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Thermal energy of the crystalline one-component plasma from dynamical simulations

R. T. Farouki and S. Hamaguchi
IBM Thomas J. Watson Research Center, P.O. Box 218, Forktown Heights, New Y'ork 10598

(Received 5 February 1993)

Molecular-dynamics simulations employing 1024 particles and a high-accuracy spline approximation
of the Ewald potential have been used to measure the excess internal energy of the classical one-
component plasma in both the fluid and solid (bcc) phases over a wide range (1 & I & 2000) of the cou-
pling parameter. The energy data for I & 300 are in excellent agreement with previous Monte Carlo cal-
culations for this range, giving an independent corroboration of these calculations. Data in the crystal-
line regime 170& I & 2000 are used to estimate the coefficients of the anharmonic energy component by
least-squares fits. The first coefficient is in reasonable agreement with peturbation-theory predictions, al-
though it is argued that determination of the coefficients in this manner is a rather ill-conditioned prob-
lem. The free-energy curves of the Quid and solid phases are found to cross at I =173, in agreement
with recent estimates.

PACS number(s): 52.25.Kn, 52.65.+z, 64.30.+ t, 64.70.Dv

I. INTRODUCTION

The classical one-component plasma (OCP) is an ideal-
ized system of mobile ions of charge Ze, number density
n, and temperature T, immersed in a neutralizing back-
ground of uniform charge density p= —Zne. The OCP
thermodynamics may be uniquely described in terms of
the dimensionless coupling parameter

where a = ( 3/4~n )
' ~ denotes the Wigner-Seitz radius;

see [1—3] for reviews. The OCP "equation of state" has
been the subject of extensive Monte Carlo (MC) calcula-
tions [4—13] employing the Ewald potential, which yields
data pertinent to an infinite periodic system from simula-
tions using only a finite number X of particles confined to
a cubical volume.

By fitting simple functional forms, guided by theory, to
the measured excess (i.e., potential) energy per particle
U,„/NkT for both fiuid and solid phases of the OCP, it is
possible to obtain the Helmholtz free energy as a function
of I, and hence to deduce the pressure and entropy in
terms of I . Furthermore, the intersection of the Quid

and solid free-energy curves gives the value I of the pa-
rameter (1) that identifies the phase transition.

The value of I has an interesting history. In their
pioneering study [4] Brush, Sahlin, and Teller observed
phase changes of a 32-particle system at I =125 using a
rough approximation to the Ewald potential. Subse-
quently, Hansen [5] and Pollock and Hansen [6] deduced
the value I = 155+10using a more sophisticated Ewald
approximation and fitting of the excess energy to analytic
expressions. However, DeWitt [7] doubted the accuracy
of Hansen's data for large I, which motivated Slattery,
Doolen, and DeWitt [8] to perform extensive new calcu-
lations with a very accurate potential.

Introducing a new functional form [14] for the fiuid en-
ergy, they concluded that I = 168+4 for N = 128, add-

ing in a note in proof that calculations with larger N sug-
gested the value 171+3. Based on the same data, a later
study [9] of the N dependence gave I =178+1,but this
prompted Ogata and Ichimaru [11] to question the
"center-of-mass correction" for the Quid phase; with ad-
ditional simulations they inferred that I = 180+1.

Following [6], all these studies have assumed, in fitting
the solid data, that the lowest-order anharmonic com-
ponent of the lattice thermal energy is proportional to
T . However, recent analytic work based on thermo-
dynamic perturbation theory shows this assumption to be
erroneous, and furnishes a numerical value for the
coefficient of the anharmonic component proportional to
T [15—17]. Incorporating this lower-order term [17]
reduces I to —172. In terms of empirical fits to the
then-available MC data, which extended only to I =300,
use of this term did not greatly improve the quality of fit
or allow an independent verification of its coefficient.

However, DeWitt and co-workers had already in-
dependently observed [12,13] that inclusion of such a
term would give better agreement at I =300. More re-
cently, DeWitt, Slattery, and Yang [18] have quoted MC
results for the anharmonic energy at I =400 and 800 that
appear to agree well with the predictions of [17]. In the
present study, we attempt to fit anharmonic energy mea-
surements over a wide range of I values to two-, three-,
and four-term expressions, and we assess the leve1 of
confidence in the computed coefficients in view of the fact
that the anharmonic component is only a minuscule frac-
tion of the total energy.

Our own interest in the OCP is as the formal limit of a
model that we are developing to describe the thermo-
dynamics of strongly coupled systems of charged particu-
lates in plasmas [19,20], based on dynamical simulations.
We will report on this, incorporating the present OCP
data, in due course.

II. SIMULATION SCHEME

We take for units of mass, length, and time, the ion
mass I, the ion-sphere radius a, and V3co ', where
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co=(4mZ e n/m)'i is the ion plasma frequency. The
equations of motion are then

d'r,
V@(rk —r. )

dt J(Wk)
(2)

for k =1, . . . , N, where N denotes the Ewald potential
[4]

erfc(&mr /L) 1

L
erfc(&mlr+nL I/'L)

Ir+nL
In (%0)

exp( —m'lnl )cos(2mn r/L)
m-Inl'L,

for the interaction of ions k and j at separation
r=rk —r .. Here erfc ( ) is the complementary error func-
tion, L =(4mN/3)' is the side length of the simulation
volume in units of a, and n is a vector with integer com-
ponents. The potential (3) is used in conjunction with the
usual "minimum image" convention [21] for cubical
periodic boundary conditions.

The infinite lattice sum in (3) was approximated in the
simulations by evaluating it to a relative accuracy of
—10 ' on a uniform grid of points and interpolating
these values by a cubic C tensor product spline function
(using cubical symmetry to minimize computational and
memory requirements). We used a true spline function,
which has "smoothness" properties that are not matched
by local Hermite interpolation schemes, such as that de-
scribed in [10]. The approximation error diminishes in
proportion to the fourth power of the sampling interval,
so the accuracy is limited only by the available memory
for storing the grid-point values.

However, tests showed that refining the grid beyond a
certain point had no further discernible inhuence on ther-
modynamic variables. Consequently, we chose a grid
density sufficient to guarantee a mean relative error
-2X10, and a maximum &10, based on random
sampling. Dynamical simulations require the gradient of
the potential (3), and its derivatives, in computing forces
between particles and in starting up the integration
scheme; these are readily obtained from the spline repre-
sentation. By careful optimization, it was possible to
reduce the cost of computing the spline approximation
for the anisotropic component of interparticle forces to a
point where it was comparable to that of the isotropic
term alone.

The equations of motion (2) were integrated using a
predictor-corrector scheme in which the variation of the
force on a particle over each time step is extrapolated
from a quadratic fitting polynomia1 that interpolates its
value at three preceding instances. Forces are obtained
by pairwise summation over all particles, and the integra-
tion proceeds on an asynchronous time front with indi-
vidually adjusted steps to ensure uniformly accurate tra-
jectories under varying conditions. The integration com-
mences using a high-order Taylor-series expansion for the
accelerations d rk/dt, obtained by repeated symbolic
differentiation of the right-hand side of Eq. (2).

To emulate averages over a canonical ensemble of fixed
I (temperature), we periodically synchronize all particles
and renormalize their velocities [22] to bring the system
kinetic energy into agreement with the target I value.
This also affords an opportunity to sample the system
properties before restarting. Empirically, At = 1 was
found to be the optimum interval between successive
temperature adjustments; mean thermodynamic proper-
ties were essentially unchanged upon adopting smaller in-
tervals (which would degrade the program speed some-
what).

Fractional errors in the total system energy over each
integration period were —10 at I =1, decreasing to
—10 at I =1000. Thus, although at I =1000 the
thermal motions represent only -0.1% of the total ener-

gy, this kinetic energy is nevertheless accurate to about
four significant digits (the ratio of the actual system po-
tential and kinetic energies differs from I by a numerical
factor that is -2.5 at I = 1 and —1.7 at I = 1000).

N=1024 in all simulations reported here; residual
small-number effects are expected to be negligible. Most
runs began with the particles on a bcc lattice and a
Maxwellian velocity distribution corresponding to the
target I . All cases with I &160 melted, in agreement
with the observations of [8]. For I ( 100 the melting was
very sudden, and the system rapidly lost "memory" of its
initial crystalline configuration. For I 100, however,
melting was slower (but still within the first 100 time
units) and the final excess energy seemed to be slightly
influenced by the initial configuration. Therefore cases
with 100~I (180 were repeated with random initial
configurations. All runs were evolved for at least 300
time units, allowing the system to equihbrate to the
desired I value for the first 100 or 200 units before
averaging its properties over an additional 100 or 200
units.

We do not report here on simulations of "freezing" of
the OCP at I ) I from random initial configurations.
The time scale for this is typically much larger than that
for melting and the resulting crystalline form is often
quite defective, even if N is exactly compatible with a bcc
or fcc lattice aligned with the simulation volume [18,23].
Correspondingly, the measured energy is not representa-
tive of the perfect crystalline phase.

III. THERMODYNAMIC MEASUREMENTS

Each time the OCP simulation is synchronized for
temperature adjustment, the excess energy per ion in
units of kT is computed using the expression [4]

Uex Em 1'" =I +—g g C&(rj —r„), (4)
NkT 2 N J.

where

1 —2. 837 297 479E =lim 4 r ——
r~o r L

After settling, averages of 100 or 200 consecutive mea-
surements of (4) are obtained, together with rms disper-
sions.
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Ut

NkT
U,„—Uo

NkT
(6)

In Table I we compare data for the range 1 (T + 300,
averaged over 200(t (300, with the MC data of [8].
Here "type" indicates the number of particles, and either
a random (L) or bcc lattice (S) initial configuration. Al-
though the quoted uncertainties for our data exceed those
of [8] by more than an order of magnitude, the agreement
between the data sets is evidently much better than would
be expected on the basis of these "errors. " In our dynam-
ical simulations, the measured rms energy deviations
largely represent true thermodynamic fluctuations for an
N =1024 system, and cannot be made arbitrarily small
(as with the MC method) by sufficient averaging.

Thus it would be overly pessimistic to interpret the rms
fluctuations given in Table I as estimates of the actual un-
certainty in our nominal energy values. Since we have no
means of deducing more realistic error bounds on our en-
ergy data, we shall use only unweighted least-squares fits
to this data. The most significant discrepancies in Table I
occur at I =160, near the phase transition, where large-
scale fluctuations become important.

The thermal part of the excess energy is defined by

U,„ =a I +bI'+c +d I (8)

for various exponents s. As a measure for the quality of
the fit we use o., the square root of the sample variance
[24]. Data for 160(I (180 were excluded from these
fits, as they are conspicuously more noisy than those for
I &160.

Table II shows the computed coefficients of (8) for vari-
ous exponents s; compare with Table II of [12]. We find

where

Uo = —0.895 929 256I
NkT

represents the Madelung energy of a zero-temperature
bcc lattice. With the MC method, it is customary —for
the solid phase, at least [ll]—to multiply (6) by the fac-
tor N/(N —1) to correct for motion of the system center
of mass. This correction is superfluous in dynamical
simulations, where (apart from minuscule integration er-
rors) the center of mass is immobile.

Following [12], we have computed (unweighted) least-
squares fits of our fluid data for 1 ~ I ( 150 to the form

TABLE I. Comparison of the present results for the OCP excess energy for 1 ( j. (300 with those of
Ref. [8].

U,„/Nk T
SDD

Type
Present results

U,„/Nk T Type

1

2
5

10
15
20
30
40
50
60
80

100
100
120
120
140
140
150
150
160
160
170
170
180
180
190
200
220
240
260
280
300

—G. 572+0.000
—1.320+0.000
—3.757+0.000
—7.998+0.001

—12.318+0.001
—16.673+0.001
—25.441+0.001
—34.255+0.001
—43. 102+0.001
—51.961+0.001
—69.725+0.001
—87.522+0.001

—105.345+0.002

—123.188+0.002

—132.110+0.002

—141.036+0.002
—141.716+0.009
—149.970+0.001
—150.697+0.002

—159.667+0.002

—177.603+0.001
—195.536+0.002
—213.463+0.001

—267.233+0.001

686 L
686 L
686 L
686 L
686 L
686 L
686 L
686 L
686 L
686 L
686 L

1024 L

1024 L

1024 L

1024 L

1024 L
250 S

1024 L
686 S

432 S

686 S
432 S
686 S

686 S

—0.572+0.012
—1.322+0.012
—3.755+0.013
—8.002+0.020

—12.311+0.021
—16.668+0.023
—25.438+0.022
—34.258+0.027
—43.093+0.027
—51.963+0.021
—69.727+0.031
—87.524+0.026
—87.532+0.029

—105.342+0.030
—105.335+0.031
—123.188+0.034
—123.194+0.030
—132.102+0.031
—132.104+0.033
—141.055+0.030
—141.666+0.049
—149.972+0.034
—150.698+0.031
—158.894+0.037
—159.670+0.033
—168.638+0.030
—177.606+0.037
—195.534+0.032
—213.461+0.027
—231.385+0.028
—249.309+0.029
—267.233+0.032

1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 L
1024 S
1024 L
1024 S
1024 L
1024 S
1024 L
1024 S
1024 L
1024 S
1024 L
1024 S
1024 L
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
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TABLE II. Coefficients of least-squares fits to Quid energy data. The column headings a, b, c, and d

corrrespond to Table II of Ref. [12].

0.25
0.30

1

3

0.35
0.40
0.50

—0.898 13
—0.898 79
—0.899 32
—0.899 62
—0.900 65
—0.903 53

0.986 86
0.693 50
0.564 84
0.51347
0.395 25
0.255 81

—0.91095
—0.417 25
—0.203 88
—0.11926

0.074 47
0.303 15

0.250 98
0.049 77

—0.035 55
—0.069 12
—0.145 55
—0.236 31

0.0036
0.0036
0.0039
0.0041
0.0052
0.0086

that values s between 0.25 and 0.35 give fits of essentially
equal quality: our data to not particularly favor s =—'

3

over s= —,', as suggested by Stringfellow, DeWitt, and
Slattery [12], and our cr values are only slightly larger
than theirs (including the data for 160~ I 180 does not
inhuence the relative quality of the fits, although all are
somewhat degraded). Since it has a theoretical basis [14]
and performs as well as any other, we prefer the s =—' fit.4

As seen in Table I, our solid energy data for
170~ I ~ 300 are also in excellent agreement with that of
[8]. Further simulations with I up to 2000 have been
performed: we present data for the excess thermal energy
(6) of the solid phase for the entire range 170~ I ~ 2000
in Table III. Since this thermal energy is just a small
fraction of the static energy (7), we have used averaging
over 100 & t ~ 300 to reduce noise. For the cases I = 170,
180, and 190, the system had not fully settled by t =100,
so it was evolved for an additional 100 units of time and
averaged over 200 & t ~ 400.

We exclude data at r ~ 160 in considering the solid en-
ergy because of large fluctuations in this regime, and fit to

TABLE III. Thermal part of crystalline OCP excess energy
for 170~ I ~2000.

the form [17]

Uth 3 A) A~ A3=—+
NkT 2 I

where —,
' is the harmonic component of the thermal excess

energy and the terms with coefficients A„Az, A3, . . .
represent anharmonic contributions.

In their early study [6], Pollock and Hansen argued
that A, is identically zero and they neglected the A 3 and
higher terms in (9). This assumption was adopted by all
MC studies [6—11] up to [12], and for I 5 300 it can give
reasonable empirical fits to the energy data. However, it
is completely inconsistent with our extended data for
I ~ 300 in Table III. To illustrate this, Fig. 1 compares a
three-term least-squares fit of the form [9] to our solid
data (solid curve) with one assuming that only Az&0
(dashed curve).

The numerical coefficients of the three-term fit are
found to be

A i =9.65+0.32, A~ =840+171,

A 3
= ( 1.101+0.216 ) X 10

(10)

and the square root of the corresponding sample variance

170
180
190
200
220
240
260
280
300
320
350
400
450
500
550
600
700
800
900

1000
1200
1500
2000

U,h /1VkT

1.6089
1.5987
1.5894
1.5823
1.5715
1.5620
1.5564
1.5508
1.5453
1.5417
1.5375
1.5311
1.5265
1.5249
1.5211
1.5194
1.5154
1.5129
1.5114
1.5103
1.5087
1.5066
1.5044

Type

1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S
1024 S

1.62

1.60—

1.58—
I—

1.56
z',

1.54—

1.52—

1.50
400 800 1200 1600 2000

FIG. 1. Thermal energy of crystalline OCP for 170&I
~ 2000 from the simulations (circles) and a three-term fit (solid
curve) of the form (9). The dashed curve shows how poorly a
one-term fit with only A&WO performs.
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TABLE IV. Coefficients of two-term fits for various ranges of TABLE V. Coefficients of three-term fits for various ranges
of I .

Range

170~ I ~400
170~ r ~800
170+ I + 2000
400+ I +2000
800~ I ~2000

No.

12
18
23
12
6

Al

7.65
8.12
8.19
8.82
9.09

1806
1711
1697
1511
1088

0.0009
0.0010
0.0009
0.0005
0.0003

Range

170~I ~400
170~I ~800
170+I ~2000

No.

12
18
23

10.90 247
10.02 654
9.65 840

A3

1.765 X 10' 0.0005
1.314X 10' 0.0006
1.101X10' 0.0006

3
&

=8. 18+0.52 A 2
=2396+493

A 3
= ( —3.614+1.444 ) X 10

A4 =(4.296+1.306) X 10

(12)

giving a slightly smaller dispersion, 0.=0.0005, than the
three-term fit.

Overall, we favor the three-term fit. It gives an appre-
ciable reduction in o. over just two terms, while inclusion
of a fourth term yields marginal further improvement,
and its coefficients appear to have larger uncertainties
(see also the Appendix). Nevertheless, it should be borne
in mind that the computed values (10) may differ some-
what from theoretical predictions on account of their try-
ing to "compensate" for the omission of higher-order
terms. Fixing A, =10.84 [17] in the three-term fit gives
32=221 and 23=1.837X10 with o. =0.0008, some-
what higher than the unconstrained fit (10).

We have also tried fitting to subsets of the data in
Table III for various ranges in I . If the series (9) is con-
vergent, the first term will dominate at sufficiently large
I, and one expects that the most accurate determination
of A, could be obtained by fitting to data at large I

is 0.=0.0006. The uncertainties are based on standard
estimates [24]—see also the Appendix —assuming that
the measured energy values have uniform errors of order
0.

The above A, values agrees reasonably well with the
perturbation-theory predictions: 10.9 [16] and 10.84 (for
N~ ~ ) [17], though not with the value 3.65 of [15].
However, it should be noted that these coefficients are
quite sensitive to small changes in the data of Table III,
and we believe the quoted errors are probably too op-
timistic; see the Appendix.

Furthermore, two- and four-term expressions of the
form (9) give fits of comparable quality with rather
different values. For the former, we obtain

3 i
= 8 ~ 19+0.20 A 2

= 1697+44

with 0.=0.0009, and for the latter

values only, provided they are adequate in quantity and
quality. [If one accepts the values (10), the Az and A3
terms contribute nearly 50% of the anharmonic energy at
I = 170, but less than 5% at I =2000.]

Results for two-, three-, and four-term fits are shown in
Tables IV—VI. In the three-term fits, a tendency for 2

&

to decrease away from the perturbation-theory prediction
is evident as one includes data at larger I, while the op-
posite seems to be true for the two- and four-term fits.
However, as we shall argue in the Appendix, it is not
clear whether these trends can be regarded as significant.
Three- and four-term fits to the 400 + I ~ 2000 and
800 ~ I ~ 2000 data resulted in an erratic behavior of the
coefficients (although the o values were quite small), most
likely because the A3 and A4 terms cannot be reliably
determined in this range.

IV. DISCUSSION

Figure 2 shows the fitted thermal energies for the Quid
and solid phases for the range 1~1 +350. The corre-
sponding excess Helmholtz free energies are defined by
the integral [5]

ex p I ex dI
NkT ~0 Nkr r (13)

b —da+ + 1.1516
S

(14)

for the Quid phase, and

+F

A2

2I
A3 —1.8856
3I

(15)

for the solid phase (the integration constants are from
[12]).

Thus, for the forms (8) and (9), adding the ideal-gas con-
tribution gives [12] the total free energy

sr' —dr-'
NkT

= r+" " +(3+)lr

TABLE VI. Coefficients of four-term fits for various ranges of I .

Range

170~ I +400
170+ I +800
170+ I ~2000

No

12
18
23

5.98
8.06
8.18

3911
2502
2396

A3

—6.987 X 10
—3.892 X 10
—3.614X 10'

A4

6.740X 10
4.525 X 10'
4.296X 10

0.0004
0.0005
0.0005
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2.5

2.0

1.5

1.0

0.5

oo0

so if an accuracy of 1% in its value is desired, the total
energy must be known to a relative accuracy of between
10 and 10 over this range. Although our data are
nominally of such an accuracy, we argue here that the
least-squares procedure for determining the anharmonic
coefficients A„A2, . . . is intrinsically rather ill condi-
tioned (i.e., the values of these coefficients can be sensitive
to small perturbations in the energy values), and thus a
measurement accuracy of 1% for the anharmonic energy
may be inadequate for a reliable estimation of its
coefficients.

We begin by rewriting (9), for an m-term fit, in the
form

0.0
0 50 100 150 200 250 300 350

r
FIG. 2. Fitted thermal excess energies for the Quid and solid

OCP phases. Open circles represent values that are omitted
from the fits.
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APPENDIX: LEAST-SQUARES SENSITIVITY ANALYSIS

The anharmonic component diminishes from -0.1%
of the total energy at I =170 to -0.001%%uo at I =1000,

Using the s =
—,
' fit to the Quid data and the three-term

fit to the entire range of solid data, we find that the free-
energy curves cross at I = 173, in reasonable agreement
with the value determined in [17] using the theoretical
coefficient 2 l =10.84 together with MC data taken from
[9].

In conclusion, we have shown that molecular dynamics
can be used to measure the OCP internal energy over a
wide range of I to an accuracy approaching that of the
MC data, although the averaging is over far fewer
configurations. A large range of energy measurements
for the solid phase was made in order to estimate the
anharmonic coefficients by least-squares fits. A three-
term fit gives better results for 170~I +2000 than a
two-term fit, but with an A, value some —10% lower
than perturbation-theory predictions [16,17]. In view of
the sensitive nature of the fitting process (see the Appen-
dix), however, this discrepancy may not be significant.
Fits with four or more terms are not warranted by the
quantity and quality of the data.

Note added in proof. Further simulations have been

performed at large I using an Ewald potential approxi-
mation an order of magnitude more accurate than that
used initially. Energy values obtained from these runs
were found to be systematically slightly higher than listed
in Table III (the anharmonic component was a few per-
cent higher at I =300 and ~ 10% higher for I ~ 1000).
A two-term fit to 12 new anharmonic energy values for
300 & I ~ 3200 gives 3 l

= 11.1+0.2 and A z
=810+68.

u(y)= g a„y
k=1

where u = U,h /NkT —,', y =—I /I „and the "characteris-
tic" value I, will be chosen so as to give commensurate
reduced coefficients ak = Ak /I," [with I,= 100 the
values (10) yield a, =0.097, a@=0.084, and a3 =0.110].

If u l, . . . , u„are the anharmonic energies measured
at n values yl, . . . , y„, we wish to minimize the sum

n m 2

x'= g
i=1

u, —y a, y,
"

k=1
(A2)

Setting the derivatives of y with respect to a„.. . , a
equal to zero gives the normal equations

Xy;"'"' ak= Xy;'u;
k=1 i =1 i=1

(A3)

for j =1, . . . , m. In terms of the n Xm Vandermonde
matrix S with elements

S p=y
—P

and the vectors a=(a„.. . , a ) and u=(u„. . . , u„),
Eq. (A3) can be written in matrix form as

(S S)a=S u . (A4)

for j =1, . . . , m, where 8 proves to be the jth diagonal
element of (S S) ' (the error bounds quoted in Sec. III
above are based on this formula).

As is well known, the normal equations (A3) can be
quite ill conditioned, and unsophisticated solution pro-
cedures may induce large arithmetical errors. However,
we have verified the accuracy of our solutions by
representing the y l, . . . , y„and u l, . . . , u„values to
high accuracy as rational fractions and solving for
a„.. . , a in exact rational arithmetic. What concerns

The forrnal solution for the coefficients is then simply

a=(S S) 'S u . (A5)
Once al, . . . , a are determined, a numerical value

can be computed for (A2) and the sample variance for the
fit is given in terms of this value [24] by o=g /(n —. m).
Further, if the measurement errors for u are uncorrelat-
ed, the standard estimates for the probable uncertainties
5a„.. . , 5a in the computed coefficients are [24]

2Ba.
(5a, )'= g ' o'= N, g' (A6)

Bu,
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TABLE VII. Norms of least-squares matrices (170+ I
~ 2000).

(A9)

2.93
5.48

21.96

28.2
46.9

157.7

268.9
415.4

1267.1

us here is the potential inflation of the —
l%%uo measure

ment errors in u„. . . , u„ that this ill condition may
incur in determining the coefficients a &, . . . , a

Since the matrix (S S) 'S that defines the least-
squares relationship (A5) between the measured energies
u and the coefficients a is not square, the usual character-
ization of the fractional sensitivity of the latter to the
former in terms of a matrix condition number is not
possible. However, the norm of this matrix gives a
bound on the magnitude of the absolute errors 5a
=(5a„.. . , 5a ) in the coefficients due to measurement
errors 5u=(5u„. . . , 5u„) in the energy. From (A5) we
have

Note that the above bound on ~~5a~~~ is sharp, i.e. , there
exists a 5u for which it will be attained.

Only the p = 1, 2, and oo matrix norms (where
~~x~~„=max;~x;~) admit simple evaluation: ~~M~~, and
)(M(( are the greatest of the sums of absolute values of
the matrix elements across columns and rows, respective-
ly, while ~~M~~z is the largest eigenvalue of the symmetric
matrix M M [25]. Table VII lists computed norms for
the least-squares matrix (S S) 'S for cases where all 23
y values in Table III are used for fits with m =2, 3, or 4
terms.

Thus estimates of the worst-case mean, rms, and max-
imum errors in the coefficients a&, . . . , a may be ob-
tained from these norms by setting

//5a//&=m[5a/ „„, //5a//z=&m (5a). . .
(A10)

and

5a=(S S) 'S 5u,

and by the definitions

(A7) (Al 1)

1/p

IIMxll,

(A8)

of the n-element vector norm //x// and the "subordinate"
m Xn matrix norm //M//z, we have

in (A9). For the p =2 norm, for example, we have
o.=0.0006 for a fit with m =3 terms to all the values in
Table III, and hence (5a), , 50.078—in this case, the
error bound is comparable to the nominal Ualues
(a„a2,a~)=(0.097,0.084, 0. 110) of the coefficients (for
the error bounds on A, , 32, A ~, multiply 0.078 by
I"„I„I,). The situation is somewhat better with two-
term fits, but worse with four-term fits. Thus the uncer-
tainties quoted in Eqs. (10)—(12) should be regarded with
a degree of skepticism.
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