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Phase transitions of dense systems of charged “dust” grains in plasmas 
R. T. Farouki and S. Hamaguchi 
IBM Thomas J. Watson Research Center, P. 0. Box 218, Yorktown Height~s, New York 10598 

(Received 27 July 1992; accepted for publication 14 October 1992) 

The behavior of “dust” grains (particulates) in microelectronics process plasmas has been 
studied using N-body simulations. Grains are assumed to be negatively charged and interact 
through a screened Coulomb potential Q(r). The dimensionless parameters ~=a/il and 
I’=@(a)/ksT characterize the thermodynamics of the particulate system, where il is the ion 
Debye length, a = (3/4~r~~) 1’3 is the mean intergrain distance, and rzg and Tare the dust density 
and temperature. The simulations exhibit a transition between “fluid” and “solid” phases at a 
critical value rc that depends on K and weakly on the system history (i.e., whether it “melts” 
from an ordered state or “freezes” from a random one). 

Particulate or “dust” contamination has attracted 
much interest among the microelectronics process plasma 
community. 1-4 The particulates are observed to be nega- 
tively charged and tend to accumulate near the plasma- 
sheath boundary. Since the deposition of particulates on a 
semiconductor wafer during plasma processing can se- 
verely impact the yield of defect-free chips, an understand- 
ing of the thermodynamical and transport properties of 
particulate systems immersed in plasmas is of great prac- 
tical importance. 

This letter presents preliminary results of N-body sim- 
ulations addressing this problem. As noted by Ikezi,’ under 
representative discharge conditions the interparticle poten- 
tial energy can greatly exceed the kinetic energy:By anal- 
ogy with the classical one-component plasma617 one expects 
the possibility of a fluid-solid phase transition in particu- 
late systems under suitable conditions (another physical 
analog is the formation of lattices by colloidal suspen- 
sions”.g). We have observed such transitions by directly 
integrating the equations of motion of interacting charged 
grains. 

The potential distribution around grains in a plasma 
has been studied in detail, especially in the astrophysical 
context.” It is generally understood that grains are nega- 
tively charged and surrounded by sheaths characterized by 
a Debye length il= ( l/iii+ l//2,) -‘; where pi and /2, are 
the ion and electron Debye lengths. Since /z,>ili under con- 
ditions that concern us, we have /2--/2? The detailed struc- 
ture of these sheaths depends on parameters such as the 
plasma collisionality and the ratio ~=a/il of the intergrain 
distance a = (3/4an& “3, where nD is the dust density, to 
the Debye length. To facilitate the simulations, we adopt 
the simple screened Coulomb form 

> 

@(r)=+&exp(--.r//Z) 
0 

for the interaction potential between particulates of charge 
Q at distance r apart, which is known to be a good approx- 
imation when K is not small.” 

In addition to K, the thermodynamics of the particulate 
system depends on only one additional dimensionless pa- 
rameter: the ratio T=<P(a)/k,T of typical grain potential 
and kinetic energies ( T is the dust temperature). For typ- 

ical process plasma conditions-e.g., ion density ni= 10’” 
cm-j and temperature Ti=O.5 eV<Te, and dust density 
n,=5 X lo6 cm-j, temperature T=O.l eV, and charge 
Q=Z&= 103e-we have ~~0.7 and r=:200. Here T, de- 
notes the electron temperature, and the free electron den- 
sity 12, is determined by charge balance: n,=n,-ZDnD=5 
X 10” cmT3 in this case. For sufficiently high nn, the free 
electrons are entirely depleted and we have Zo-ni/nD. 

In the simulations we take as units of mass, length, and 
time, the grain mass mD, the intergrain spacing a, and 
&I,’ wheremuD = JwD is the dust plasma fre- 

quency. The equations of motion are then 

f$= j$. exp( -K&l l ;,y &-~j) 

for k= l,...,N where ckj= 1 ~~-~j;.l. We integrate them us- 
ing a predictor-corrector scheme, in which the variation of 
the force on a particle over each step is extrapolated from 
a quadratic fitting polynomial that interpolates its value at 
three preceding instances. An a posteriori cubic “correc- 
tion” term enhances the accuracy of the position and ve- 
locity increments. Forces are obtained by explicit pairwise 
summation over all particles. Since the phase transitions 
are characterized by minuscule fractional energy changes 
( < 1% ), we make no concession to efficiency at the ex- 
pense of integration accuracy. The integration proceeds on 
an asynchronous timefront, with individually adjusted 
steps to ensure uniformly accurate trajectories under 
widely varying conditions. The particles are periodically 
synchronized to sample system properties before re- 
starting. Fractional energy errors between successive starts 
were confined to the range 10-s-10-h. 

The particles are initially placed in a cubical simula- 
tion volume V of dimension L = (4rN/3) 1’3u, either at 
random or on a simple cubic lattice, and are given Max- 
wellian velocities corresponding to the target l? value (N 
must be chosen such that L/A is substantially greater than 
unity). In order to emulate an infinite system, we employ 
periodic boundary conditions: the basic simulation volume 
V is surrounded by neighboring copies V’ of itself, and 
each particle k interacts with particle j in V or with an 
image of j in one of the copies V’ according to whichever is 
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FIG. 1. Variation of the steady-state internal (kinetic+potential) energy 
per particle U with temperature r-’ for rc=O.5 with N=512. Two sets of 
runs were performed, commencing with particles distributed randomly 
and on a cubic (8 X 8 X 8) lattice. Note the dependence of the critical 
value Ir on the initial state: starting from random configurations the 
particulate system forms a “supercooled liquid” before freezing, whereas 
it becomes a “superheated crystal” before melting when started from 
ordered configurations. 

I 

512 particles ~=0.5 lY=60 
nearest. The system has positive total energy, and is as- 
sumed to be maintained at constant density n,=N/V by 
the action of a “trap” with near-uniform interior poten- 
tial.’ 

r 
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60 

60 

Nominally, time averages of unperturbed N-body sim- 
ulations correspond to microcanonical ensemble averages 
for systems of fixed total energy E. To model a canonical 
ensemble of fixed I? (temperature) we introduce periodic 
cooling/heating of the system by renormalizing particle 
velocities” to the target r value. With a free exchange of 
potential and kinetic energies during the integration peri- 
ods, this scheme yields systems in dynamical equilibrium at 
a given mean temperature whose properties can be time 
averaged. 

40 initial state: random 
r 

80 120 160 200 
time 

FIG. 2. The time dependence of r in typical runs, showing the effect of 
cooling/heating to achieve a prescribed mean temperature. Note the rapid 
development of dynamical equilibrium from both ordered and random 
initial states. The data of Fig. 1 are averages between r= 100 and 200 
(temperature fluctuations during this interval are consistent with the con- 
straints of the cooling/heating mechanism). 

Using 216, 5 12, and 1000 particles, sequences of runs 
with ~=0.5 and various !? values were performed, starting 
from both random and crystalline initial states. Figure 1 
shows data for the case N=512. Each run was evolved for 
200 time units, with synchronization at 2-unit intervals for 
sampling and temperature adjustments. The internal en- 
ergy data12 was averaged over 100 < ~200, by which time 
the system had fully settled (as can be seen from represen- 
tative examples for the evolution of r in Fig. 2). The phase 
transition is characterized by a sudden change in the inter- 
nal energy per particle at the critical temperature r;‘, 
whose value is evidently dependent on “memory” of the 
initial state. Analogous results have been observed in the 
freezing/melting of ionic salts.‘3’14 

Lest there be any doubt about the interpretation of the 
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FIG. 3. Final “liquid” and “solid” states of’the particulate system, at 
r=36 and 90 (r-‘=0.028 and O.Oll), respectively. The plots show 
(x,y) projections of the particle positions at r=200, starting from a cr-ys- 
talline initial state in each case. 
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FIG. 4. The radial pair correlation function g(r)-which represents the 
probability of finding a particle at distance Y from a given particle- 
observed in a typical run at a temperature above the phase transifion. The 
short-range order evident in g(r) is characteristic of the “liquid” state.’ 

jumps in Fig. 1, we show in Fig. 3 pictorial representations 
of the final particle distributions for P values below and 
above Fc Note also that for l(I < Ic, it is appropriate to 
characterize the particulate system as a “liquid” rather 
than a “gas.” Figure 4 shows the pair correlation function 
g(r) when P=36, in which the distinctive short-range or- 
der of a liquid system is apparent-the first peak coincides 
with the nearest-neighbor distance of an fee lattice. 

Preliminary experiments show that Fc is sensitive to 
the interaction range K (when K) 1, the ability of the par- 
ticulate system to condense at all is severely compro- 
mised) . Another important concern is the N dependence of 
Ic Because of Debye screening, the potential energy per 
particle of a finite simple cubic lattice-subject to periodic 
boundary conditions-converges rapidly with N to its as- 
ymptotic Madelung value. With N=216, 5 12, and 1000, 
for example, the potential energy is 74.9%, 87.9%, and 
94.4% of the Madelung value (when K=OS); correspond- 
ing values of L/A are 4.84, 6.45, and 8.06. Nevertheless, 
the critical temperature I,! was observed to decrease sys- 
tematically with system size over the limited range we have 
explored: l?,=31-33 for N-216, 58-67 for N=512 (see 
Fig. I), and l?,Z 100 for N= 1000. 

Several problems arise in attempting to extrapolate our 
results to identify the critical value Ic that is. appropriate to 
the limit N- m. Apart from the computational expense, in 
large systems the dynamics of lattice defects (and the con- 
straints imposed on them by periodic boundary condi- 
tions) play an important role. Also, condensation into a 
simple cubic lattice is predicated on choosing N=Y” for 
integer Y, provided N is not too large. For large systems, 

however, imperfect bee or fee lattices may be favored (per- 
fect forms require N=2$ and 4y3, respectively). Such ef- 
fects were already noticeable in the runs starting from ran- 
dom initial states with N= 1000. We quoted only a Zower 
bound on Fc for this sequence because of a strong tendency 
to form a “supercooled” liquid at l? > 100 when starting 
from a random state; those cases that did crystallize ap- 
peared to be unstable with respect to stochastic fluctua- 
tions and of defective bee form (note that 2 X 8” = 1024). 
These considerations are currently under more thorough 
investigation. 

Thermodynamically, phase transitions in systems of 
prescribed density and temperature are usually character- 
ized by the behavior of derivatives of the Helmholtz free 
energy F= U- TS per particle (where S is the entropy per 
particle). The transitions we have observed appear to be 
first order; the particulate-system thermodynamics will be 
addressed in a future paper. 

Note added in prooj It has come to our attention that 
other authors-e.g., M. 0. Robbins, K. Kremer, and G. S. 
Grest, J. Chem. Phys. 88, 3286 (1988); E. J. Meijer and D. 
Frenkel, J. Chem. Phys. 94, 2269 ( 1991)-have recently 
studied “Yukawa systems” (i.e., particles interacting 
through a screened Coulomb potential) using molecular 
dynamics and Monte Carlo techniques. Although moti- 
vated primarily by the physical context of colloidal suspen- 
sions, their results are applicable to the plasma/dust sys- 
tem described herein. 
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