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Ion energetics in collisionless sheaths of rf process plasmas* 
S. Hamaguchi,? R. T. Farouki, and M. Dalvie 
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 

(Received 6 November 1991; accepted 24 February 1992) 

Ion energy distribution functions in collisionless radio-frequency (rf) sheaths are discussed 
from the viewpoint of kinetic theory. Effects of rf fields on ion density and velocity 
profiles in plasma sheaths are also derived, based on ion fluid equations. It is shown that the 
ponderomotive force due to rf modulation of the magnitude of the sheath electric field 
exerts a retarding effect on the ion motion that counteracts the dc-bias field when the ratio of 
the ion transit frequency titr to rf modulation frequency w is small but finite. 
Consequently, the time-averaged ion density is higher and the time-averaged ion fluid velocity 
is lower in rf sheaths by the order of (wJw)’ than those in corresponding dc sheaths. 
The influence of an oscillating plasma/sheath boundary on the ion energetics is also considered. 
Under suitable conditions, this induces rapid “quasiperiodic” variations in the ion energy 
distribution as the rf w is increased. - - 

I. INTRODUCTION 

Low-temperature, partially ionized plasmas are widely 
used in integrated-circuit fabrication processes, such as 
sputtering, etching, and chemical vapor deposition. At low 
pressures, such plasmas provide a directed flux of energetic 
ions impinging on semiconductor wafers attached to the 
electrodes, resulting in the “anisotropic” evolution of mi- 
crofeature profiles. Since recent technological advances re- 
quire increasingly fine structure to be produced with high 
accuracy, the control of process plasmas has become an 
important research topic. 

may be found in Refs. 3 and 4. The goal of these studies is 
to develop a deeper understanding of the factors influenc- 
ing the incident-ion energy distributions in rf discharges. 
The precise form of these distributions is of practical im- 
portance in optimizing various plasma-assisted etching and 
deposition processes used in VLSI fabrication. The results 
presented below may be compared with typical experimen- 
tal measurements”6 and numerical simulations.‘** 

II. ION ENERGY DISTRIBUTIONS IN rf SHEATHS 

Radio-frequency (rf) is commonly used as a means of 
generating, sustaining, and controlling process plasmas. 
Unlike dc discharges, rf discharges are capable of generat- 
ing high dc “self-bias” sheath voltages, even for electrodes 
covered by insulating materials. Radio frequency voltages 
are also often applied to substrates that are exposed to 
high-density plasmas generated by other means, such as 
electron cyclotron resonance (ECR), providing control 
over the dc-bias voltage and the energy distribution of the 
incident-ion flux. Radio frequencies o used are typically in 
the range l-100 MHz. In the limit w--r CO, most plasmas 
characteristics averaged over an rf cycle are similar to 
those of corresponding dc discharges, since the massive 
ions then experience only time-averaged electric fields. 

Reviewing our recent work,’ we now discuss incident- 
ion energy distributions in low-pressure rf discharges, in 
which a prescribed time-periodic electric field potential is 
given as @(z,t>=@e(z) +@i(z)cos wt. This may be re- 
garded as the lowest-order approximation in the Fourier 
expansion of a general time-periodic field. An oscillatory 
motion of the relatively sharp presheath/sheath boundary 
may not be well described by this sinusoidally approxi- 
mated field; see Sec. III for an analysis of ion distributions 
in rf sheaths with a sharp oscillatory boundary. 

The effects of ion inertia may be quantified by compar- 
ing the rf with the ion transit frequency wtr (qV/md2) “2 
across the sheath. Here V and d represent a typical rf- 
sheath voltage and thickness, while q and m denote the ion 
charge and mass. For a helium discharge with V= 100 V 
and d= 1 mm, we have w,J2~-=7.8 MHz. In such a case, 
where the rf is comparable to atr, the ion trajectories across 
the sheath will be strongly influenced by the rf modulation 
of the sheath field. 

The ions are assumed to enter the sheath at position 
z=O with the sound speed vg= (kBT,Jm) “2, where k, is 
the Boltzmann constant and T, is the electron temperature 
of the bulk plasma (this is the Bohm sheath criterion; see 
Ref. 9), and with zero ion temperature, v,=O. Since only a 
collisionless rf sheath is considered, the ion distribution is 
a time-periodic function of space z and the velocity com- 
ponent v, governed by the following Vlasov equation: 

a- d q mz,t) a- 
-p”~-;-~=O. 

z 
(1) 

In this paper we review recent results on ion energetics 
in collisionless rf sheaths;lv2 related work on dc sheaths 

Here the distribution function f( t,z,u,) may be considered 
to have already been integrated over vI. The boundary con- 
dition for f is then given by f( t,z=O,v,) =nfi( v,-uB), 
where nI denotes the ion density at z=O. 

*Paper 916, Bull. Am. Phys. Sot. 36, 2483 ( 1991). The characteristic equation for the Vlasov Eq. ( 1) is 
bwited speaker. given by 
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“y” (2) 

where E,(z) = -d+ddz and E,(z) = -d@,/dz. Equation 
(2) is Newton’s law for the ion trajectory. The initial con- 
ditions for Eq. (2) are that the ion is injected into the 
sheath with fixed velocity uB at position z=O and at any 
given time t = tp 

In the high-frequency regime, where the inequality 

1 q&(d) *‘2 EC-- - 
( 1 md 41 w 

holds, we have solved Eq. (2) using a two-time-scale as- 
ymptotic expansion in Ref. 1. The resulting expression for 
the velocity v, of the ion when it reaches the cathode (z 
=d) at time t is given by 

u,= [vi-2q<Po(d)/m] 1’2+ [qEl(d)/mw]sin cot. (3) 

It should be noted that .s2= (wJo)~, where 
q,=Wdd)/mdl “2 denotes a typical ion transit fre- 
quency across the sheath. 

Writing the ion velocity at the cathode (z=d) due to 
the dc-bias (i.e., time-averaged) field @c(z) as 
U max= &-%%(Wm, and defining 7) = u;/v2 Inax, 
we compute the energy distribution FEN of the ion flux 
at position z as rEN dq = uf( t,d,v,)du, i.e., lYEN 
-I 2 - rv,,xf( t,d,v,). Then the experimentally observed ion en- 
ergy llux distribution is the time average of TEN: 

-0l 

s 

2rr/o 

rEN=rr rEN dt. 
0 

The solution (3) to the Vlasov Eq. ( 1) is used to 
calculate the time-averaged energy distribution rsN in the 
high-frequency regime (a)mtr), and we obtain’ 

rEN(d=nIUB/2~ b+- &I)( dw-1, 

where Y* = 1 * qE, (d)/mwu&,. 

(4) 

We now compare the analytical expression, Eq. (4), to 
numerical simulations for a given “idealized” electric field 
profile E,(z) =E, (z) = -d<Pddz. Here Q. is the collision- 
less dc sheath potential subject to the boundary conditions 
Qo(0) =0 and d<P,(O)/dz= -Ep1V3*4 The electric field pro- 
file used in the following calculations is the same as that 
used in Ref. 1. 

Figures 1 (a) and 1 (b) show the analytical expression, 
Eq. (4), and the direct integration of Eq. (2) with uni- 
formly distributed random initial phase 4=wtI, obtained 
from a simulation program similar to the Monte Carlo 
code described in Refs. 1 and 3, for two different values of 
E: e=O.24 for (a), and &=0.16 for (b). A good agreement 
between the analytic formula and the simulation results is 
evident in Fig. 1. It should be noted, however, that higher- 
order effects that have been dropped in the asymptotic 
analysis [i.e., in deriving Eq. (3)] are also seen in the nu- 
merical simulations, as an asymmetry of the energy distri- 
bution profiles about v= 1. The analytic expression, Eq. 
(4)) becomes symmetric around v= 1 in the E+ 00 limit. 
Any asymmetry suggested by the analytical expression, Eq. 

8 _ Analytical (a) _ s _ Analytical (b) - 

rE?i 4 _ E 0.24 = - 4- c = 0.16 

2- - 2- 

0 :;:I::: 0 :;.I:/: 

Numerical _ 6 - Numerical 

TEN - 4- 

- 2- 

‘I 0 I’ 
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 

+I mv,,% q=E/ mv,2/2 

FIG. 1. The energy distributions of the ion flux at the cathode (z=d) 
obtained from the analytical expression Eq. (4) and numerical simula- 
tions based on Eq. (2). The parameters used here are o$dw=O.O2, and 
c=O.24 for (a) and &=0.16 for (b), which correspond to an argon dis- 
charge with the dc-bias sheath potential -@a(d) =35 V, d=0.83 mm, 
o/2a=8.7 MHz for (a), and o/2n= 13.0 MHz for (b). In the analytic 
expressions, the singularities are truncated by plotting G( 7) for $_ 67 
< n < v? with sv/[-Z’&,(d)]=0.007. In each case, G is normalized 
so as to enclose unit area. 

(4), which arises due to finite values of E, should be con- 
sidered as a higher-order effect. Therefore, discrepancies in 
the slight asymmetry of the analytical and numerical en- 
ergy distributions profiles are expected to be visible in Fig. 
1. 

The energy distribution rnN given in Eq. (4) has sin- 
gularities as v=v: and UC, defining the limits of energy 
spread. The width of the energy spread A??=~rn~~~~Ar], 
where Av=d+ -8, is thus given by 

A 8’ = 2u,,,qE, (d)/w. (5) 
Figure 2 shows the width of the energy spread A%’ as a 
function of E (i.e., the inverse of the radio frequency) un- 
der the same conditions as those of Fig. 1. It is seen that 
the formula (5) gives a reasonable estimate of the energy 

o.o- 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

E = q, I 0 

FIG. 2. The width of the energy spread Aq=A~/$nv~,, as function of 
E=w~,/w. The solid line is from the formula given in I$. (5), while the 
dots represent numerical simulations. The numerical parameters used in 
these calculations are the same as those in Fig. 1. 
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spread when E 5 0.4. Since the final velocity v,,, may be 
approximated by v,,, 2: [ - 2q@,,( d) /m] 1’2, we obtain 
the scaling A g a m - 1’2 from Eq. (5)) as discussed in 
Refs. 5 and 10. [The expression AZ?= (-8q@,/ 
3wd) ( - 2q<Ddm ) - *‘2 was derived in Ref. 10, based on 
the assumption that +e)@i a (z/d)4’3. This expression 
for A&? is easily derived from our general formula, 
Eq. (5), under the conditions that vi ( -2q@,(d)/m and 
@i(z) a (z/d)4’3.] The formula (5) also explains the ex- 
perimental observation of Coburn and Kay (Fig. 12 in Ref. 
5) that the scaling A@? a m-“2 fails as m-“2-+0: since 
v,~~+v~ in this limit, it is clear from Rq. (5) that A$ 
becomes independent of the ion mass m. 

III. ION ENERGETICS IN OSCILLATING-BOUNDARY 
SHEATHS 

The self-consistent, time-periodic structure of a rf 
sheath can be quite complex, the electric field profile vary- 
ing continuously in magnitude, extent, and shape during 
the rf cycle. In the model discussed above, incident-ion 
energy distributions were derived, in the high-frequency 
regime, for sheaths of fixed width and a field profile whose 
magnitude is modulated sinusoidally with time. In real rf 
sheaths, however, the high mobility of the electron gas can 
be expected to result in a relatively sharp plasma/sheath 
boundary oscillating in sympathy with the rfexcitation. To 
assess the influence of such an oscillatory boundary on the 
incident-ion energy distribution, we have analyzed in detail 
a simple model2 in which the sheath field is spatially con- 
stant, but the sheath width is sinusoidally modulated in 
time. In this section we briefly review the salient features of 
this model. 

We assume a low-pressure rf discharge, with collision- 
less ion transport across the sheath. The ion equation of 
motion is 

d2z qV, 
z=mdH[z+d cos(ot+4) I, 

where H is the Heaviside step function [i.e., H(x) = 1 if 
x)0 and H(x) =0 otherwise], with initial conditions z(0) 
=-d and dz/dtIr=O=v(0)=vB Here d and V, are 
the mean sheath thickness and potential drop. The 
quantity z,(t) = -d cos(ot+4) gives the location of the 
plasma/sheath boundary, which oscillates between -d 
and +d. The phase 4 of this oscillation upon introduction 
of any ion is assumed to be random between -r and +r, 
i.e., the (monoenergetic) ion flux incident on the plane 
z= -d is constant in time. The cathode is at z= +d. 

The ion trajectories are governed by the dimensionless 
quantities a =q VJmo2 d2, the acceleration parameter, and 
/3= v,/wd, the initial velocity parameter. These trajectories 
are characterized by alternating intervals of uniform accel- 
eration and “coating” at constant velocity, whose number 
and relative duration are determined by the initial phase 4. 

Introducing the dimensionless time, position, and ve- 
locity variables r =~t, c=z/d, and ,u = v/wd, the instances 
rk at which an ion introduced at phase 4 crosses the 

boundary, and the corresponding locations ck and veloci- 
ties pk, are determined by the concatenated system of equa- 
tions 

fk(T)=!$k+pk(T-Tk) + (d2)(T-Tk)2 

+cos(7++) =o (7) 

for k=O,l,..., which commences with ro=O, &= - 1, 
~0 =fl, and ao= 0. The value of fk( r) gives the difference 
between the position of the ion and the plasma/sheath 
boundary. The desired solution to Eq. (7) is defined as the 
jirsf real rOOt (if any) of fk(?-) that iS greater than rk If 
such a root exists, it is assigned to rk+i. The coefficients 
{k+ t and pk+ i of the succeeding equation fk+, (r) =0 are 
then determined by 

pk+l’pk+ak(7k+l-Tkh (9) 

while the quantity ak is equal to a if k is odd (acceleration 
interval), and is 0 if k is even (coasting interval). The 
system (7) terminates on encountering an equation 
f,(r) =0 that has no real solution. The final velocity of the 
ion impinging on the cathode at c= 1 is then CL,,+* 
= &(I-&I+&. 

An algorithmic method for solving the system of equa- 
tions (7) at a suitably dense, uniformly spaced sequence of 
values of the initial phase 4 is described in Ref. 2. Within 
the “transition regime,” where the parameters a and fi are 
neither very small nor greater than (or comparable to) 
unity, it is observed that the resulting families of ion tra- 
jectories always divide into groups, delimited by two “crit- 
ical” values of the initial phase 4, that suffer N and N+ 1 
immersions in the sheath field. The first critical phase de- 
pends only on p, and may be expressed analytically as 

f&+(P) =sin-’ P-[(I- &mPl. (10) 
The significance of (10) is that, for an ion injected at 
this phase, the Jirst encounter with the oscillating 
plasma/sheath boundary is only a “glancing” encounter 
(i.e., the ion does not cross the boundary). Note that 
#~,,+~(fl) &+O(p ) when P is small, i.e., &.&I) does not 
vary much when fig 1. 

The second critical phase, which we denote by q( a&‘), 
represents that phase at which the last encounter of an ion 
with the boundary is a glancing one. Although p(a,P) 
admits no simple closed-form expression in terms of a and 
0, we observe empirically a relatively simple dependence 
on these parameters. Namely, reducing a and/or p (e.g., 
increasing w with all other sheath variables held constant) 
always drives p(a,P) to lower values. Thus, the second 
critical phase cycles continuously as the rf is systematically 
increased. Associated with each such cycle, the fraction of 
ions that suffer N+ 1 immersions in the field increases at 
the expense of those that suffer that N-until, as q(a,/3) 
passes through ~crit(P), we enter a regime in which ion 
trajectories are divided into groups that suffer N+ 1 and 
N+ 2 acceleration intervals. 
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0 
distance { 

0 
distance EJ 

FIG. 3. Illustration of the “cycling” of the second critical phase q(a,P) 
as the rf w increases. The disposition of the “coasting” (blank) and 
“acceleration” (solid) intervals of ion trajectories with respect to the 
initial phase C$ is shown in four cases, corresponding to - 10% increases 
in o. The dashed line indicates the first critical phase, &,(fl). 

Qualitatively, this behavior persists indefinitely. In Fig. 
3 we illustrate nearly a full cycle of q,( a,P) for the nominal 
physical parameters (assuming singly ionized 0,) V,z 270 
V, dz3 mm, uB = Jm with T,z lo5 K, and w in- 
creasing from 30 to -40 MHz in three steps of roughly 
10% each. 

Corresponding to the cycling of p(a,fi), the ion energy 
spectrum exhibits rapid “quasiperiodic” variations, super- 
posed on a systematic narrowing, as the frequency w is 
increased. Since the electric field is spatially constant, the 
work done on an ion during each acceleration interval is 
proportional to the width gk+, -‘.$k of that interval. Thus, 
on arriving at the cathode, the final energy of an ion in- 
jected at phase 4 (normalized to a maximum value of 
unity) is 

q(4) = 
2a[(1--~)+...+(~4--3)+(~2-~,)l+p2 

4a +$ 
(11; 

where the locations &,,f2,...,cn (and number n) of the 
boundary crossings depend on 4 and on the sheath param- 
eters a and /3. 

If the ion flux incident on the plane c= - 1 from the 
plasma bulk is independent of phase 4 in the rf cycle, the 
time-averaged energy distribution of the ion flux impinging 
on the cathode will be given simply by 

(12) 

where {4k} is the set of finitely many initial phases that 
yield a prescribed final ion energy q at the cathode. Note 
that r(v) is singular at any energy 77 that is “stationary” 
with respect to the initial phase 4 (i.e., dv/d+=O). 

0.5 

0 
phase ( 

FIG. 4. Variation of the energy-phase relationship q(d), and the normal- 
ized energy distribution r(v) of the ion flux at the cathode, with fre- 
quency w. For clarity, successive graphs of ~(4) are displaced by 0.2 
vertical units; the scale on the energy axis holds for the lowermost graph, 
representing the highest frequency. Similarly, the r( 17) distributions at 
successively higher frequencies are displaced horizontally and vertically, 
the baseline for each plot representing the interval O<q<l. Successive 
cases represent -5% increases in o, from (cT,~) = (0.1,0.06) at bottom 
left to - (0.056,0.045) at top right. 

Figure 4 illustrates the energy-phase relationships ( 11) 
and the corresponding energy distributions (12) for the 
system of Fig. 3, sampled at successive frequencies corre- 
sponding to - 5% increases in w. For ions that suffer N+ 1 
acceleration intervals-i.e., those introduced at phases be- 
tween +crit (p) and e, ( a,/?)--7 ( 4) has a “parabolic” shape, 
contributing a spiked low-energy component to r (7). For 
ions having just N acceleration intervals, q( 4) is nearly 
linear and contributes a broader high-energy component to 
Url). 

As w increases, the population of the low-energy com- 
ponent of r( 77) grows at the expense of the high-energy 
component, since the cycling of p( a$) causes an increas- 
ing fraction of the ions to experience N+ 1 rather than N 
immersions in the sheath field. This redistribution process 
commences anew, with the value of N incremented by 
unity, as q(a,fl) passes through ~crit(P) [at this juncture in 
the cycle, however, the behavior of T(q) becomes some- 
what more complicated]. 

The precise forms of the ion energy distributions in 
Fig. 4 are probably artifacts of the idealized sheath field 
model. The principal value of this study is intended to be in 
elucidating important physical effects that arise in the ion 
transport problem, and in providing a plausible, intuitive 
explanation of the observed double-peaked structures of 
ion energy distributions. 

IV. FLUID EQUATIONS 

In this section we consider ion fluid motion in rf 
sheaths, using again a sheath field of oscillating magnitude 
described by E(z,t) = -&D>/Jz=E,(z) +E,(z)cos WL As 
before, the perpendicular flow velocity is assumed negligi- 
ble (v,=O). For low-pressure rf sheaths, the dynamics of 
the ion fluid is governed by the following mass- 
conservation and momentum-conservation equations: 
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an^ -$+E d(nE) =o, x (13) 

al; ,a$ a$ 
z+EVg=-Eag, (14) 

with normajzed variables r=tit, c=z/d, V,=E~W c, 
cP=dE,(d)cj, n=n$, and &2=qEo(d)/m dw2. 

Here n and v, denote the ion number density and the 
z-component ion flow velocity. The ion temperature is as- 
sumed to be small and the pressure term is dropped from 
the momentum conservation equation ( 14). The boundary 
conditions are that n^( &r) and c( &r) are 27r periodic in r, 
and satisfy $0,~) = 1 and $0,~) = ug- V~/E dw at the 
presheath/sheath boundary (c=O). In the high-frequency 
regime (i.e., C+(W), E=w~~/w becomes a small quantity 
and we solve Eqs. (13) and (14) using an asymptotic ex- 
pansion. 

In the infinite-frequency limit, the ions are expected to 
experience only the time-averaged electric field E,,(z) due 
to their large inertia. Thus, in the limit w--+ 03, the lowest- 
order solution to Eqs. ( 13) and ( 14) must be derived from 
the following dc equations: 

(16) 

The solutions to Eqs. (15) and (16) are then given by 
n: = ug/ho and co = ,/m. 

Although the dc-bias electric field E. and oscillating 
field E, are generally of the same order of magnitude, the 
perturbations to the density and velocity profiles due to the 
rf field El(z)cos cot are expected to be small in the high- 
frequency regime, E( 1. Therefore, we write 

where ao=dEo(d)4, and +,=dEo(d)&. The fluctuation 
components K and i? then satisfy 

(17) 
ah- a A- ,+- 
z+E $nov+von+Enii =0, 

h a;r -a;, -av 
VI)~+“~+““~ 

a4, 
=-zCOS7. (18) 

The boundary conditions at [=O are given by Z= V=O. It 
is also assumed that the rf component of the electric field 
vanishes smoothly at the presheath/sheath boundary, 
i.e., E,(O)= dE,(O)/dc=O. In order to solve Eqs. (17) 
and (18), we expand n= K, + G2 + .s2LS + * . . and 
v=v,+&~2+&2iT3++-*, assuming that z and ir depend on E 
analytically. Substituting these expressions into Eqs. ( 17) 
and ( 18), we obtain the lowest-order equations &i/&=0 
and a&/&= -4; cos 7, where the prime denotes a deriv- 
ative with respect to LJ (i.e., ’ =a/a[). Integrating these 
equations yields %i=N,(J) and ri=& sin r+Ut(c), 
where Ni and U, are integration constants to be deter- 

mined by higher-order equations. From the boundary con- 
ditions for Z, and &, we have Ni (0) = U, (0) =O. The 
second-order equations are given by 

an, a -+-(n^,v,+^on,) =o, a7 ag (19) 

au, h av, _ aCo 
of"" ag+vl Z'O. 

Integrating these equations with respect to r yields 

(20) 

ii2= - (&c$;)8 cos 7- (&U,+G&)~T+N2(~), (21) 

~~=-(~o~;,’ cosT-(~oul)?-+uz(J-,. (22) 

The unbounded terms in time on the right-hand sides of 
Eqs. (21) and (22), which are called secular terms, must 
vanish due to the assumed boundedness of the terms L2 and 
VT in time: (n^oU,+$V,)‘=O and (coU,)r=O. From the 
conditions N, (0) = U, (0) =0, we obtain n^,U, +6&V, = 0 
and poUl = 0 for all c, which yields Ni (5) = U, (5‘) = 0. The 
integration constants N2( c) and U,(c) are also deter- 
mined by similar conditions for the secular terms of the 
third-order equations. After a straightforward calculation, 
we obtain U2= -~$;~/4ve and N2=no~i2/4& 

We have thus derived the ion density and velocity pro- 
file in an rf sheath up to order ~~ as 

n^(9,T)=nho(~)+E2[-(n^o~i)~ COS7i-(nh0~;~/‘6~)], 

(23) 

C(<,T)=?~--E& sin r-,s2[ CC&)’ cos r+ (#;2/4&)]. 
(24) 

By averaging Eqs. (23) and (24) over an rf cycle and 
dimensionalizing the resulting expressions, we obtain 

Z=no( l+4$f$) =n0[ l+i(z)2s] , 

(25) 

bva( l-4pj&)-““[ l-yq2~] ) 

(26) 

where no= n,n^,, VA= Ed&& and Wpi( Z) = q dsi 
denotes the local ion plasma frequency. 

The steady-state momentum-conservation equation for - 
the time-averaged velocity v, is then derived from Eqs. 
(25) and (26), up to order E’, as follows: 

where Eq. ( 16) is used. The last term of Eq. (27) repre- 
sents a force proportional to the time-averaged pressure 
(or energy density) of the oscillating field E, cos wt, which 
is known as the ponderomotive force or Miller’s force.” 
Equation (27) describes ion fluid motion in the effective 
potential 
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(28) 
A dynamical equation for single-particle motion in the 
ponderomotive-force potential is derived in Ref. 1. 

Since the sheath electric field is generally an increasing 
function of z, the sense of the ponderomotive force is op- 
posite to that of the dc field E,, i.e., it retards the ion 
motion through the sheath from the plasma bulk to the 
cathode. Due to this retarding effect, as indicated in Eq. 
(26), the time-averaged ion kinetic energy is lower by 
(12E~/4mw2[~(o,,/w)2<p,, when E,-E,-<Pddj in rf 
sheaths than that in the corresponding dc sheath whose 
electric field is given by the dc-bias field E,(z). Conse- 
quently, the time-averaged ion density is higher in rf - 
sheaths, since the time-averaged total flux nv, is constant in 
space, as indicated in Eq. (25). 

V. SUMMARY 

In summary, we have discussed the transport of ions 
across collisionless rf sheaths. In the high-frequency re- 
gime, the “ponderomotive force” in a sheath field of oscil- 
lating magnitude was shown to exert a retarding effect on 
ions, causing the time-averaged ion flow velocity to be 

lower, and the number density higher, than in an equiva- 
lent dc sheath. We also considered sheaths in which the 
extent, rather than magnitude, of the field varies sinusoi- 
dally with time. In this model, the manner in which ions 
alternately accelerate and coast as they enter and leave the 
sheath field induces a sensitive dependence of the precise 
form of the ion energy distribution on the radio frequency. 
The ion energetics of real rf sheaths are expected to lie 
within the range of behavior observed in the idealized mod- 
els described herein. 
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