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A shock-tracking algorithm for surface evolution under reactive-ion

etching

8. Hamaguchi, M. Dalvie, R. T. Farouki, and S. Sethuraman®
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

(Received 1 September 1992; accepted for publication 4 July 1993)

A new algorithm that determines the evolution of a surface eroding under reactive-ion etching
is presented. The surface motion is governed by both the Hamilton—Jacobi equation and the
entropy condition for a given etch rate. The trajectories of “shocks” and “rarefaction waves” are
then directly tracked, and thus this method may be regarded as a generalization of the method
of characteristics. This allows slope discontinuities to be accurately calculated without artificial
diffusion. The algorithm is compared with “geometric” surface evolution methods, such as the

line-segment method.

I. INTRODUCTION

An understanding of the evolution of microscopic sur-
face features under etching or deposition processes is of
considerable practical importance in integrated-circuit
manufacturing. Recent progress in semiconductor fabrica-
tion technologies has given rise to complex manufacturing
processes, and_a correspondingly increased demand for
computational models of surface-morphology evolution
that facilitate analysis of the effects of variations in process-
step parameters. In this paper, a new algorithm for evolv-
ing surfaces is presented. The algorithm is derived from
first principles, based on mathematical theory that de-
scribes a well-defined physical system.

To date, a number of surface-evolution methods have
been proposed for microelectronics manufacturing pro-
cesses. These techniques may be broadly categorized along
the following lines.

(1) “Geometric” models—the surface evolution is
governed by ad hoc geometric considerations. Thus, the
surface is generally discretized into a set of “nodes” con-
nected by linear segments. Depending on the assumed rules
for how the nodes and/or segments are moved, such meth-
ods are called “string models,” “liné-segment models,”...,
etc. Although they appear capable of generating surface
morphologies that are consistent with empirical micro-
graphic cross sections, such models are fundamentally
based on the implementer’s geometric intuition rather than
a well-defined and self-consistent mathematical theory
(even for idealized physical conditions). Thus, such mod-
els suffer from a basic lack of credibility in terms of pre-
dictive capacity, especially with regard to the formation
and evolution of “singular” features, such as sharp corners.

(2) Method of characteristics—as shown in Sec. II, a
moving surface may be described by a partial differential
equation (PDE). If the surface velocity (i.e., the etch or
deposition rate) does not depend on the local surface cur-
vature, or higher-order intrinsic geometry, then the PDE is
of first order and can be solved by the method of charac-

2)Permanent address: Courant Institute of Mathematical Sciences, New
York University, New York, NY 10012.

5172 J. Appl. Phys. 74 (8), 15 October 1993

0021-8979/93/74(8)/5172/13/$6.00

teristics. Problems arise, however, when discontinuities of
the surface gradient form (i.e., two characteristics inter-
sect). Existing models based on the method of character-
istics of which we are aware appear to require subtle geo-
metric “adjustments,” such as eliminating or avoiding the
formation of nonphysical loops—“‘delooping”—based on
geometric hypotheses to deal with such situations (see, for
example, Refs. 1 and 2).

(3) PDE solvers—there are a number of methods to
solve the PDE directly on a (fixed) spatial grid, without
appealing to the characteristic equations. Such methods
are particularly appropriate when the surface velocity de-
pends explicitly on the local curvature and the PDE is of
second order.>® The second-order term, which typically
orig'inéi."tes from the curvature-dependence of the velocity,
introduces a “diffusion” effect so that slope discontinuities
are not formed in this case. The solution in the limit of zero
diffusion, known as the “viscosity solution,” is the desired
solution for systems in which the surface velocity does not
depend on the local curvature. PDE solvers using a com-
bination of a Lax—Wendroff-type finite-difference scheme
with an upwind (or artificial diffusion) scheme rely on a
small “numerical” diffusion to obtain an approximation to
the viscosity solution. :

The method proposed in this paper employs nodal
points connected by linear segments to represent the evolv-
ing surface, as in the “geometric” models mentioned above.
However, unlike the geometric models, the motion of the
nodes and segments is derived from a PDE and an addi-
tional condition that together govern the surface evolution.
In fact, the use of linear segments between nodes is merely
a consequence of the lowest-order spatial discretization of
the system, and extending the method to higher-order
schemes employing polynomial curve segments should be
possible. At present we shall treat only the lowest-order
scheme, so as to focus our attention on deriving the surface
dynamics from the defining equations.

Our method may be regarded as an extension of the
method of characteristics, although explicit solutions of the
characteristic equations are not employed by the method.
Instead, we solve for the propagation of “shocks” (see Sec.
IT below) that emanate from each nodal point, assuming
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that each node connecting adjacent linear segments repre-
sents a surface-slope discontinuity. It will be shown that
such shock trajectories are good approximations of char-
acteristics under certain conditions.

Another feature of our method that differentiates it
from the usual method of characteristics is the implemen-
tation of the entropy condition, which selects the physi-
cally correct solution of the surface-evolution equation. As
will be explained in detail below, the PDE that describes
the surface evolution—such as Eq. (2) or (3)—generally
has no unique solution, and thus an extra condition must
be imposed to identify the physically meaningful solution.
This additional condition is called the entropy condition,
and is proven to select the viscosity solution mentioned
above. Thus, the direct imposition of the entropy condition
enables one to identify the unique physical solution, with-
out invoking ad hoc geometric procedures to contend with
nonphysical contingencies such as “loop” formation.

Since the shock (i.e., facet cormer) trajectories are
tracked explicitly, our method may be classified as a
“shock-tracking” method. (Several different types of
shock-tracking method exist to solve systems of conserva-
tion laws: see, for example, Refs. 6 and 7.) Under certain
conditions, the motion of a surface described by this shock-
tracking method may be shown to agree with that obtained
from “geometric” methods. Therefore, the shock-tracking
method may also be regarded as offering a theoretical foun-
dation for some of the ‘“‘intuitive” assumptions made in
geometric methods.

For the sake of simplicity, we consider only the evolu-
tion of “one-dimensional” surfaces (i.e., curves in the x-y
plane) in this paper. Extending the shock-tracking method
to surfaces in three dimensions should be possible, and will
be addressed in a future paper. Furthermore, so as to focus
on the numerical algorithm of advancing such a curve with
time, we shall idealize all physical/chemical details of the
etch process, assuming they are adequately represented by
a simple rate function ¢ that describes the surface velocity
under unidirectional ion bombardment. Important physi-
cal and chemical aspects of the problem, such as the ve-
locity distribution and shadowing (visibility angle) of the
incoming ion flux,®? reflection, and deposition of the in-
coming ions and sputtered materials, and diffusion and
chemical reactions on the surface, are deferred to future
studies that will make use of the basic algorithm described
below.

li. SURFACE EVOLUTION EQUATIONS

We first derive the equation of motion for the bound-
ary surface that separates regions of material and free
space. In two dimensions, such a boundary surface corre-
sponds to a piecewise-smooth curve that does not intersect
itself. At time 7, such a curve may be represented by an
equation of the form ¢(x,y,2) =0, where we assume that
& (xp,2) >0 (<0) represents the material (vacuum) side
of the boundary. The velocity vector ¢ of the boundary
surface at the point (x,y) may be written as

c=c,f+cf, : (n

5173 J. Appl. Phys., Vol. 74, No. 8, 15 October 1993

o

g\\\\? |

FIG. 1. A slope (i.e., gradient) discontinuity at point A. The slopes on
the left and right sides of point A are given by p; and p,. The shaded area
represents the material. The arrows on the boundary curve denote the
orientation.

where f and t denote the unit normal and tangent unit
vectors, defined by

= (o) (V)
-+, \E $r oy \

and ¢,=0d¢/dx and ¢,=d¢/dy. Note that, for c,>0, the
boundary curve moves into the material, i.e., its motion
represents the erosion (or etching) of material.

Introducing a parametric variable s along the bound-
ary curve, we may represent this curve at each time # as the
locus of points {x(s,t),y(s,t)) for 0<s< 1, where the func-
tions x and y are assumed to be continuous and piecewise
differentiable with respect to s, and the velocity of the point
(x(s,8),p(s,2)) with fixed s is given by Eq. (1). Clearly,
&x(5,0),(s,2),)=0. We may also choose the orientation
of the curve—i.e., the direction of increasing s—in such a
way that the material (vacuum) always lies to the right
(left) of the curve (see Fig. 1). ,

Differentiating the equation ¢(x(s,2),y(s,#),t)=0 with
respect to time ¢ (with s fixed) and substituting the relation
(9x/3t,dy/3¢t) =¢ given by Eq. (1) into the resulting equa-
tion, we obtain

$t+cyi+¢,=0, 2)

where we write ¢=c,,. If the normal-direction etch rate ¢
depends only on time ¢, position (x,y), the unknown func-
tion ¢ and its first derivatives (¢x,¢y), Eq. (2) is called a
Hamilton-Jacobi equation. Equation (2), together with
the initial condition ¢{x,y,0), governs the evolution of the
boundary curve. Note that the tangential velocity compo-
nent (etch rate) ¢, does not appear in Eq. (2). The velocity
along the curve does not alter its shape, and the motion of
the cul%ve is determined only by the normal component
c=c,.
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If the “height” of the boundary curve y is uniquely
determined by the horizontal position x, i.e., the curve at
time ¢ is given by a single-valued function y=u(x,t), we
may write ¢(x,y,¢) =u(x,t) —y, and Eq. (2) becomes

Ut 1+u=0. 3)

It is now assumed that c=c(t,x,p;u,). By differentiating
both sides of Eq. (3) and writing p=u,,>* we obtain the
conservation form

POy f(tx,y,p) =0, 4)

where f(Zx,p,p) = cy1 +p2 is called the “flux function”
by analogy!! with the conservation law in gas dynamics.
We note that f is proportional to the sputtering yield (the
number of sputtered atoms per incident ion) in the case of
inert ion beam etching.

lll. VISCOSITY SOLUTIONS

We now briefly discuss the viscosity solutions of the
Hamilton-Jacobi equation. Adding a “diffusion” term to
Eqgs. (2), we obtain

¢ +e ol gl =vAd, (5)

where A=3*/3x*+8/3y* denotes the Laplacian, and we
call the constant v the diffusion constant. When v is small,
we may regard the right-hand side of Eq. (5) as an ap-
proximation of the effect of weak dependence of the etch/
deposition rate on the local curvature K, ie., etch/
depostion rate=c—vK.®> This weak curvature dependence
of the etch/deposition rate results in “rounding off”” of
sharp corners of the surface. It is known that, under ap-
propriate initial and boundary conditions, the smooth so-
lution ¢ to Eq. (5) exists uniquely if v=20. Since we may
view Eq. (2) as the v—O0 limit of Eq. (5), we expect that
the physically meaningful solution to Eq. (2) should be the
limit of the unique solution ¢’ to Eq. (5) as v—0.

The limiting solution ¢® =lim,_, ¢ may contain
some sharp corners, i.e., its spatial derivatives may not
exist at certain points, due to the absence of the diffusion
effect. Nevertheless, such a solution [which is the physi-
cally meaningful one that we wish to obtain from Eq. (2)],
will satisfy Bq. (2), except at points where ¢ is not differ-
entiable (the equation is meaningless if ¢, and ¢, are not
defined). Therefore, we relax the definition of the solution
of Eq. (2) by calling the function ¢ a solution if ¢ satisfies
Eq. (2) everywhere except for those points where ¢ is not
differentiable (i.e., the locations of sharp corners). Such
solutions with discontinuous gradients are called “weak”
or “generalized” solutions, in contrast to the regular (i.e.,
differentiable) solutions.

However, there are actually many different weak solu-
tions to Eq. (2), only one of which is physically meaning-
ful (a manifestation of such nonphysical solutions is the
phenomenon of loop formation, observed in *“geometric”
models and the method of characteristics—see, for exam-
ple, Refs. 12 and 13). In other words, Eq. (2) does not on
its own constitute a complete description of the physical
surface evolution: we need an additional condition that
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selects the physical solution from among the many weak
solutions admitted by Eq. (2). This condition, which is
called the entropy condition, will be discussed in Sec. VI.

The viscosity solution of Eq. (3) may be defined in a
similar manner. Consider the hyperbolic equation

uM e \/1+ux("5i=vu§;), (6)

where v again denotes the diffusion constant. By differen-
tiating both sides of Eq. (6), we obtain

P+ 0uf (1xy ) =vp33) N

The viscosity solutions to Eqgs. (3) and (4) are defined as
lim,_o " and lim,_,p®", respectively. Further discus-
sion of these viscosity solutions may be found in Ref. 3.

IV. THE CHARACTERISTIC EQUATIONS

For simplicity, we first consider Eq. (3), where the
boundary curve is assumed to be describable by a function
y=u(x,t). The discussion will be later extended to the
general case of Eq. (2). The initial value problem for the
first-order PDE (3) may be solved by the method of char-
acteristics as long as the curve does not intersect itself and
rémains sufficiently smooth (see, for example, Ref. 14). If
the rate function ¢ depends only on time, position on the
curve, and its slope, i.e., c=c(t,x,p;p) =c(z,x,u;u,), as be-
fore, the characteristic equations of PDE (3) are given by

dx 4
G~ fr=e 1P +e . (8)

dy 1
ar—Plr— =k Nl+p —e s, (9)
dp !

Z= —fx—pfu=—(cx+pc,) \‘1+P » (10)
where the subscripts denote partial derivatives, e.g.,
cp=8c/8p. The initial values for Eqgs. (8)—(10) are given
by a point (x5,V9,P0) on the initial curve y=u(x,0), where
Yo=u(xy,0) and po=u,(xy,0). Thus, the initial-value
problem for the first-order PDE (3) has been transformed
into the system of ordinary differential equations (8)—
(10).

If we employ the angle variable 8 defined by p=tan 0,
with —7/2<0<7/2, Egs. (8)~(10) become

dx

7 = Coc0S 0+csin 6, (1D
'y .

—;=Cesin 6—ccos 6, (12)
do ,

Ji= —Cxcos 6—c, sin 6, (13)

where we  write  c(zx,p;tan 8) =c(¢,x,,0) and
co=0c/30=c,/cos’ . 1t is clear from these equations that,
if ¢45=0, the direction of a characteristic curve is not per-
pendicular to the boundary curve y=u(x,t). We also note
that if the rate function ¢ depends only on the slope (i.e.,
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¢,=c,=0), then the slope p=tan 6 of the boundary curve
remains constant along every characteristic, and thus the
characteristic curves become straight lines.

It is straightforward to extend the characteristic equa-
tions obtained above to the general case described by Eq.
(2). If ¢,7%0, Eq. (2) may be written as

is— ~I—c sgn ¢y\{1 + (ZZ;) =0,

where sgn ¢,=1 if $,>0 and sgn ¢,=—1 if $,<0. Note
that, in the case of ¢(x,y,t)=u(x,t)—y, we have

u=—¢/¢, and p=u,=—¢,/¢, and Eq. (14) is equiva-
lent to Eq. (3). In general, we employ the definition of the
extended angle variable 6 (—r<0<7) given by

tan 0=—¢,/¢,,
with

(14)

—7<0<—m/2 or w/2<0<m, if ¢,50,

—m/2<6<n/2, if $,<O0. (15)

By comparing Eq. (14) with Eq. (3), we may also extend
the definition of the flux function f to

f=—csgnd, 1+ ¢x =-L-. (16)
4 ¢,] “cos@
If the rate function ¢ in Eq. (2) has the form

c=c(t,x.y;—¢,/$,), then it is easy to show that the char-
acteristic equations for Eq. (2) may be reduced to Eqgs.
(11)-(13) with the extended angle 8 (—7 <0<w).

V. SLOPE DISCONTINUITIES

We now derive the equations that govern the propaga-
tion of slope discontinuities. Let us consider again the weak
(generalized) solutions to Egs. (2) and (3), i.e., continu-
ous solutions that may have discontinuities in their first
derivatives in space. For simplicity, we first discuss Eq.
(3). As in the previous section, the results derived from
Eq. (3) (where —m/2 <0 <%m/2) can be easily extended to
the general case (—7<8<7) of Eq. (2).

Suppose (X(2),Y(2)) describes the trajectory of a
propagating slope discontinuity on the boundary curve
y=u(xt), ie, Y(O=u(X(),) and ufX(?)—0,)
#u (X (£) +0,7). Here we use the shorthand notations

u X (1) £0,0)=lim u (X () x€,)

e-0
for the values of u, (or other quantities) to the left
[x <X (#)] and right [x> X (#)] of the slope discontinuity.
Then, from Eq. (3), we have

u{X (1) 0,0+ f(X (), Y (2),p)=0, (17)

ut(X(t)'*‘O’t)+f(t»X(t):Y(t):pr)=0! (18)

where f = ¢ 1+ uxI is the flux function defined in Eq. (4),
and p;=u(X(¢)—0,¢) and p,=u (X (7)+0,0). Since the
curve y=u(x,t) is continuous at x=X(¢), we have the
relation w(X(£) —0,)=u(X(¢) +0,¢). Thus, by differen-
tiating this equation with respect to time 7, we have
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dX(t) dx(t)
P +u AX(t) 0,0)=p,—5— 7

Substituting Egs. (17) and (18) into the above equation,
we obtain

dxX®) _fi—f,
dt Pi—p: ’
where fi=f(tX(2),Y(2),p) and f,=f(tX(8),Y(2)p))
Equation (19) represents the x component of the velocity
of the slope discontinuity and is called the jump condition;
in gas dynamics it is known as the Rankine-Hugoniot con-
dition.
The y component of the velocity can also be easily
determined. By differentiating Y (#) =u{X(¢) —0,7)

+ufX(2) +0,7).

(19)

[=u(X(£),0)] with respect to time ¢ we obtain
dY(8)/dt=p,;dX (1) /dt-+ufX(£) —0,1), ie.,
dy(y) dx dx bof1—0ifr
d =P~ dr fl =Pr dt fr P1—D, ’ (20)

where we have made use of Eqgs. (17) and (19).

It is again straightforward to extend Egs. (19) and
(20) to the general case based on Eq. (2). Using the ex-
tended slope angle 6 (— 7 <6<) defined in Eq. (15) and
the relation f=c/cos 0 [Eq. (16)], we may rewrite Egs.
(19) and (20) as

dX(z) cos 0,c;—cos Oc, a1
dt ~  sin(6,—86,) . b
dY(z) sin 6,c;—sin O,
() C1 < (22)

dr  sin(6,-6,) °
where ¢;=c(t,x,y;p;) and c,=c(t,x,y;p,).

Vi. THE ENTROPY CONDITION

The weak (generalized) solutions that we introduced
in Sec. IV allow us to examine global behavior (i.e., for all
time) of the “solutions” to Egs. (2) and (3). In other
words, even if the function ¢(x,y,7) ceases to be differen-
tiable at certain points after some time, it may still be
considered a solution as long as it satisfies Eq. (2) “almost
everywhere.” As already noted, however, there are many
generalized solutions for given initial conditions. The en-
tropy condition is the criterion that identifies the solution
with physical significance (the name comes from gas dy-
namics, in which the correct discontinuous solution across
a shock is determined by the requirement that the entropy
of the gas must increase).

We discuss the special case of Eq. (3), where the
boundary surface is described by the function y=u(x,),
and for simplicity we assume that the rate function de-
pends only on the slope, i.e., c=c(p). In this section, we
briefly sketch the entropy condition and its application to
our problem (a concise expository discussion on the en-
tropy condition for the boundary evolution problem can be
found in Ref. 3; for a more detailed mathematical discus-
sion see, for example, Refs. 11 and 15).
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The entropy condition for Egs. (3) and (4) may be
given as follows.!® Suppose that a continuous function
u(x,t) satisfies Eq. (3) (except at the points where u, is
discontinuous). Then we choose this function u(x,#) as the
solution if and only if the first derivative p=u,, in the
neighborhood of each of its discontinuitics, satisfies the
following conditions.

If p,<p,, then the graph of f(p) = c(p) ,/1+pz over
the interval [ p,,p]] in the [ p,f(p)] plane must lie below the
chord connecting (p,,f,) and (p;,f), i.e.,

flep+(1—a)pl<af+(1—a)fi, (23)

for 0<a<l [here f,=f(p,) and f,;=f(p;) as before]. If
D> Dy, on the other hand, the graph of f(p) over [p,,p]
must lie above the chord connecting (p;,f;) and (p,.f,),
ie.,

flep+(1—a)pl>af,+(1-a)f;

for O<a1.
The two conditions (23) and (24) may be written as a
single system of inequalities for all p between p; and p,:

fr"'f fl_fr fl—f

p~p PP PP’
A slope discontinuity satisfying the entropy condition is
called a facet corner-—or a “‘shock” by analogy with shock
waves in gas dynamics.

We now illustrate how the entropy condition is applied
to the moving boupdary problem. Suppose that, at time
t=0, there is a slope discontinuity of y=u(x,0), at which
the slope p=u, changes from p; to p, (p,>p;) as x in-
creases, as shown in Fig. 1. If the flux function f(p)
=c ,ll-{—pz is convex, as in Fig. 2(a), the graph of f(p) lies
below the chord connecting the points (p;,f)) and (p,,f,),
and condition (24) is violated. Therefore, no facet corner
can develop from this slope discontinuity—instead, multi-
ple characteristic lines emanate from the corner point A
and the initial sharp corner evolves into a smooth arc. Such
characteristics may be calculated from Egs. (8)-(10) for
all p in the range p;<p<p,, as shown in Fig. 2(b). Using
the gas dynamics analogy again, we call a smooth curve
developing from a sharp corner a “rarefaction wave.”

On the other hand, if the flux function f(p) is concave,
as in Fig. 3(a), the graph of f(p) lies above the chord
between the points (p;,f)) and (p,,.f,), and condition (24)
is satisfied. Therefore, the function u{x,?) with this slope
discontinuity is the legitimate solution and the discontinu-
ity (facet corner) propagates according to Eqgs. (19) and

(24)

(25)

(20). Figure 3(b) illustrates the characteristics and the

propagation of the facet corner.

A more complicated example is shown in Fig. 4(a),
where the flux function f(p) is neither convex nor con-
cave. In this case, we construct a convex envelope (con-
cave envelope for the case p,<p;), as illustrated in Fig.
4(a). It is clear from this figure that two facet corners
(shocks), associated with the intervals [p;pV’] and
[p'®,p,] develop from the original single corner. Denoting
the trajectories of these two facet corners by (X;,Y;) and
(X,,Y,), we have, from Eqgs. (19) and (20),
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Pi . Pr

FIG. 2. (a) A convex flux function. (b) The characteristics and bound-
ary curves at t=0 and t=A¢>0. Here ¢,=c,=0 are assumed.

dx,\(t) fO~f avye) p®f1—pf®
a — pW—p> dt — pW_p

and

dXo(t) fr—fP®  dYa) p®f—pfP
a  p—p®’ d — p—p®

where fV=fF(p) and f®=f(p?®). Values of p be-
tween p'1 and p'» give rise to a rarefaction wave propa-
gating from the sharp corner of the initial curve, as in the
case of Fig. 2. Figure 4(b) shows the resulting evolution of
the surface in this case.

VIi. THE NUMERICAL ALGORITHM

We now describe an algorithm that generates numeri-
cal solutions to the surface evolution problem, based on the
theory of the Hamilton—Jacobi equation discussed above.
We approximate the exact, piecewise-smooth boundary
curve in a piecewise-linear manner, as illustrated in Fig. 5.
The slope between consecutive nodes (x;y;) and
(%;11:9:11) is denoted by p;, ;.. In the calculations, it is
more convenient to use the extended angle variable. 8,
rather than the slope p, since the former variable is
bounded (—# <8<7) and can systematically handle arbi-
trary geometries, as discussed previously. From the defini-
tion (15), we introduce the discretized extended angle
variable as follows:

tan 0;,1,,=Diy1/25
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FIG. 3. (a) A concave flux function. (b) The characteristics and bound-
ary curves at =0 and #=Ar> 0. The line AB represents the shock. Here
¢,=¢,=0 are assumed.

with
'——1T/2<e[+1/2<77'/29 if xi<xl+l,

H?T<61+1/2<H1T/2 or 7T/2<6i+1/2<1T, if xi>x,-+1.

In other words, 6,1/, is the angle that the line segment
from (x;,p;) to (x;41,0;1) makes with the positive x di-
rection.

The central idea of our algorithm is to treat every node
(x;:.p;) of the piecewise-linear discretized curve as a facet
corner, and to then calculate the shocks and rarefaction

waves emanating from each node using the jump condi- *

tions (21) and (22) and the entropy condition (25). It will
be shown that the propagation of discontinuities thus gen-
erated is also a good approximation to the propagation of
the characteristics if the nodal point, together with the
adjacent linear segments, approximate a neighborhood of a
smooth point of the original curve.

A. Shocks

If only a single shock (facet corner) is known to em-
anate from the node (x?,)?) at time =0, then one needs to
use the jump conditions (21) and (22), instead of the
characteristic equations, to evolve this facet corner. From
Egs. (21) and (22), the new position (x,p2%) of the node
at time tr=A¢ is given by

cos 8,c;—cos O,

Sm(6,—0) (26)

xM=xd 4 At
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\ t= At
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FIG. 4. (a) A flux function that is neither convex nor concave. (b) The
characteristics and boundary curve at =0 and t=Az>0. The lines AB
and AC represent the shocks. Here ¢,=c¢,=0 are assumed.

sin 8,c;—sin Oc,

sin(6,—6,) 7

' =pl+ At

where 6,=0 i 1/2, 6,=0;1 12 c;=c(t=0,x; 0 0%.0,_1,,) and
¢,=c(t=0 x[ s y, »0:1 1,2)- Note that the rate function ¢ used
on the right-hand sides is evaluated on the initial point
(x2,37) at t=0. Thus, the integration scheme employed
here is first order in time (higher-order schemes will be
addressed in a future paper).
When the rate function ¢ depends only on the slope 6,
the slope of the segment between adjacent nodes (x;.y;)
and (x;,.1,Y;.1) will remain constant during the motion,
ie.,

Birar2

(Xiz1,Yie1) o
(Xi-1,Yi-1) b
A Wi
(%5,Yi)

FIG. 5. Discretization of a curve by a piecewise-linear function. Here
8i11/2 (—m <O,y 1,p<m) is the angle that the line segment from (x;,y;) to
(x;y 1,¥14+1) makes with the positive x direction, and related to the slope
by prp1p=tan(8. 1)
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VW, Vi 0- (28)
Xip1—X*; X=X

It is easily confirmed that Eq. (28) follows directly from
Eqgs. (26) and (27). Therefore, as in the case of character-
istics, the trajectories of nodal points (x;,y;) are straight
lines as long as they do not intersect other trajectories.

If the angles on each side of node (x;,y;) are equal,
0;_1,2=0:11,,=0, then the characteristic equations (11)
and (12), instead of Egs. (26) and (27), must be used:

xM=x0+ At[co(8)cos O+c(8)sin 6], (29)

yrt=p0 + At[co(6)sin 6—c(8)cos 0]. (30)

Again, the functions ¢(0) ==c(z,x,y,0) and cy=cy(t,x,9,0)
on the left-hand sides of Eqs (29) and (30) are all eval-
uated with the initial data (x, ,y,) and 7=0. Note that the
third equation (13) for the evolution of the angle 0 is not
solved here—instead, the extended angle variable 6 is cal-
culated at each time step from

using the usual conventions.

While some nodal points actually represent true facet
corners of the moving boundary, many of them are actu-
ally just a consequence of using piecewise-linear approxi-
mations to smooth segments [as the spatial discretization
about (x;,p;) is continuously refined, this node represents a
smooth point or a true corner according to whether or not
{6:112—6;_12] —»0]. The evolution of segments that re-
main smooth over a given time interval should really be
obtained from the characteristic equations (8)—(10),
rather than the jump conditions (21) and (22). However,
as we shall demonstrate below, the discretized shock equa-
tions (26) and (27) are also good approximations to the
characteristic equations if the piecewise-linear approxima-
tion is in reasonably accurate agreement with the smooth
curve.

Let 8 be the extended angle variable of the exact
smooth boundary at (x,p). Then, if a piecewise-linear locus
with node (x;,y;) = (x,y) approximates this smooth bound-
ary, we may write 6;,,,=0+06, and 6;,_,,=0+46_,
with 6 45 _ and |8t|<1. From Eqgs. (21) and (22), we
obtain

a’x, cos(6+5+)c(0+6 )—cos(6+6_)ec(0--5,)
dt sin(6_—6,)

i

=cg(0)cos O+c(8)sin O+ (|6, —b_1),

dy; sin(6+8,)c(6+8_) —sin(6+8_)c(6—5,)
dt sin(8_—6.)

=cg(0)sin 8—c(O)cos 0+ (|6, —5_]).

Thus, to first order in the angle discretization, the equa-
tions of motion for (x;,y;) regarded as a shock (i.e., a point
of slope discontinuity) agree with the characteristic equa-
tions (11) and (12) for the motion of (x;,y;) regarded as a

5178 J. Appl. Phys., Vol. 74, No. 8, 15 October 1993

smooth boundary point. The same can be seen by compar-
ing Eq. (19) with Eq. (8), and Eq. (20) with Eq. (9), in
the limit p;—p,.

When two shock trajectories intersect within a single
time step At, we use the following procedure. Let the rate
function ¢ depend only on the angle 6. Since the slope
remains constant and the shock trajectories are straight
lines during the motion, the time interval Ar* after which
two shocks intersect is easily determined. By setting

x?_,fl-—xi and solving this for Az, we obtain

At¥= —Ax/Au, (31
where Ax=x;, | —x; and Au=u; ,—u;, and
co8 8; 17¢(0;_1/5) —cos 8;_1,¢(0
e i+1/20(0;_12) i—1/2¢(611172) (32)

sin(0;_1/,—0111/2)

Of course, the same expressmn for Ar* could also be ob-
tained from the equation y% 1=V A If 0<Af* <At the

time step Ar* is used instead of Az, and the intersection

oint (xA‘* ,yA’* ) becomes a new node that replaces the
p i P

former nodes (x;,y;) and (x;y.p;1)-

If the rate function ¢ depends on the position (x,y) and
time ¢, the slope. between adjacent nodes (x;,y;) and
(x;11,9i11) is no longer constant, i.e.,, Eq. (28) does not
hold. Consequently, the true shock trajectories are no
Ionger straight lines and the intersection time As* cannot
be defined by Eq. (31) in the strict sense. However, by
taking the time step Az sufficiently small, one can force Eq.
(28) to hold approximately, but with high accuracy.
Within this small time step, one may apply the same
method as the one presented above to calculate intersection
of shocks for the case of c=c(z,x,,0).

B. Rarefaction waves

Suppose that the entropy condition indicates that a
single rarefaction wave develops from the node (x? ,y?)
given at time =0, as in the example of Fig. 2. (The nu-
merical implementation of the entropy condition will be
discussed in the next section.) Then, using a predetermined

-angle resolution A6, we choose a set of angle variables

{6'”} (0<n<N) such that ;=0 <o <@
<o <M =g with gL+ 9" L A, where 6,<0, is
assumed (0,=0; (, and 6,=0;,,,). With these dis-
cretized angles, the node (x;,y;) may be regarded as the
infinitesimal limit of a “round” corner, consisting of the set
of angles {8'™}. For each of such angles {6}, we solve
the shock-trajectory equatlons (21) and (22): the position
of the new node (xin 12Vt 12) associated with two ad-
jacent angles 8 and 6(’”' Y after a time step Az is given by

cos 9(n+1)c(9(n)) —.CO8 9(")0(9("+1))
sin(6™ — "+ D) ’
(33)

P 0
x€n+ 12=X; +At

sin 9+ De(6™) —sin W9 +1)
sin(g(n)__g(n+l))

J’f;+ 1/2=)’?+ Ar
(34)
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FIG. 6. (a) A facet corner of the curve, which may be viewed as the limit of a round corner ( inset). (b) The flux function f(p) with discrete values
of p. (¢) The convex envelope constructed from the discrete values of p. (d) The set of line segments ad,4,A;b represents the boundary curve shown
in the inset of (a). The arrows from A, and 4, are the shocks, whose horizontal components are given by s@1 and (42,

The functions ¢(8) =c(#,x,»,0) on the right-hand sides are
evaluated at the initial data (x? ,y?) and z=0, as before.

C. The entropy condition

We now discuss the numerical implementation of the
entropy condition (25). For simplicity, we consider here
only the system defined by Eq. (3) with the flux function
(i.e., sputtering yield) f(p) = c(p) \/1+pz. An algorithm
implementing the entropy condition for the general case of
Eq. (2) may be found in the Appendix.

Suppose the node (x;y;) has neighboring slopes
pi=tan 6; and p,=tan 6, with p;<p,, as shown in Fig.
6(a). We are interested in determining how this node will
develop into shocks and/or rarefaction waves, based on the
entropy condition (25). As in the case of the rarefaction
waves, we introduce a set of angle variables {6("}
(0<n<N), such that ;=0 <6V <gP <... <o
=@,, using the predetermined angle resolution A6
(8¢ +1 _ g™  AG). With p™™ =tan 6, the flux function
S (p) may be discretized, as in Fig. 6(b). Since p;<p,, we
need to construct the convex envelope of the flux function
over [p;,p,l, as shown in Fig. 6(c). The method to con-
struct such an envelope is as follows.

(1) First calculate the slopes of the flux function f(p)
over [p@ p™M] and [p p?], ice.,

, 35)
70 _pD (

5179 J. Appl. Phys., Vol. 74, No. 8, 15 October 1893

with (4,7)=(0,1) and (1,2).

(2) If the slope over [p'®,p‘V] is less than that over
[p(l),pm] (ie., sV <512y then we decide to keep the
point [p', £(p(1)], at least temporarily, and proceed to
the next step, i.e., compare the slope s'? over [pV),p¥]
with the next adjacent slope s‘** over [p‘® p'®].

(3) If the slope over [ p‘?,p'V] is greater than or equal
to that over [p(l),p(z)] (ie., sw'”,}s(l’z’), then we discard
the point [p'V, £(p'V)] and draw a straight line connecting
P9, £(p")] and [2®,£(p®)]. In the next step, we com-
pare the slope 5% over [p'® p™®] with the next adjacent
slope 5% over [pm,p(”].

(4) In general, we compare the slope s'*/) over
[p®pt] (i<j) with its right adjacent slope s+ over
[P, plHD] 1f s < s(5J+1) | then we proceed to the next
step; compare sU/+D with sUFLIAD, Ip sGD5(hi+D),
then we discard the point [p'/), f(p'/?)] and create a new
slope s/ over [p9,pt/ +17, Before proceeding to the
next step, we need to check if the new slope s*/*1) ig
greater than its left adjacent slope s over [p"™ p?]. If
not, then we also discard the point [p™”, f(p?)] and create
a new step s'™/* 1), Repeat this process until either the new
slope becomes greater than its left adjacent slope or the left
end point of the new slope reaches the left end point
[21.f(p)] of the interval. Then we proceed to the next
step; compare the new slope with its right adjacent slope
s+ LI+2)

(5) These processes are repeated until the right end
point [p,,f(p,)] of the interval is reached. In the case of
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p1>p,» we need to construct the concave envelope, instead
of convex envelope, and the above algorithm ought to be
modified accordingly. A more rigorous description of this
algorithm with use of the angle variable 6, rather than p,
will be presented in the Appendix.

In the case of the flux function in Fig. 6(b), the ap-
proximated convex envelope is given in Fig. 6(c). Corre-
sponding to the three chords over [p;,p'®], [p**,p*®] and
[p*%),p,), therefore, we conclude that three shocks emanate
from the node (x;,y;), based on Eqgs. (26) and (27). (In
this particular example, however, the shocks correspond-
ing to the chords over [p,p'®] and [p*®,p,] may be in-
terpreted as approximations of rarefaction waves, rather
than shocks.)

In the case of convex flux functions, such as the one in
Fig. 2(a), no discretized points [p™,f(p™)] between p,
and p, are removed by the entropy condition since
sl s glrtlntd) 4o the slope over [p'™ p*+ 1] is al-
ways less than that over [p"*1) p'"+2)]. The rarefaction
wave is thus obtained, as discussed in the previous section.
Evidently, by taking the angular grid size A8 sufficiently
small, one can approximate flux functions f(p) and their
envelopes with sufficient accuracy.

It is instructive to examine the geometrical meaning of
the entropy condition with the discretized slopes p™). As
in the case of the rarefaction waves discussed above, we
regard the node 4=(x;,p;) as the infinitesimal limit of a
“round” corner consisting of points 4™, n=1,2,3,... [see
the inset of Fig. 6(a)]. Let p represent the slope between
two points 4 and A", The shock trajectory from
each point A™ can be calculated from Egs. (19) and (20).
Equation (19) indicates that the quantities sOD angd 2
(ie., the slopes over the intervals [p@,p(V'] and [p'V,p'*]
in the p-f(p) plane) represent the x components of the
velocities of points A2 and 4®. Since the distance be-
tween these two points AV and 4@ is infinitesimally
small, it is clear that, if s“2>s‘"?), then the two shock
trajectories intersect immediately [Fig. 6(d)]: a new shock
trajectory must be calculated from the two slopes
P (=p)) and p' and compared with the right adjacent
shock emanating from point AP On the other hand, if
s <512 the two trajectories from 4" and 4® do not
intersect each other, and we now need to check if the tra-
jectory from point 4‘® intersects the trajectory from point
A™. It is easy to confirm that this geometrical process to
find the *“surviving” shock trajectories from node A is
equivalent to the entropy-condition algorithm presented
above. For the case of the flux function given in Fig. 6(b),
three trajectories are found to “survive,” as discussed be-
fore. ‘

For a description of the entropy-condition algorithm
appropriate to the general surface-evolution equation (2),
see the Appendix.

D. Geometric interpretation

We now briefly discuss the geometric meaning of the
shock trajectories obtained from Egs. (26) and (27). For
simplicity, we again consider a rate function depending
only on the slope, i.e., c=¢(0). Figure 7 shows the motion
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FIG. 7. The nodes A;_;=(x?_137 1), 4;=(2?),..., represent the
boundary curve at t=0. Here 8,=6;_,,, and 6,=0;, ;,,. The lines ab and
cd are parallel to the line segments 4,_;4; and 4, , with distances ¢; Az
and ¢, At, respectively.

of the line segments A, 4; and 4,4, . Since the perpen-
dicular velocity ¢ of the line segments depends only on the
slope, the line segments remain parallel to their original
orientations: after a time step Az, the segment 4; 4, must
lie somewhere on the line ab, and the segment A4, ;
somewhere on the line cd. It is easy to show that the new
node (x2,y2*) calculated from Egs. (26) and (27) is given
by the intersection 4¥ of ab and cd. Namely, the vector
AAY¥ represents a possible shock trajectory that emanates
from the node 4;= (x? ,y?). As we have discussed above,
however, the vector 44¥ is not necessarily the correct
shock solution, since many other shocks associated with
the angular range between 6, and 6, also need to be taken
into account, based on the entropy condition. If the differ-
ence between the two adjacent angles 6; and 6, is smaller
than the angular grid size A6, then the intersection A¥ will
be adopted as the new node corresponding to A;.

Vill. REPRESENTATIVE EXAMPLES

Using the algorithm described above, we now present
some representative examples of numerical calculations. In
most examples shown in this section, the slope dependence
of the rate function (i.e., etch rate) c is given by ¢,(8), as
defined by

co(9)

cos @

Fo(0) =——==1.454 743 cos 6 —0.464 719 cos 36"

+0.015 573 cos 56 —0.005 669 cos 76
—0.010 000 cos 99+0.010 552 cos 116
—0.006 204 cos 136+4-0.005 725 cos 156,

if —w/2<0<m/2, and f(0) =cy(0) =0 otherwise. Note
that f,(0)=1. The shape of this function is similar to the
one shown in Fig. 4(a). The flux function f,(6) is pro-
portional to that used in Ref. 3.

Figure 8 shows the inert ion beam etching of a trench
whose cross section is a semicircle at time #=0. The beam
is assumed to be vertical and the etch rate c=¢y(0) is
uniform in space. The masks are assumed to be nonerod-
ing. Some selected characteristics (i.e., shocks from nodal
points of the discretized curve) are also shown in the do-
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FIG. 8. The evolution of a semicircular trench due to inert ion beam
etching. The etch rate c=¢,(8), where ¢,(9) is given in Sec. VIII. The
boundary profiles are shown at different times (0<s<0.5) corresponding
to a constant time interval Ar=0.1. The masks are assumed to be noner-
oding. Some selected characteristics are shown in the domain x <0.

main x <0 to illustrate the formation of facet corners; the
configuration is symmetric about x=0. More characteris-
tics (i.e., shocks) than those actually shown in Fig. 8 were
used to obtain the boundary profiles in this calculation.
The boundary profiles are shown at equal time intervals
Ar=0.1 for 0<1<0.5. Evidently, two shocks (i.e., facet cor-
ners) are formed as a result of the merging of characteris-
tics.

Figure 9 shows the evolution of a rectangular trench
with the same rate function c=cy{0). Some selected char-
acteristics are shown for x < 0. No masks are present in this
case, and the facet corners denoted by a, B and A, k de-
velop as a result. Rarefaction waves are also visible at the
sections «—p and xk—A. It is also seen that the bottom of

i I T
0.0
JE—
L~
-0.4 t=00 /——/
o K
A
0.8 P —]
Y 7 " A
t=05
12}
S 1 } 1
205 0.0 05

FIG. 9. The evolution of a rectangular trench without masks under the
same conditions as those in Fig. 8. Some selected characteristics are
shown in the domain x <0.
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FIG. 10. The evolution of an initially flat surface due to inhomogeneous
beam etching, The etch rate used here is ¢(x,8) =c,(8)exp— (x/0)?, with
0=0.2. Some selected characteristics are shown in the domain x<0.

the trench becomes narrower as it evolves, creating a ta-
pered profile. This is due to the fact that the flux function
fo(8) approaches O relatively fast as 08— +=7/2. As op-
posed to tapering induced by sidewall passivation, we call
this intrinsic tapering, i.e., tapering caused solely by the 6
dependence of the etch rate function c(89).

Figure 10 is an example of spatially inhomogeneous
ion beam etching of a flat surface. The ctch rate here is
given by

c(x,0) =co(0)exp(—x*/d?),

with 0=0.2. Some selected characteristics are shown for
x <0; the formation of two facet corners is clearly visible.

In Fig. 11 we show a model of purely chemical etching,
with an etch rate that is spatially discontinuous. The etch

T T —
ool mask | mask |
’ e
]
(a)
05| N e | .
T T T
0.0 5 S = ' 7 T =
B )
t=0.25 (b)
-0.5 | | | -
-0.5 0.0 0.5

FIG. 11. Isotropic etching of layered materials. The etch rates are c=1in
the material I and ¢=2 in the material IL. (a) The initial profile. (b) The
evolution of the profile. Some selected characteristics are shown in the
domain x <0.
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FIG. 12. (a) Reactive ion etching with a shadowing (i.e., visibility angle)
effect. The etch rate is given by c=¢,(8) +0.2 if the surface is exposed to
the incoming etchant beam, and ¢=0.2 if not. (b) Some selected charac-
teristics.

rate here is assumed to be isotropic (i.e., independent of
the slope), but dependent on position. Figure 11(a) shows
the profile at t=0. There are two materials with different
etch rates: ¢=1 for material I, and ¢=2 for material II.
Noneroding masks partially cover material I. Figure 11(b)
shows the evolution of the boundary profile at equal time
intervals Ar=0.05, with selected characteristics shown for
x <0. The formation of the facet corners o and y is due to
the interaction of two groups of characteristics, one of
which represents a rarefaction wave emanating from the
mask corners, while the other corresponds to characteris-
tics originating from the boundary between materials I and
II. Mask undercut due to isotropic etching is evident in

- Fig. 11(b). Note that no particular conditions are applied
to the characteristics or shocks at the material interface
between I and II in this example. Our numerical scheme
automatically emanates necessary characteristics from the
interface.

Figure 12 shows a model of reactive ion etching, where
the etch rate is given as a sum of isotropic and nonisotropic
components. The initial shape of the material is given by
the curve denoted by #==0 in Fig. 12(a). As in the previous
examples, the incoming etchant (i.e., reactive ion) beam is
assumed to be vertical [as indicated by an arrow in Fig.
12(a)], and no reflection of the etchants or redeposition of
sputtered materials are taken into account. Therefore, the

part of the initial surface indicated by a—f—y in Fig.
" 12(a) is not exposed to the directional etchant beam, and
is subject only to isotropic chemical etching. In other
words, the etch rate here is given by

C=C0(9) +O2,

if the surface is exposed to the beam, and ¢=0.2 otherwise.
This shadowing (i.e., visibility angle) effect results in the
development of the three facet corners «, A, and p from the
initial point a. The procedure for calculating visibility an-
gles used in this calculation will be discussed elsewhere.
Selected characteristics are shown in Fig. 12(b).
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IX. DISCUSSION AND CONCLUSIONS

A new surface-evolution algorithm, based on the
Hamilton—Jacobi equation (2) and entropy condition
(25), has been presented. In this method, which may be
characterized as a shock-tracking method, all shocks (i.e.,
facet corners) and rarefaction waves emanating from slope
discontinuities are obtained directly from the entropy con-
dition, and their propagation is computed from the jump
{Rankine~-Hugoniot) condition, i.e., Egs. (21) and (22).
The propagation of characteristics is shown to be well ap-
proximated by the jump condition.

Since we have used the lowest-order finite difference
scheme in evaluating space gradients, the surface (curve)
representation used in this method is the same as that of
most “geometric” models—a sequence of nodal points
joined by linear segments. This facilitates a comparison of
the shock-tracking method with the more-naive geometric
models. The shock-tracking method, which has been de-
rived from first principles based on a well-defined physical
system, indicates the “correct” way of advancing the nodes
and segments that represent an evolving surface.

Unlike most characteristics calculations of evolving
surfaces, the shock-tracking method requires no geometric
adjustments, such as “delooping,” when intersections of
characteristics occur, The entropy condition implemented
in the shock-tracking method automatically selects the
physically meaningful solution. As mathematical theory of
the Hamilton—Jacobi equation!™" and systems of conser-
vation laws!!® indicates, the equation of motion of the
surface, Eq. (2) or Eq. (3), has a unique “weak” solution
if and only if the entropy condition (25) is satisfied. As
noted in Refs. 1 and 2, calculating the locus of the char-
acteristics or employing Huygens’ principle does not pro-
vide a sufficient criterion for eliminating nonphysical solu-
tions such as loops.

Numerical solutions of the initial-boundary problem
for PDE (5) with a sufficiently small diffusion constant v
provide a good approximation to the viscosity solution.’
Various numerical techniques to solve such problems have
been developed, especially in the context of gas dynamics
and systems of conservation laws. Typical finite-difference
methods employ the combination of a Lax—Wendroff-type
scheme and the upwind scheme to deal with large gradients
of the solutions. Even if v is set to zero in Eq. (5), such
finite-difference schemes introduce a “numerical” diffu-
sion, i.e., they effectively include a diffusion term on the
right-hand side. While various schemes have been devised
to minimize this numerical diffusion and treat the shocks
with sufficient accuracy, the shock-tracking method dis-
cussed in this paper explicitly solves for the slope discon-
tinuities without any diffusion effects.

Although the PDE approach based on Eq. (5) can
easily accommodate the complicated geometry of a moving
boundary, the equation needs to be solved over the entire
x-y plane as an initial-boundary-value problem, rather than
specifically on the location of the moving curve ¢(zx,y)
=0. This makes the PDE calculation less efficient in case
of relatively simple geometries, such as the boundary
curves observed in reactive ion etching.
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FIG. 13. The line segments adb represent the boundary curve at ¢=0.
The vectors (u;,v,) and (#,,v,) denote the velocities of shocks emanating
from A.

Solving the PDE on a (fixed) spatial grid also requires
the rate function ¢ to be defined on the entire x-y plane.
Although this was true in most of the simple examples
given above, it is not necessarily the case when more real-
istic physical or chemical considerations are taken into ac-
count. For example, if the etch rate is influenced by the
shadowing (i.e., visibility-angle effect) of the incoming ion
flux, then c is defined only on the boundary curve ¢=0. As
shown in Fig. 12, such a situation can be easily handled by
the shock-tracking method. The problem of the rate func-
tion may be avoided by solving Eq. (6) [or (3)], as shown
in Ref. 3, but the geometry of an evolving curve is then
limited to forms describable by y=u(x,t), which precludes
the possibility of “undercuts.”

The shock-tracking method is thus especially suited to
the surface evolution problem in reactive ion etching,
where sharp corners are known to develop, even from a
smooth initial profile. By reversing the sign of* the rate
function ¢, the method can also be applied to certain dep-
osition problems (e.g., a realistic simulation of reactive ion
etching might have to incorporate a simultaneous redepo-
sition flux of sputtered materials). These issues will be ad-
dressed in a future paper.

APPENDIX: THE ENTROPY CONDITION FOR ¢

Here we extend the entopy-condition algorithm dis-
cussed in Sec. VII C to the general case of Eq. (2), using
the extended slope angle variable 6 (—7 < 8<w). Consider
the node 4, whose left and right adjacent angles variables
are 6;and 6, (6546,), as shown in Fig. 13. Choose an angle
0, (—m<6;<m) between the two angles 8; and 6, in the
sense that 6,=0,+a Ap(mod 27). Here 0<a <1, and
Ap=06,—0;(mod 27) (—7<A@<w) denotes the differ-
ence between the two angles of the adjacent line segments.
The shock trajectories associated with the pairs of angles
(6;,6,) and (6,,6,) may be calculated from Egs. (21) and
(22): their velocity vectors are given by (u;,v;) and
(uy,v,), where
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__cos 0,¢(8;) —cos 6¢(6y)
“= sin(0,—6;) ’

c(6y)
cos 0;

sin 6,¢(6;) —sin 8¢(8,)
sin(Gl-—Gl) ’

and similar formulas hold for (u,, v5). The angle B formed
by these velocity vectors is given by

sin B= Uty (uy—uy) f(61)
V@i +o) (u5+03)  (ui+o)) (w5 +03)

where the relations f(0)=c(0)/cos8 [Eq. (16)],
vy=tan 6,u;— £(0,) and v,=tan 6,u,— f(6,) are used. If
B is sufficiently small (or, more loosely, —m/2<B<mw/2),
the sign of [ is equal to the sign of (u,—u;)cos 6,¢(6;).
(In our system, ¢>0 and ¢<0 indicate “etching” and
“deposition,” respectively.)

It is clear from the geometric discussion on shock tra-
jectories emanating from a single point [Fig. 6(a)] that if
the angle difference B is positive, then the two shock tra-
jectories do not intersect. On the other hand, if B is nega-
tive, then the two shocks intersect each other at the mo-
ment they start to propagate, and a new shock trajectory
must be constructed with the use of the slopes 6; and 6,.

It is straightforward to generalize this argument to the
case where we have many discretized angles {6} (n
=1,2,...) between 8, and 0,. If Ap=0,—0,(mod 27) de-
fined above is positive, then the numerical implementation
of the entropy condition may be given by the following
algorithm. 7
(1) Choose the discretized angles {6} (n=1,2,...,N)
based on the predetermined angular grid size A9, i.e.,

vy=u; tan 0;—

61< 6(1) <9(0) PRl <6(N)’

where Oy=0,(mod27) and 6"tV AG. Set
0'9 =9, and let [67,0)°] denote the interval of 8 given by
g(i)<9<9(1)_

(2) We now inductively define the set

=1 9(0)’9(1,1(1))] J 9(/’,,(1)),9(},,(2))] yoees
X [@UAm(m =1 gUnlm(m)N]}

of m(n) intervals [1<m(n)<N] for each n (1<n<N2).
Here m(n) and j,(k) [£k=0,1,2,...m(n)] denote integer
functions of » and k, respectively. The function j,(k) also
depends on n (1<n<N), satisfying the relation
Jdm(n))=n for all n. The definition of .#, is given as
follows:

(i) Set Zo={[0V,6'V]}.

(ii) Suppose that

Fo={ [9(0),9(1,,(1))] , [9(1',,(1))’90,,(2))]"__,
X [g(j,,(m(n)—1))’9(1',,(m(n)))]}

is given, where m(n)>1. Then define %, ; from the fol-
lowing procedure.
(a) Consider the set of integers

{0,72(1),/n(2)5crjkm(n)),n+1}.
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Let p be a positive integer and set p:=m(n).
(b) Calculate

P = (S 1@ __ linP)sIn(P= 1) co5 @/n Pl (In(P)),
where s/ is the same quantity defined in Eq. (35), i.e.,

cos 0Pc(64)) —cos 80c(8)
sin(B(f)—Om)
(c) If .Z >0, then define m(n+1)=p+1 and a new
set of integers,

{O’jn+l(1)’jn+1(2)""’jn+1(p)sjn+l(P+ 1)}

:={0,j(1):jn(2)3-~'9jn(p):n+1}- (Al)

Note that j(,, 1){m(n+1))=jr1(@+1)=n+1. This is
the end of procedure in defining . ,; proceed to (iii).
(d) If .Z <0, then there are two possibilities.
(d1) If p=1, then define m(n+1)=1 and
Jnprlm(n+1))=j,1(1)=n+1. In other words, a new
set of integers {0,/,,.1(k)} with k=1=m(n+1) becomes

{0,r-1}. (A2)

This is the end of procedure in defining . ,; proceed to
(iii).
(d2) If p>2, then set p:=p—1 and return to (b).
(iii) Using the newly defined set of integers
{0,j,11(K)} [1<k<m(n+1)=p+1] given in (Al) or
(A2), we define

y"+l={[9(0),9(i,,+1(1))], [g(fn+1(1))’9(1'“1(2))],_",

s —

X [e(jn+1(m(n+ n— 1))’9(jn+1(M(n+ 1)))] }.

(3) From the above inductive definition for %, we even-
tually obtain
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yN={[9(0),9(iN(1))] ,[BUN“)),GUN(Z))] y
X [@UMmIN—1) gUMm(NNT Y,

The m(N) shocks associated with the pairs of angles
(Q(fzv(i))’e(l']v(i+1))) [0<i<m(N)] with PUN®) . g0 — 6;
emanate from the nodal point.
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