and (27) are also good approximations to the 
characteristic equations if the piecewise-linear approxima- 
tion is in reasonably accurate agreement with the smooth 
curve. 

Let 0 be the extended angle variable of the exact 
smooth boundary at ‘(x,y ) . Then, if a piecewise-linear locus 
with node (xigi) = (~9) approximates this smooth bound- 
ary, we may write 6i+1,2=6+a+ and 8,-,,,=8+6-, 
with S+#6- and IS, 141. From Eqs. (21) and (22), we 
obtain 

dxi cos(8+S+)c(8+6-) --cos(0+6-)c(G-S+) 
-= 
dt sin(S-43,) 

=co(e)cOs e+c(e)sin e+ a( 16, ---se I;, 

dvi sin(e+s,)c(e+s_)-sin(e+s_)c(e-s,) -=- 
dt sin(S--6,) 

=ce(8)sin e--c(e)cos e+8( IS+-6- I ). 

Thus, to first order in the angle discretization, the equa- 
tions of motion for (Xi,yi) regarded as a shock (i.e., a point 
of slope discontinuity) agree with the characteristic equa- 
tions ( 11) and ( 12) for the motion of (Xi,yi) regarded as a 

smooth boundary point. The same can be seen by compar- 
ing Eq. (19) with Eq. (S), and Eq. (20) with Eq. (9), in 
the limit pItip,. . 

When two shock trajectories intersect within a single 
time step At, we use the following procedure. Let the rate 
function c depend only on the angle 8. Since the slope 
remains constant and the shock trajectories are straight 
lines during the motion, the time interval At* after which 
two shocks intersect is easily determined. By setting 
xf! i =x7 and solving this for At, we obtain 

AP= -Ax/Au, 

where AXzXi+i-Xi and AU=Ui+r-Ui, and 

(31) 

cos 6, 1,2~( ef- 1i2) -40s &- 112~ Co,+ 112 I 
uj= 

sid~i-1,2-~f+1~2) 
(32) 

Of course, the same expression for At* could also be ob- 
tained from the equation yF:i =yy. If 0 < AP <At, the 
time step At* is used instead of At, and the intersection 
point (Xi Ar*,yff*) becomes a new node that replaces the 
former nodes (x,,yj) and (~~+~,y~+i). 

If the rate function c depends on the position (xg) and 
time t, the slope. between adjacent nodes (Xi~i) and 
(Xi+l,yi+i) is no longer constant, i.e., Eq. (28) does not 
hold. Consequently, the true shock trajectories are no 
longer straight lines and the intersection time At* cannot 
be defined by Eq. (3 1) in the strict sense. However, by 
taking the time step At sufficiently small, one can force Eq. 
(28) to hold approximately, but with high accuracy. 
Within this small time step, one may apply the same 
method as the one presented above to calculate intersection 
of shocks for the case of c=c(t,xy,0). 

5. Rarefaction waves 

Suppose that the entropy condition indicates that a 
single rarefaction wave develops from the node (x7,$) 
given at time t=O, as in the example of Fig. 2. (The nu- 
merical implementation of the entropy condition will be 
discussed in the next section. ) Then, using a predetermined 

‘angle resolution he, we choose a set of angle variables 
{e(n)) 004v) such that e+(O) <#I) <e(2) 
i . . . -=z @) = 8, with @+ r) - f3@) cI he, where e1 < 8, is 

assumed (f+=t+- in and 8,-f++ 1,2). With these dis- 
cretized angles, the node (x,,yi) may be regarded as the 
infinitesimal limit of a “round” comer, consisting of the set 
of angles {@“‘). For each of such angles {@), we solve 
the shock-trajectory equations (21) and (22): the position 
of the new node (xti+t 2,y~~+1,2> associated with two ad- 
jacent angles tjcn) and 6(“+‘) after a time step At is given by 

x$;+I,2=x:+At 
C~S e(n+%(e(n)) --OS e%(e(n+*)) 

sin(8(“)-68(“+*9) 
(i3) 

Y~;+,,,=Y:+A~ 

sh @+l),(@9) -sh e(n)C(e(n+19) 
sin(e(n)-e(n+l)) 

(34) 
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FIG. 6. (a) A facet comer of the curve, which may be viewed as the limit of a round corner (inset). (b) The flux function f(p) with discrete values 
of p. (c) The convex envelope constructed from the discrete values of p. (d) The set of line segments uA,A2A,b represents the boundary curve shown 
in the inset of (a). The arrows from AI and A2 are the shocks, whose horizontal components’are given by sC4’) and s(‘,*). 

The functions c( 6) =c( t,x,y,O) on the right-hand sides are 
evaluated at the initial data (xF&‘> and t=O, as before. 

C. The entropy condition 

We now discuss the numerical implementation of the 
entropy condition (25). For simplicity, we consider here 
only the system defined by Eq. (3 ) with the flux function 
(i.e., sputtering yield) f(p) = c(p) m. An algorithm 
implementing the entropy condition for the general case of 
Eq. (2) may be found in the Appendix. 

Suppose the node (Xi~i) has neighboring slopes 
pr=tan e1 and p,=tan 8, with pI<pr, as shown in Fig. 
6 (a). We are interested in determining how this node will 
develop into shocks and/or rarefaction waves, based on the 
entropy condition (25). As in the case of the rarefaction 
waves, we introduce a set of angle variables {@“)) 
(~<dv), such that ez= e(O) < e(l) < ec2) < . . . < ecN) 
=8,, using the predetermined angle resolution A6 
(L@+‘) - @) aA@. With pen) = tan 8(“), the flux function 
f(p) may be discretized, as in Fig. 6 (b) . Since pz <pr , we 
need to construct the convex envelope of the flux function 
over [pl,pJ, as shown in Fig. 6(c). The method to con- 
struct such an envelope is as follows. 

(1) First calculate the slopes of the flux function f(p) 
over [pco)pcl)] and [p(l) p’2’] 3 , i e , * *, 

,(,,j) -f(P’” 1 --f(P(i) 1 - 
p”7-P”’ ’ 
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with (i,j>=(O,l) and (1,2). 
(2) If the slope over Cp’“‘,p’l’] is less than that over 

[p(‘)pC2)] (i e ~(~9~) <s(~~~)), then we decide to keep the 
point) [p”‘,j(~“‘)], at least temporarily, and proceed to 
the next step, i.e., compare the slope s(‘~‘) over [pc1),pc2)] 
with the next adjacent slope sCzJ3) over [p’2’,p’3’]. 

(3) If the slope over [pco),p’*)] is greater than or equal 
to that over [p”‘,p’2’] (i.e., s(~~~)>s(~~~)), then we discard 
the point [p”‘,f(p”‘)] and draw a straight line connecting 
[pco),f(pco) )] and [pc2),f(pc2) )]. In the next step, we com- 
pare the slope sCoa2) over [p’“‘,p’2’] with the next adjacent 
slope sC2p3) over Lpc2),pc3)]. 

(4) In general, we compare the slope sCLi) over 
[p(‘),p(j)] (i<j) with its right adjacent slope s(~,‘+~) over 
[p(i),pci+‘)]. If #*f) <sCiJ+l), then we proceed to the next 
step; compare C+ ‘) with .$+I,j+2). If ,(~j)-.&jsj+*), 
then we discard the point [pci),f(pci))] and create a new 
slope sCzi+‘) over [p(Q,p(i+l)]. Before proceeding to the 
next step, we need to check if the new slope #af+l) is 
greater than its left adjacent slope .sCmPi) over [pcm),pci)]. If 
not, then we also discard the point [p”‘,f(p’” )] and create 
a new step s (m5i+1). Repeat this process until either the new 
slope becomes greater than its left adjacent slope or the left 
end point of the new slope reaches the left end point 
[pl,f(pr)] of the interval. Then we proceed to the next 
step; compare the new slope with its right adjacent slope 
,u+ w+a 

(5) These processes are repeated until the right end 
point [p,,f(p,)] of the interval is reached. In the case of 
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pr>pr, we need to construct the concave envelope, instead 
of convex envelope, and the above algorithm ought to be 
modified accordingly. A more rigorous description of this 
algorithm with use of the angle variable 0, rather than p, 
will be presented in the Appendix. 

In the case of the flux function in Fig. 6(b), the ap- 
proximated convex envelope is given in Fig. 6 (c) . Corre- 
sponding to the three chords over [pl,pc4’], [p’4’,p’5’] and 
[pc5),pJ, therefore, we conclude that three shocks emanate 
from the node (Xi,yi), based on Eqs. (26) and (27). (In 
this particular example, however, the shocks correspond- 
ing to the chords over [p’4’,p’5’] and [p(‘),pJ may be in- 
terpreted as approximations of rarefaction waves, rather 
than shocks.) 

In the case of convex flux functions, such as the one in 
Fig. 2(a), no discretized points [pcn),f(pcn))] between pI 
and pr are removed by the entropy condition since 
dnJnfl) >s(~+‘*~+~), i.e., the slope over [p(“‘,pcn+‘)] is al- 
ways less than that over [p(nf’),p(n+2)]. The rarefaction 
wave is thus obtained, as discussed in the previous section. 
Evidently, by taking the angular grid size A0 sufllciently 
small, one can approximate flux functions f(p) and their 
envelopes with sufficient accuracy. 

It is instructive to examine the geometrical meaning of 
the entropy condition with the discretized slopes pen). As 
in the case of the rarefaction waves discussed above, we 
regard the node A = (Xiai) as the infinitesimal limit of a 
‘cround” corner consisting of points A’“‘, n= 1,2,3,... [see 
the inset of Fig. 6(a)]. Let pen’ represent the slope between 
two points d’“’ and Acn+‘). The shock trajectory from 
each point A(“) can be calculated from Eqs. ( 19) and (20). 
Equation (19) indicates that the quantities s(‘ll) and s(lP2) 
(i.e., the slopes over the intervals [pco),pcl)] and [p(“,pc2)] 
in the p-f(p) plane) represent the x components of the 
velocities of points A(t) and Ac2). Since the distance be- 
tween these two points A(‘) and Ac2) is infinitesimally 
small, it is clear that, if s(‘*~) >s(~*~), then the two shock 
trajectories intersect immediately [Fig. 6(d)]: a new shock 
trajectory must be calculated from the two slopes 
pco) ( =pr) and p(l) and compared with the right adjacent 
shock emanating from point ric3). On the other hand, if 
s(‘~~) <.r(lP2), the two trajectories from A(‘) and A(‘) do not 
intersect each other, and we now need to check if the tra- 
jectory from point Ac2) intersects the trajectory from point 
Ac3). It is easy to confirm that this geometrical process to 
fmd the “surviving” shock trajectories from node A is 
equivalent to the entropy-condition algorithm presented 
above. For the case of the flux function given in Fig. 6(b), 
three trajectories are found to “survive,” as discussed be- 
fore. 

For a description of the entropy-condition algorithm 
appropriate to the general surface-evolution equation (2), 
see the Appendix. 

D. Geometric interpretation 

We now briefly discuss the geometric meaning of the 
shock trajectories obtained from Eqs. (26) and (27). For 
simplicity, we again consider a rate function depending 
only on the slope, i.e., c=c( 0). Figure 7 shows the motion 

FIG. 7. The nodes Af-l=($mI~P~), Ai=($&), represent the 
boundary curve at t=O. Here 01= &- 1~ and 8,= 0,+ ,m The lies nb and 
cd are parallel to the line segments A,-lA, and A&+, with distances cl At 
and c, At, respectively. 

of the line segments Ai- lAi and Agi i+ 1. Since the perpen- 
dicular velocity c of the line segments depends only on the 
slope, the line segments remain parallel to their original 
orientations: after a time step At, the segment Ai-lAi must 
lie somewhere on the line ab, and the segment APi+1 
somewhere on the line cd. It is easy to show that the new 
node (xf’,#) calculated from Eqs. (26) and (27) is given 
by the intersection AT of ab and cd. Namely, the vector 
A& represents a possible shock trajectory that emanates 
from the node Ai= (~7 97). As we have discussed above, 
however, the vector AAT is not necessarily the correct 
shock solution, since many other shocks associated with 
the angular range between 8[ and 8, also need to be taken 
into account, based on the entropy condition. If the differ- 
ence between the two adjacent angles e1 and 0, is smaller 
than the angular grid size he, then the intersection AT will 
be adopted as the new node corresponding to Ai. 

VIII. REPRESENTATlVE EXAMPLES 

Using the algorithm described above, we now present 
some representative examples of numerical calculations. In 
most examples shown in this section, the slope dependence 
of the rate function (i.e., etch rate) c is given by co(e), as 
defined by 

fo(0) =s= 1.454 743 cos 8-0.464 719 cos 36 ’ 

+0.015 573 COS 5e-0.005 669 COS 78 
-o.oio 000 COS 9e+o.oio 552 COS lie 

-0.006 204 COS 138-I-0.005 725 COS 158, 

if --?r/2<8<?r/2, and fo(8>=co(0)=0 otherwise. Note 
that fo(0) = 1. The shape of this function is similar to the 
one shown in Fig. 4(a). The flux function fo(0) is pro- 
portional to that used in Ref. 3. 

Figure 8 shows the inert ion beam etching of a trench 
whose cross section is a semicircle at time t==O. The beam 
is assumed to be vertical and the etch rate c=co(f3) is 
uniform in space. The masks are assumed to be nonerod- 
ing. Some selected characteristics (i.e., shocks from nodal 
points of the discretized curve) are also shown in the do- 
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FIG. 8. The evolution of a semicircular trench due to inert ion beam 
etching. The etch rate c=ce(@, where ce( 0) is given in Sec. VIII. The 
boundary proiilcs are shown at different times (O(t~0.5) corresponding 
to a constant time interval Ar=O.l. The masks are assumed to be noner- 
oding. Some selected characteristics are shown in the domain x < 0. 

main x < 0 to illustrate the formation of facet corners; the 
configuration is symmetric about x=0. More characteris- 
tics (i.e., shocks) than those actually shown in Fig. 8 were 
used to obtain the boundary profiles in this calculation. 
The boundary profiles are shown at equal time intervals 
At=O.l for 0~~0.5. Evidently, two shocks (i.e., facet cor- 
ners) are formed as a result of the merging of characteris- 
tics. 

Figure 9 shows the evolution of a rectangular trench 
with the same rate function c=co( 0). Some selected char- 
acteristics are shown for x < 0. No masks are present in this 
case, and the facet corners denoted by a, B and J., K de- 
velop as a result. Rarefaction waves are also visible at the 
sections cx-fl and ~-2. It is also seen that the bottom of 

-0.8 

LlG. 9. The evolution of a rectangular trench without masks under the 
same conditions as those in Fig. 8. Some selected characteristics are 
shown in the domain x <O. 

FIG. 10. The evolution of an initially flat surface due to inhomogeneous 
beam etching. The etch rate used here is c(x,0) =cc(&exp- (~/a)~, with 
0=0.2. Some selected characteristics are shown in the domain x < 0. 

the trench becomes narrower as it evolves, creating a ta- 
pered profile. This is due to the fact that the flux function 
fo( f3) approaches 0 relatively fast as 8-+ *7r/2. As op- 
posed to tapering induced by sidewall passivation, we call 
this intrinsic tapering, i.e., tapering caused solely by the 8 
dependence of the etch rate function c (0). 

Figure 10 is an example of spatially inhomogeneous 
ion beam etching of a flat surface. The etch rate here is 
given by 

c(x,e) =co(8>exp( -x2/d), 

with a=0.2. Some selected characteristics are shown for 
x<O; the formation of two facet corners is clearly visible. 

In Fig. 11 we show a model of purely chemical etching, 
with an etch rate that is spatially discontinuous. The etch 

c 

____~ 
0.0 mask mask 

I 

FIG. 11. Isotropic etching of layered materials. The etch rates are c= 1 in 
the material I and c=2 in the material II. (a) The initial profile. (b) The 
evolution of the profile. Some selected characteristics are shown in the 
domain x < 0. 
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FIG. 12. (a) Reactive ion etching with a  shadowing (i.e., visibility angle) 
effect. The etch rate is given by c=%(0) +0.2 if the surface is exposed to 
the incoming etchant beam, and  c=O.2 if not. (b) Some selected charac- 
teristics. 

rate here is assumed to be isotropic (i.e., independent of 
the slope), but dependent on position. Figure 11 (a) shows 
the profile at t=O. There are two materials with different 
etch rates: c= 1 for material I, and c=2 for material II. 
Noneroding masks partially cover material I. Figure 11 (b) 
shows the evolution of the boundary profile at equal time 
intervals At=O.OS, with selected characteristics shown for 
x < 0. The formation of the facet corners cx and y is due to 
the interaction of two groups of characteristics, one of 
which represents a rarefaction wave emanating from the 
mask corners, while the other corresponds to characteris- 
tics originating from the boundary between materials I and 
II. Mask undercut due to isotropic etching is evident in 
Fig. 11 (b). Note that no particular conditions are applied 
to the characteristics or shocks at the material interface 
between I and II in this example. Our numerical scheme 
automatically emanates necessary characteristics from the 
interface. 

Figure 12 shows a model of reactive ion etching, where 
the etch rate is given as a sum of isotropic and nonisotropic 
components. The initial shape of the material is given by 
the curve denoted by t= 0 in Fig. 12 (a). As in the previous 
examples, the incoming etchant (i.e., reactive ion) beam is 
assumed to be vertical [as indicated by an arrow in Fig. 
12(a)], and no reflection of the etchants or redeposition of 
sputtered materials are taken into account. Therefore, the 
part of the initial surface indicated by a-P--y in Fig. 
12(a) is not exposed to the directional etchant beam, and 
is subject only to isotropic chemical etching. In other 
words, the etch rate here is given by 

c=co(fY) f0.2, 

if the surface is exposed to the beam, and c=O.2 otherwise. 
This shadowing (i.e., visibility angle) effect results in the 
development of the three facet corners K, il, and p from the 
initial point a. The procedure fo.r calculating visibility an- 
gles used in this calculation will be discussed elsewhere. 
Selected characteristics are shown in Fig. 12(b). 

IX. DISCUSSION AND CONCLUSlONS 

A new surface-evolution algorithm, based on the 
Hamilton-Jacobi equation (2) and entropy condition 
(25), has been presented. In this method, which may be 
characterized as a shock-tracking method, all shocks (i.e., 
facet corners) and rarefaction waves emanating from slope 
discontinuities are obtained directly from the entropy con- 
dition, and their propagation is computed from the jump 
(Rankine-Hugoniot) condition, i.e., Eqs. (21) and (22). 
The propagation of characteristics is shown to be well ap- 
proximated by the jump condition. 

Since we have used the lowest-order finite difference 
scheme in evaluating space gradients, the surface (curve) 
representation used in this method is the same as that of 
most “geometric” models-a sequence of nodal points 
joined by linear segments. This facilitates a comparison of 
the shock-tracking method with the more-naive geometric 
models. The shock-tracking method, which has been de- 
rived from first principles based on a well-defined physical 
system, indicates the “correct” way of advancing the nodes 
and segments that represent an evolving surface. 

Unlike most characteristics calculations of evolving 
surfaces, the shock-tracking method requires no geometric 
adjustments, such as “delooping,” when intersections of 
characteristics occur. The entropy condition implemented 
in the shock-tracking method automatically selects the 
physically meaningful solution. As mathematical theory of 
the Hamilton-Jacobi equation’7-19 and systems of conser- 
vation laws”~” indicates, the equation of motion of the 
surface, Eq. (2) or Eq. (3), has a unique “weak” solution 
if and only if the entropy condition (25) is satisfied. As 
noted in Refs. 1 and 2, calculating the locus of the char- 
acteristics or employing Huygens’ principle does not pro- 
vide a sufficient criterion for eliminating nonphysical solu- 
tions such as loops. 

Numerical solutions of the initial-boundary problem 
for PDE (5) with a sufficiently small diffusion constant Y 
provide a good approximation to the viscosity so1ution.s 
Various numerical techniques to solve such problems have 
been developed, especially in the context of gas dynamics 
and systems of conservation laws. Typical finite-difference 
methods employ the combination of a Lax-Wendroff-type 
scheme and the upwind scheme to deal with large gradients 
of the solutions. Even if Y is set to zero in Eq. (5), such 
finite-difference schemes introduce a “numerical” diffu- 
sion, i.e., they effectively include a diffusion term on the 
right-hand side. While various schemes have been devised 
to minimize this numerical diffusion and treat the shocks 
with sufficient accuracy, the shock-tracking method dis- 
cussed in this paper explicitly solves for the slope discon- 
tinuities without any diffusion effects. 

Although the PDE approach based on Eq. (5) can 
easily accommodate the complicated geometry of a moving 
boundary, the equation needs to be solved over the entire 
x-y plane as an initial-boundary-value problem, rather than 
specifically on the location of the moving curve $( t,x,y) 
==O. This makes the PDE calculation less efficient in case 
of relatively simple geometries, such as the boundary 
curves observed in reactive ion etching. 
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FTG. 13. The line segments uAb represent the boundary curve at t=O. 
The vectors (q ,v,) and (u, ,uz) denote the velocities of shocks emanating 
from A. 

Solving the PDE on a (lixed) spatial grid also requires 
the rate function c to be defined on the entire x-y plane. 
Although this was true in most of the simple examples 
given above, it is not necessarily the case when more real- 
istic physical or chemical considerations are taken into ac- 
count. For example, if the etch rate is influenced by the 
shadowing (i.e., visibility-angle effect) of the incoming ion 
flux, then c is defined only on the boundary curve 4 =O. As 
shown in Fig. 12, such a situation can be easily handled by 
the shock-tracking method. The problem of the rate func- 
tion may be avoided by solving Eq. (6) [or (3>], as shown 
in Ref. 3, but the geometry of an evolving curve is then 
limited to forms describable by y = u (x,t) , which precludes 
the possibility of “undercuts.” 

The shock-tracking method is thus especially suited to 
the surface evolution problem, in reactive ion etching, 
where sharp corners are known to develop, even from a 
smooth initial profile. By reversing the sign of the rate 
function c, the method can also be applied to certain dep- 
osition problems (e.g., a realistic simulation of reactive ion 
etching might have to incorporate a simultaneous redepo- 
sition flux of sputtered materials). These issues will be ad- 
dressed in a future paper. 

APPENDIX: THE ENTROPY CONDITION FOR 8 

Here we extend the entopy-condition algorithm dis- 
cussed in Sec. VII C to the general case of Eq. (2), using 
the extended slope angle variable 8 ( -r < 6<rr). Consider 
the node A, whose left and right adjacent angles variables 
are &and 8, (13&e,), as shown in Fig. 13. Choose an angle 
8i ( -rr< &<?r) between the two angles 0[ and 0, in the 
sense that 6i =8*+ar Ap(mod 27~). Here 0 <(r: < 1, and 
APE 8,- @(mod 2n) ( -IT < Ag, < r) denotes the differ- 
ence between the two angles of the adjacent line segments. 
The shock trajectories associated with the pairs of angles 
(&,&> and (0,,0,) may be calculated from Eqs. (21) and 
(22): their velocity vectors are given by ( u1 ,ol) and 
(u2,ud, where 

cos e,c(e,) -cos S&c(&) 
u1= 

Sin(&~~) ’ 

c(6,) 
uI=ul tan 8i--= 

sin 8$(8j) -sin &c(B,) 
cos 8, Sin(f+tJ~) ’ 

and similar formulas hold for’ (uz, u,) . The angle 0 formed 
by these velocity vectors is given by 

sinp= 
~1%-~2V1 (~2--u1)f~~1) 

-$7G:, b;+v;> = J(4+uT> (ujq+u”z> ’ 

where the relations f(0) =c(@/cos 6 [Eq. (16)], 
vl=tan 8iu1--f(8i) and v,=tan Biu,--f(&) are used. If 
/? is sufficiently small (or, more loosely, -n-/2 <P < r/2), 
the sign of fl is equal to the sign of (uZ-ui>cos &c(&). 
(In our system, c > 0 and c < 0 indicate “etching” and 
“deposition,” respectively. ) 

It is clear from the geometric discussion on shock tra- 
jectories emanating from a single point [Fig. 6(a)] that if 
the angle difference /3 is positive, then the two shock tra- 
jectories do not intersect. On the other hand, if0 is nega- 
tive, then the two shocks intersect each other at the mo- 
ment they start to propagate, and a new shock trajectory 
must be constructed with the use of the slopes 81 and 0,. 

It is straightforward to generalize this argument to the 
case where we have many discretized angles {0(“‘} (n 
= 1,2,...) between 13~ and 8,. If Ag,m08,-6Bl(mod 2n) de- 
fined above is positive, then the numerical implementation 
of the entropy condition may be given by the following 
algorithm. 
(1) Choose the discretized angles {Q(“‘} (n= 1,2,...,N) 
based on the predetermined angular grid size At% i.e., 

ej<~“‘<e’O’<...<~(N’ , 

where 0,=0Jrnod 277) and 8’n+“-Q’“‘~A8. Set 
e(O) = 13~ and let [f9co,0ci)] denote the interval of 8 given by 
/$‘)<j)<$i) 
(2) We now inductively define the set 

~n={[~‘0’,~V,(1))],[~Vn(1)),~Vn(2))],..., 

x [ eVn(m(n)-l)),eVn(m(n)))l 3 

of m(n) intervals [l(m(n)<iVj for each n (l<n<N2). 
Here m(n) and j,(k) [k=O,l,&...,m(n)] denote integer 
functions of n and k, respectively. The function j,(k) also 
depends on n ( 1 <n<N), satisfying the relation 
in(m (n))=n for all n. The definition of Y,, is given as 
follows: 

(i) Set Yo={[Oco’ 0(“]3 
(ii) Suppose that ’ * 

~,={[e(0),eVn(l))],[e(i,(l)),e(in(2))],..., 

x [ ($Mm) - qpnwm]3 

is given, where m(n) > 1. Then define Yn+ i from the fol- 
lowing procedure. 

(a) Consider the set of integers 

CO,j,(l>,i,(2>,...,j,(m(n>),n+13. 

5183 J. Appl. Phys., Vol. 74, No. 8, 15 October 1993 Hamaguchi et a/. 5183 



Let p be a positive integer and set p: =m(n). 
(b) Calculate 

y= (~+l,fn@))-Slj,(P)Jn(P-l)))cOS fp,W,(~“CP)), 

where sCiJ) is the same quantity defined in Eq. (35), i.e., 

,U,i) = cos B’“c( IF)) -cds 8%( e(j)) 
sin(W--8’“) 

(c) If z>O, then define m(n+l)=p+l and a new 
set of integers, 

:=CO,j(l),j,(2),...,j,(p),n+l3. (Al) 
Note that j,,+,,(m(n+l))=j,,+,,(p+l)=n+l. This is 
the end of procedure in defining Y,,; proceed to (iii). 

(d) If Y < 0, then there are two possibilities. 
(dl) If p=l, then define m(n+l)=l and 

j,+kh+l>)= j,+i( 1) =n+l. In other words, a new 
set of integers {O,j,+,(k)) with k=l=m(n+l) becomes 

CO,n+13. (AZ) 

This is the end of procedure in defining ,L”, ; proceed to 
(iii). 

(d2) Ifp>2, then setp:=p-1 and,return to (b). 
(iii) Using the newly defined set of integers 

{O,j,+,W3 [l~k~m(n+l)=p+ll given in (Al) or 
(A2), we define 

~On+l=~[e(O),eU~+~(1))l,[eUn+~(~)),eUn+~(2))],..., 

x [~~,,,(~(~+l)-l)),$ln+l(m(~+l)))]3. 

(3) From the above inductive definition for Y,, we even- 
tually obtain 

x [$fN(m(N)-lI)),eU~m(N)))]). 

The m(N) shocks associated with the pairs of angles 
(&di)),$fdf+l))) [()<i<m(N)] with #do)) = (I(O) = & 
emanate from the nodal point. 

‘R. Smith, S. J. Wilde, 6. Carter, I. V. Katardjiev, and M. J. Nobes, J. 
Vat. Sci. Tecbnol. B 5, 579 (1987). 

‘I. V. Katardjiev, Cl. Carter, and M. J. Nobes, J. Phys. D 22, 1813 
(1989). 

3D. S. Ross, J. Electrochem. Sot. 135, 1235 (1988). 
4D. S. Ross, J. Electrochem. Sot. 135, 1260 (1988). 
‘S. Osher and 3. A. Sethian, J. Comput. Phys. 79, 12 (1988). 
6 J. Glimm, Comments Pure Appl. Math. 18, 697 ( 1965). 
‘A. J. Chorin, J. Comput. Phys. 25, 253 (1977). 
‘C. W. Jurgensen and E. S. G. Shaqfeh, J. Vat. Sci. Technol. B 7, 1488 

(1989). 
9M. Dalvie, R. T. Farouki, and S. Hamaguchi, IEEE Trans. Electron. 

Devices 39, 1090 (1992). 
“The tangential velocity component c, determines the motion of the end 

points of the curve if the curve has end points. 
l1 P. D. Lax, Hyperbolic *sterns of Conseruation Laws and the Mathemat- 

ical Theory ofShock Waves, SIAM Regional Conference Series in Ap- 
plied Mathematics (SLAM, Philadelphia, 1973). 

‘*R E Jewett, P. I. Hanouel. A. R. Neureuther, and T. van Duzer, . . 
Polym. Eng. Scil 17, 38: (1977). 

l3 W. Fichtner, in VSLI Technology, edited by S. M. Sze (McGraw-Hill, 
New York, 1988). 

i4F. John, Partial Dz@rential Equations (Springer, New York, 1982). 
l5 J Smoller, Shock Waves and Reaction-Dl@Aon Equations (Springer, * 

New York, 1983). 
I60 A. Oleinik, Ups. Mat. Nauk. 12, 3 (1957); English transl. in Am. 

Math. Sot. Transl. Ser. 2 26, 95 (1963). 
I’M. G. Crandall and P. L. Lions, Trans. Am. Math. Sot. 277, 1 (1983). 
“M. G. Crandall, L. C. Evans, and P. L. Lions, Trans. Am. Math. Sot. 

282, 487 (1984). 
l9 M. G. Crandall and P. L. Lions, Math. Comput. 43, 1 (1984). 

5184 J. Appl. Phys., Vol. 74, No. 8, 15 October 1993 Hamaguchi et al. 5184 


