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Ion-temperature-gradient-driven transport in a density modification 
experiment on the Tokamak Fusion Test Reactor 

W. Horton, D. Lindberg, J. Y. Kim, and J. Cl. Dong 
Institutefor Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 

G. W. Hammett, S. D. Scott, and M. C. Zarnstorff 
Princeton Plasma Physics Laboratory, P. 0. Box 451, Princeton, New Jersey 08544 

S. Hamaguchi 
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 

(Received 30 September 1991; accepted 15 January 1992) 

Tokamak Fusion Test Reactor (TFTR) profiles from a supershot density-modification 
experiment [ Zamstorff et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990, 
Proceedings of the 12th International Conference, Washington (IAEA, Vienna, 1991), Vol. I, 
p. 1091 are analyzed for their local and ballooning stability to toroidal vi modes in order to 
understand the initially puzzling results showing no increase in xi when a pellet is used to 
produce an abrupt and large increase in the vi parameter. The local stability analysis assumes 
that k,, = l/qR and ignores the effects of shear, but makes no assumption on the magnitude of 
kl, u,/w. The ballooning stability analysis determines a self-consistent linear spectrum of k,, ‘s 
including the effect of shear and toroidicity, but it expands in k,, v,~/w< 1, which is a marginal 
assumption for this experiment. Nevertheless, the two approaches agree well and show that the 
mixing length estimate of the transport rate does not change appreciably during the density 
modification and has a value close to or less than the observed xi, in contrast to most previous 
theories, which predicted xi’s that were over an order-of-magnitude too large. However, still to 
be explained is the observed increase of xi (r) with minor radius by adding the effects of (i) the 
finite-beta drift wave-magnetohydrodynamic (MHD) mode coupling, (ii) the slablike mode, 
or (iii) the trapped-electron response. The experimental tracking 0.2 <xc/xi < 0.7 suggests 
that both grad Ti and trapped-electron driving mechanisms are operating. 

I. INTRODUCTION 

Transport studies in the large tokamak confinement de- 
vices show that the ion and electron thermal transport rates 
are well above the collisional neoclassical transport rates. 
When the thermal losses are expressed in terms of thermal 
diffusivities xi and xe, the lost rates are characterized as 
having comparable diffusivities x, -xe with the order-of- 
magnitude ofx consistent with the EXB transport diffusion 
expected from small-scale drift wave turbulence. Drift wave 
stability theory predicts that typical tokamak discharges are 
unstable to drift waves driven by both the ion and the elec- 
tron temperature and density gradients. An important sta- 
bility parameter controlling the onset and the strength of the 
turbulence is the ratio of the density gradient scale length L, 
to the temperature gradient scale length L, called the eta 
parameter 77 = L,/L,. 

Early pellet fueling experiments in the Alcator-C toka- 
mak’ showed the onset of improved confinement with the 
steepening of the density profile which is readily interpreted 
in terms of the ion temperature gradient drift wave turbu- 
lence due to the simultaneous sharp decrease in the vi stabil- 
ity parameter. Similarly, improved confinement regimes in 
numerous other machines have been interpreted in terms of 
steepening the density gradient so as to lower the vi and 77, 
stability parameters. In such an example, the ASDEX team’ 
used density profile control to extend the unsaturated Alca- 

tor energy confinement scaling rE a ii, by a factor of 2 above 
the original saturation limit. 

These various transport results show the need for a de- 
tailed study of the ion thermal transport in terms of drift 
wave turbulence theory. A series of transport studies on the 
Tokamak Fusion Test Reactor (TFTR) were undertaken by 
Scott et a1.‘p4 and Zarnstorff et aZ.5p6 to test the hypothesis 
that the ion transport is due to the ion-temperature-gradient- 
driven drift wave turbulence. 

Earlier comparisons of TFTR experimental results with 
the existing ion temperature gradient (ITG) theories yield- 
ed mixed results. A set of measurements3 in the hot-ion and 
supershot regimes showed that theories gave xi’s that were 
10-100 times too big in the plasma core (r < a/3). However, 
these theories were derived in the qi $ 7,,it limit and did not 
contain a smooth transition to zero transport as vi dropped 
below vcrit where the ITG mode becomes stable. It was ob- 
served that these plasmas were actually close to marginal 
stability (see Fig. 2 of Ref. 3)) which would explain the dif- 
ferences between the measured and theoretical xi. In fact, 
the correlation of the measured vi with the theoretical vcrit 
(see Fig. 4 of Ref. 3) suggested that the plasma was forced to 
stay near marginal stability by the strong ITG transport, 
which would result if vi $ vcrit. A later set of experiments,4 
which included L-mode plasmas found that some plasmas 
were able to have vi $ vcrit, but these tended to be colder 
plasmas for which the theoretical xi was perhaps not strong 
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enough to enforce marginal stability. 25 

These findings lead to the experiments by Zarnstorfl’ 
et al.,‘*’ where the density profile of a hot supershot plasma 
was modified by a deuterium pellet or by helium gas injec- 
tion to flatten the density profile and force rli ) 77,,it. It was 
expected that a very large xi would then be observed in the 
experiment, but, in fact, xi changed very little, thus disprov- 
ing the idea that marginal stability was enforced and calling 
into question the existing ITG theories. The focus of the 
work presented here is to analyze one of the discharges from 
this series in detail to try to understand this puzzling result. 

20 

I5 
T 

KeV 
IO 

We focus on TFTR discharge No. 44669 which is de- 
scribed in Table I and Fig. 1. This discharge was a “super- 
shot” plasma with r,z2.7#, and was heated by 14 MW 
balanced neutral beam injection in a 1 MA, 4.8 T target 
plasma with major radius R = 2.45 m and minor radius 
a = 0.80 m. A deuterium pellet was injected at t = 4.50 set 
and penetrated only part way into the plasma, transiently 
producing a flat density profile corresponding to very large 
values of the stability parameters vi and E, = La/R. In the 
figures and tables, the letters A and B are used to designate 
the plasma state before and after the pellet injection. Figure 2 
shows the radial profile ofx, (r) obtained from the ion power 
balance analysis. As shown in Fig. 3, L, did not change 
much (in fact, it dropped slightly), but because of the large 
rise in L,, the stability limit for L, was greatly exceeded for 
a period of more than 20 msec, much longer than the growth 
time for ITG instabilities. There was little change in the ther- 
mal diffusivities inferred from the power balance during 
these transients in TFTR, in apparent contrast to the earlier 
experiments in Alcator-C and ASDEX, and in disagreement 
with the existing theories that predicted very large values of 
Xi if rli s ‘)7&t 1 

5 

0 
5.01 I i I I 

x 10igm+ 
I\ 

(b) 

4.0 - 

ne 

3.0 - 

To illustrate the magnitude of the disagreement between 
theory and experiment, Fig. 2 compares the measuredxi (r) 
before and after the pellet perturbation with several different 
theories: the analytic toroidal formula of Biglari et aL7 
(BDR), and the numerically derived slab formula of Hama- 
guchi and Horton.’ [We have replaced the factor ( 1 + vi ) 
that appeared in the original analytic formulas with the fac- 
tor (7; - Tcrit 1, a modification motivated by the desire to 

FIG. 1. Profilesoftemperatureand density for discharge44669 in the A and 
B states. 

have a reasonable transition to marginal stability and by the 
form of the Hamaguchi and Horton numerically derived 
xi .] These previous theories predict xi’s that are l-2 orders 
of magnitude too large in the core of the plasma. 

Developing a complete first-principles theory of toka- 
mak turbulence is not a realistic task in the foreseeable future 
because of a multitude of active processes in the tokamak 
plasmas.’ The standard picture of tokamak turbulence is 
based on drift-wave-type instabilities (including the rli mode 
and trapped electron modes) that generate small-scale ExB 
convective turbulence (although there is some uncertainty, 
both theoretically and experimentally, about whether small 
or large scale lengths dominate the transport 1. In order to 
make analytic progress and derive simple expressions forxi 
and ,&, various approximations are made about the geome- 
try (slab or toroidal), the dominant driving force (such as 
qi ), the mode structure, the collisionality, the nonlinear sat- 
uration mechanisms, and the nonlinear spectrum. The most 
complete formulas for xi to date are based on parametriza- 
tion of three-dimensional (3-D) nonlinear computer simu- 
lations using a two-component hydrodynamic description of 
the plasma. 

TABLE I. TFTR perturbative transport discharges: shot number 44669, 
TRANSP number 2200, r = 0.3 m. 

Time into discharge 4.490 set 4.525 set 

n, ( X lOI m - ‘) 3.03 3.98 

T, (kev) 5.71 4.07 

i”, CkeV) 8.4 3.55 

LJR 0.17 1.18 
L,/R 0.074 0.056 

9, 2.3 21 

TJT, 0.68 1.15 

%lHD 0.36 0.29 

1 0.75 0.7 
4 1.52 1.53 

i t J 
0.4 0.6 0.8 
r(m) 

The ITG theories shown in Fig. 2 were based on a num- 
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FIG. 2. Comparison of three theoretical models of ion thermal conductivity 
with experimental results for shot 44669 A and B states. 

ber ofsimplifications, which caused them to predict axi that 
is clearly too large. These theories were based on simplified 
fluid equations that did not adequately model finite-gyrora- 
dius effects or kinetic effects such as Landau damping (there 
is ongoing work to improve the fluid equations in this re- 
gard” and to use more complex fluid models’ ’ ). More accu- 
rate kinetic (particle) simulations’* show that the actual 
growth rates and mode widths should be significantly 
smaller than given by the simplified fluid equations. Fortu- 

n 

I-“- ,e 

2.45 4,50 4055 
Time (set) 

4.60 

FIG. 3. Comparison of three theoretical models of critical temperature gra- 
dient length CL,,) with experimental result at r= 0.3 m as a function of 
time. The reference times for states A and B are marked. 

nately, both fluid and kinetic simulations seem to support 
the mixing length theory and the scaling law analysis for the 
turbulent diffusivities based on the characteristics of the 
most unstable linear modes. Table II gives the ion and elec- 
tron diffusives estimated from earlier theoretical works. 

In this work, we show that a simple mixing length esti- 
mate applied to local kinetic theory, which incorporates to- 
roidal and finite-gyroradius effects (missing from the pre- 
vious theories) into a simple mixing length model is actually 
fairly consistent with the measuredxi in the core of the plas- 
ma (r < a/3 ) . However, the ITG mode appears to be too 
weak to explain the observed transport in the region r > a/3, 
where either some other mode must be invoked or the simple 
mixing length estimate fails. 

Some of the observed radial profile of xi ( r) is obtained 
in the inner region when we use the local kinetic theory that 
retains the full particle-wave resonance effects from the 
magnetic curvature and VB drift and the parallel ion transit 
drift. The local kinetic analysisi shows that the threshold 
for the ion-temperature-gradient-driven turbulence v,,+ is a 
function of q(r). The q value determines the connection 
length q(r)R between the good and bad toroidal curvature 
regions as well as the ratio of the strength of the ion Landau 
resonance from k,, u,, to the grad-B curvature drift resonance 
wg = k,,u, ( u:,u~ ). Both these effects work together to 
make the qi threshold higher at low q. Using this aspect of 
kinetic theory in the turbulence formulas forxi produces an 
increase of xi (r) with radius in the core region. 

The present vi theories seem to be insufficient to explain 
the radial dependence of xi in the outer region. Here, we 
consider the possibilities of obtaining the observed increase 
ofxi with r/a by adding the effects of (i) the finite-beta drift 
wave magnetohydrodynamic (MHD) mode coupling, (ii) 
the slablike mode, or (iii) the trapped electron resonance, all 
of which are found to be inadequate. We also discuss other 
possible effects such as small-scale oscillations in the gradi- 
ents or an unmeasured E x B poloidal shear flow as possible 
mechanisms for increasing the mixing width AX of the vi 
modes in the outer region. 

The structure of the paper is as follows. In Sec. II, the 

TABLE II. TFTR drift wave turbulent diffusivities: shot 44669 at r = 0.3 
m. 

iA = 4.490 t, = 4.525 

x7’ 
D dw 

(1, X< 

(2, XC 

2” 

= 4 m’/sec 3 m*/sec 
= (p,/a) (cT,/eB) 
= 3.45 m’/sec 2.07 m’/sec 
= au,2/qR ‘CO& 
= 2.58 m*/sec 1.66 m’/sec 
= (a/R)“Z(p,cTe/aeB) 
= 1.97 m*/sec 3.85 m’/sec 

= WT,/L,eB) (71, - r],,) g$exP( -4.g 

X exp( - 53) = 9.1 m’/sec = 12 m’/sec 
x? = (q/w%pf( 1 + 7,) 

= 8.1 m*/sec 5.0 m’/sec 
x%c,~-v,,ov = yJk :, 

= 5.2 m’/sec 2.4 m*/sec 
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transport in TFTR discharge 44669 is compared with var- 
ious models of the vi mode. First, a detailed analysis is given 
from the local kinetic theory. Then the electrostatic and elec- 
tromagnetic ballooning analysis is followed to complement 
the local analysis. Also, the sheared slab model is discussed 
for completeness. In Sec. III, in the attempts to solve the 
disagreement problem of the radial profile ofxi at the outer 
region, various stability effects such as steeper edge gradi- 
ents and trapped electron resonance are discussed. Finally, 
in Sec. IV, the conclusions are summarized. 

II. DRIFT WAVE STABILITY ANALYSIS 
A. Local electrostatic kinetic analysis 

We begin the analysis of the discharge by determining 
the unstable spectrum from local, electrostatic stability theo- 

I 

ry using the parameters from Table I. For Maxwellian veloc- 
ity distributions, the electrostatic dispersion relation is 

&(k,co) =‘+$ 
w - c&j(E) 

/ * - wDj - kll u/ 

(1) 

Thej summation is over electrons, ions, and impurities. In 
Sec. III B, we briefly consider the effect of the carbon impur- 
ities on the stability. When only the thermal ions are taken as 
dynamical with the electrons and beam ions as adiabatic, the 
dispersion relation ( 1)) in the standard dimensionless units, 
reduced to 

m 
ss 

+m 
D,,, (k,& ,w) = D, - o 

{ rm-k,[l +7j(~‘/2-3/2)])J~(k~~~/r~‘~)e-~‘* u, do, do,, 

-cc rw - k+,, (to: + u= ) - k II u 8’* II II (27r)‘/2 ’ 

where the adiabatic response D, is given by 

niTe n6Te D,=l+p+- 
neTi n,T6 

+ e[ 1 - Io(b,)e-6z]. 

(3) 

In Eq. (3)) we include a hydrodynamic impurity ion contri- 
bution where b, = k :pt, and we assume the impurity drift 
frequency tiLZ = 0. The adiabatic response reduces to the 
usual 0, z 1 + TJT, of ideal ITG mode theory when the 
impurity and beam densities are sufficiently low. The usual 
dimensionless parameters in Eq. (2) are E, = r,,/R with 
r, = L, = - (a In n/dr) - ‘, and r = TJT, and the fluctu- 
ation variables k, , k,, , and w are normalized to pr = cs/oci, 
r,,, and r,/c, with c, = ( T,/~Q)“~. 

The marginal stability analysis of the dispersion relation 
in (2) gives the condition vi > 2/3 and 

ET = E, /T < 0.7/D, (4) 

for the threshold of instability. The toroidal threshold condi- 
tion (4) is derived by Dominguez and Waltz14 and Horton ef 
a1.l5 and is often called the Romanellii6 condition 

0.7 
ait = 1 + Tj/T, ’ 

(5) 

since Romanelli emphasized its practical importance. Clear- 
ly, the role of magnetic shear is considered subdominant 
when applying conditions (4) or (5) since the formulas are 
independent of s. 

In the case where the magnetic shear length L, (r) is 
relatively short (L, < R), the results of marginal stability 
from the sheared-slab eigenmode analyses in the flat density 
profile limit are given by Hahm and Tang” 

(9;.‘=+$(1 +$)(21+ 11. (6) 

Here, I = 0,1,2 ,... is the radial mode number. 
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(2) 

Both stability conclusions (5) and (6) state that, for 
fixed scale lengths, the system is stable when T,/q. falls 
below a critical value ( T,/Ti )crit. In both the A and B states, 
we find that the plasma is well above this critical value rctiit, 
as shown in Fig. 3. As a function of r = TJT,, the growth 
rate first increases as r - rcrit and then decreases as ( l/~)“~ 
for 7) rctit. In the hydrodynamic approximation, Hamagu- 
chi and Horton’ give 

yk+O*el[($)“z-~(l +$-+)I (7) 

with vcrit in the flat density limit given by 
vcrit = (ST,/2Ti ) [ 1 + a( r/r) ] *, where I’ is the ideal gas 
constant and S = L,/L,. The maximum yk (7) occurs at 
7, = I”%/v with the value of ‘y, = JIw,~](~JI” - $5). 
The local stability analysis indicates that the experiment is in 
the regime of yk decreasing with increasing 7: The compari- 
son of the stability conditions on L, for the transport dis- 
charge is given in Fig. 3 showing that the plasma is unstable 
to both criteria at all times. The critical values for L,, ob- 
tained by the integral equation analysis by Xu and Rosen- 
bluth” are also shown to be close to the value from the Ro- 
manelli formula given by the curve labeled (c). 

While the threshold formulas given in Eqs. (4)-(Y) are 
useful, a simpler and more direct picture of the stability of 
the system is obtained by finding all the local eigenmodes 
oL (r)) yk (r) from the Vlasov dispersion relation. The 
sheared slab and ballooning modes may be viewed as certain 
linear superpositions of these local modes that form long- 
lived states in the inhomogeneous system. We calculate such 
local solutions both varying the radial position and the poloi- 
da1 angle to obtain a description of the stability of the system 
before and after the pellet injection. 

In Fig. 4, we show the spectrum of y( k,,,k,, ,r) computed 
from Eq. (2) (with nb = n, = 0) before (state A) and 
during the flat density profile perturbation (state B). 

Horton et al. 956 



A v,o/R = 2.4 x IO’ s-’ B vie/R = 1.56 X IO’S-’ 
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vi0 vi0 
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r =0.5m 
L, = 0.64 m  
P;’ 1.2 x 10e3m 
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YR 
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0.5 
Vi0 
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0 0 

FIG. 4. The local kinetic growth rates in the wave-number domain for the shot 44669 A and B states. 

The growth rates in Fig. 4 are normalized by 
v,/R (2.4~10” set-‘) for state A and VA/R 
( 1.56X 10” set - ’ ) for state B, where vi0 and v; are the ion 
thermal velocity ( Ti/m, ) “’ at r = 0.3 m  in the states A and 
B, respectively. We see that, in both states, there is a large 
spectrum of unstable wave numbers. The principal effect of 
the large increase in vi is to destabilize the modes with 
k,p; > 1. In fact, in the flat profile state, a secondary local 
maximum is produced at kg, - 1 S, which is a stable region 
before the density flattening. However, these short-wave- 
length modes may not have a significant effect on the trans- 
port because nonlinear 3-D simulation studiess9’* support 
the theoretical picture that the correct measure of the trans- 
port is y/k : -y/k :, since the turbulent states are found to 

be isotropic (k;) -(k;) with the peak of the k,, spectrum 
only slightly down shifted from the k,,, which maximizes ykY 
depending on TV, E, , and s. The secondary instability giving 
rise to the isotropization in k, - k, is analyzed in Cowley et 
al. l9 

The long-wavelength modes ( k,pi < 1) have the maxi- 
mum dimensionless growth rate y,L,/c, increasing with 
the increase of vi. However, during the perturbation, the 
value of L, and the ion temperature Ti change strongly (see 
Fig. 1). Thus, returning to the actual growth rate, we find 
that, at r = 0.3 m, the maximum growth rate y,,, is slightly 
increased from 2.1 X lo5 set to 2.6 X lo5 set and its location 
shifts from k,,, = 2 cm - ’ to k, = 3.2 cm-‘. Fluid turbu- 
lence simulations imply that the expected turbulent trans- 
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port is thenxi (r = 0.3 m, A) = y,/k ‘, = 5.2 m2/sec com- 
pared withy; (r = 0.3 m, B) = 2.4 m2/sec. While numerous 
parameters change from the A to B states of the discharge, 
the dominant change for the xi value at r = 0.3 m  is the 
decrease of the ion temperature from 8.4 to 3.55 keV. In 
Table III, the mixing length values ofxi, obtained from the 
local Vlasov stability analysis described by Eq. ( 1)) are given 
at various radii for the A and B states. 

From the local analysis, we also see that the degree to 
which the local parameters are in the toroidal regime of 
small k,, v,/w,~ in contrast to the sheared slab regime with 
x = k,, v,/w,~ > 1 is an important influence on the stability 
of the ITG modes. As analyzed in detail in Kim and Hor- 
ton13 and Dominguez and Rosenbluth,20 this dependence on 
k, vT/mDi - l/qk,,p taking k,, = l/qR gives a q dependence 
to the growth rate Ye,, (q), the threshold vcrit, and the asso- 
ciated transport. In Fig. 2, we plot the results given in Table 
III labeled as “mixing length xi,” and compare with experi- 
mental results. The kinetic mixing lengthx( r) in Fig. 2 has a 
radial dependence that is in considerably better agreement 
with the experimental profile at the inner region of r < a/3 
than the xFH(r) and xyDR(r) formulas. However, at the 
outer region of r > a/2, there is still significant disagreement 
in the radial dependence. The unfavorable radial depend- 
ence arises from the rapid decrease of Ti (r), which over- 
comes the increase of xi with q at fixed Tie 

6. Electrostatic ballooning mode stability analysis 

Here, we analyze the stability of the system to the elec- 
trostatic ballooning mode equation assuming that the ion 
acoustic dynamics k i; c:/w2 can be expanded to first order in 
the kinetic response functions in Eq. ( 1). The ballooning 
eigenmode equation gives the proper averaging over the 
spectrum of parallel wavelengths that occurs at each k,,p, 
and radius. The change in the eigenvalues from the local 
value given in Sec. II A occurs from the ion acoustic wave 
propagation along the magnetic field lines. Many basic stud- 
ies of the drift wave ballooning mode equation for the vi 
mode problem from numerous groups are available as re- 
viewed in Horton.’ Here, we give the ballooning mode equa- 
tion used in the study with minimal explanation for the pres- 
ent application. The electrostatic mode equation2’ is 

[(I -gr,+,(r,+b(T, - roH]&g 
+Cl +d1 -P(e)lI#(f% =o (8) 

with the boundary conditions 4 (8-+ 03 ) -+ 0 sufficiently rap- 

TABLE III. Mixing length x, from local Vlasov theory: shot 44669, using 
Y,,,~~ atk,, = l/@R,and(k:) = UC:) =k;(y,,,,,). 

r Before injection After injection 

0.15 m  0.0 m*/sec 0.16 m’/sec 
0.3 m  5.2 m’/sec 2.4 m2/sec 
0.5 m  1.2 m’/sec 0.7 m’/sec 
0.7 m  0.4 m’/sec 0.2 1 m2/sec 

idly for (kz) aslk: S”_ m  e2q5’d0 to exist. In Eq. (8), the 
kinetic response function P, given in Eq. (A3 ) in the Appen- 
dix, is a function of 0 and vanishes as l/0 2 for large 6. The 
local perpendicular and parallel wave numbers are given by 

k:p;= (k;&-)(I +2e2), 

k,, = -A---, + 1 &p 
qR (b a@ 

and the local grad-3 and curvature drift frequency is 

wDi = - e,k,ps2 Ti (iv: iui)(c0se+sssrnej(~) 

for low-beta, circular flux surfaces. 
The ballooning mode equation (8) has a series of eigen- 

functions describing the normal modes of the plasma. As in 
the sheared slab, we designate the 2 th mode by c#,+ (8) and 
order the modes with increasing oscillations with 
t = O,l,Z )... . Important measures of the characteristics of 
the modes are given by the integral width be, and the differ- 
ential width A@,. We also define the mean value of the ex- 
pansion parameter Ptt = qvf/~’ used in obtaining the dif- 
ferential equation (8) from the integral mode equation. The 
definitions of the 4 ( 0) measures are 

A82 = SO” de ewe) 
I 

S; de 47s) ’ 

1 SO” de [y(e) 12 
-= sgde+ye) ’ A.e’, 

(9) 

(10) 

The ballooning mode wave function #( 8) gives a ballooning 
mode radial width AXb and k, given by 

(kz) = AX;‘= kf,.? Re(Aef), (111 
with the subscript b for ballooning. This ballooning mode 
width and the associated y/(k z ) has been estimated theo- 
retically in Horton et al** and Dominguez and Rosen- 
bluth.20 The resulting diffusivities are similar to that given as 
X BDR in Table II. The ballooning xi varies inversely propor- 
tionally with shears = rq’/q and proportionally to q, which, 
for fixed Ti, gives a x1 that increases with r/a. 

The expansion parameter for measuring the strength of 
the ion acoustic wave effect is (k i )v:/w’, which, in the di- 
mensionless variables, is given by 

Tifz 1 
pll =r,7 jw[‘jAeg ’ (12) 

and the validity of the differential Eq. (8) requires that 
P,, < 1. Now, using Eq. ( 8)) we consider the ballooning sta- 
bility of the modes identified as most dangerous from the 
local stability analysis in Sec. II A. 

For each radial position in Table III, we have carried 
out the integration of the ballooning mode equation in Eq, 
(8) to find the lowest-order eigenmodes and eigenvalues. 
First of all, the ballooning mode analysis shows that there 
are two important fast growing modes: One is peaked at 
0 = 0, which we call the outside mode and one peaked in the 
region e = r/3 to 2&3, which we call the top/bottom mode 
since the peak intensity is somewhere in those regions rather 
than on the outside. The shapes of the eigenfunctions of these 
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modes are shown in Fig. 5 for r = 0.3 m before and after 
injection. Generally, the growth rates of the top/bottom 
modes are about one-half that of the outside mode and the 
frequency of the top/bottom mode is 1.5 times greater than 
the outside mode. Both frequencies are generally somewhat 
above the local kinetic transit frequency k,, ui obtained with 
k,, = I/qR. We find that the growth rates of the outside 
mode are close to those obtained with the local kinetic 
theory. 

We have computed the moments of the wave functions 
defined in Eqs. (9) and (10) to determine the expansion 
parameter P,, and radial mode with AX,. We find that, even 
though the condition P,, < 1 is marginally satisfied over most 
radii, the outside mode growth rates are nearly equal to the 
local kinetic results. The top/bottom mode has a larger P,, 
than the outside mode, and thus is closer to the slab mode. 
The mode widths hxb’s appear to be larger thanp, over all 
radii before and after the discharge, so that the diffusivity 
estimate based on yAXi is somewhat larger than the iso- 
tropic turbulence mixing length AX,,,, = k; ‘. For example, 
for 44669 A and r = 0.3 m, we obtain AXJp, = 2.9 with 
P,, = 0.20 so that x” = 6.8 m’/sec compared with 5.2 
m*/sec from AX,, = l/k, ( ymYmax ). It must be emphasized 
that the mode width AX, from Eq. ( 11) corresponds to the 
linear regime. From the nonlinear studies,8Pg~‘2~‘g however, 
we recognize that the nonlinear saturation forces the forma- 
tion of approximately circular vortices so that the proper 
mixing length is k; ’ when k,,AX, > 1. Now, with this consi- 
deration the results from the ballooning mode calculation 
using AX,,,, = l/k,, ( Y,,,~~ ) are given in Table IV. Comparing 
Table III and Table IV, we see that the ballooning mode 
analysis agrees quite well with the local kinetic analysis. 

The expansion used to derive Eq. (8) is only valid if 
P,, g 1, which is marginally satisfied for our parameters. Cal- 
culating moments of the eigenfunction and using Eqs. ( 10) 

FIG. 5. The shapes of the kinetic ballooning eigenfunctions for both the 
outside and top/bottom modes at r = 0.3 m for 44669 A and B states. 

TABLE IV. Mixing length xi from electrostatic ballooning equation: shot 
44669, using,y, = y,,,AXi, and AX;, = kF2(y,,,). 

r Before injection After injection 

0.15 m 0.19 m’/sec 0.13 m*/sec 
0.3 m 5.1 m*/sec 2.2 m2/sec 
0.5 m 1.23 m’/sec 0.68 m*/sec 
0.7 m 0.37 m2/sec 0.21 m*/sec 

and (12), we find that P,, = 0.2 for the outside mode at 
r = 0.3 m at time A. Nevertheless, the growth rates for the 
outside mode from the ballooning equation, Eq. (8)) are 
close ( Ar/y 5 20% ) to the growth rates found from the lo- 
cal dispersion relation, Eq. (2)) which made no expansion in 
P,, . This gives some confidence that this calculation is ap- 
proximately correct, at least for the outside mode, which is 
primarily driven by toroidal curvature. The good compari- 
son between the two approaches is due in part to the use of 
k,, = l/qR in the local theory, which agrees well with aver- 
age k,, calculated by our ballooning equation. However, it is 
possible that a more complete ballooning calculation that 
does not depend on a small P,, ordering might produce a 
different spectrum of k,, ‘s. This may be important because 
part of the drop of the theoretical xi near the axis is due to 
the stabilization of the ITG mode at large k,, because of the 
assumed k,, dependence on l/q, which is getting large near 
the axis. 

An interesting area for future work would be to apply a 
more complete ballooning mode calculation that does not 
rely on this small P,, approximation. In fact, comparing Fig. 
14 of Ref. 18 (which makes no assumptions about k,, or P,, ) 
with Fig. 4 of Ref. 20 (which makes P,, < 1 and k,, = l/qR 
approximations), one finds that the stabilization of ITG 
modes at low q is overstated by the k,, = l/qR approxima- 
tion. 

While our expansions may be marginally acceptable for 
the outside mode, they are not useful for the top/bottom 
mode for which we find P,, ~7 and k,, -4/qR. The top/bot- 
tom mode is not affected much by the toroidal curvature 
drive. We will analyze this slablike mode with a theory that 
is valid for general P,, in Sec. II D. 

C. Electromagnetic ballooning analysis 
To complete the stability analysis of the discharges, we 

consider the electromagnetic ballooning mode analysis. 
Here, again, there are many works giving the details of the 
theoretical analysis including, but not limited to the ones of 
Cheng,23 Tang et a1.,24 Hong et al.,*’ and Dominguez and 
Moore.25 

Using the $(0) potential for A,, such that 
E,, = - ik,, (4 - $), we obtain the electromagnetic mode 
equation 

4 a 
7dBk:-$+(l -?)(l-+) 

(1 - w*,/w)2 - 
D,s (wW) 1 *=o (13) 
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valid for P,, < 1. Some details of the derivation of Eq. ( 13) 
are given in the Appendix. The s - a equilibrium model is 
used as a simple approximation for the equilibrium. In this 
model, the local wave number and drift frequency become 

kf =k$pStl + (s8-asin8)2], 

wDi = is,, [ cos 8 + (se - a sin &sin 8 1, (14) 

giving the reversal of the magnetic shear for a > 1. Here, 
a = - 2Rq2 dP /dr, withflcontaining all the pressure com- 
ponents, and reaches a maximum value of 0.4 in 44669 A and 
B. 

In Table V, we show the growth rates and real frequen- 
cies obtained from the local electromagnetic dispersion rela- 
tion at various radii for the discharge 44669 before and dur- 
ing the density modification. The spectrum of modes 
obtained from Eq. ( 13) contains both the local electrostatic 
toroidal ITG mode, which has wf, /w2 g 1 and thus satisfies 
Eq. ( 13) by having the electrostatic dispersion relation 
D, (w,k,@ z 0, and the high-frequency kinetic FLR-MHD 
mode rotating with 

Wrr.Wli( 1 + Vi). 
The kinetic finite Lamar radius (FLR)-MHD mode is de- 
stabilized by the w = wgi drift resonance below the MHD 
beta limit aCrit .21.23*24 The a is sufficiently below aCrit in these 
discharges that kinetically modified FLR-MHD mode is a 
real oscillation with w = - 5.09 x lo6 set - ’ at r = 0.3 m 
and k,,p, = 0.5. Table V shows that the electromagnetic ef- 
fect on the electrostatic toroidal ITG mode is stabilizing. For 
each radius, there are two modes with their polarization giv- 
en in the right-hand column, where E,, = 0 at $/c$ = 1 and 
SE, = 0 at $/c$ = 0. On the other hand, to obtain the MHD 
(k,,p -0) beta limit, the mode equation ( 13) is expanded in 
the fluid limit to obtain 

62 dk2d -___ 
42 i4 80 JZ++ [+‘-0.d +?j+Jkf(8) 

-t utetiDe (0) ( 
1 +rli i + 7;1, + - 

>I 
$= 0. 

r 
(15) 

For 44669 A, Fig. 6 (a) shows the shape of an eigenfunction 
ofEq.(15)forr=0.3m,k,,~,=0.5(k,,=2.2cm-’)be- 
fore injection, where the eigenvalue is o = - 2.66c,/L, 
(3.13X lo6 set- ‘) compared with wli( 1 f 9i) 
= - 2.55c,/L, (3.01 x lo6 see-‘) and 

wA = vA/qR = 3.06c,/L, (3.6~ lo6 see-‘) using 
c,/L, = 1.18X lO’/sec. The ballooning mode width is 
AX,, = 0.342~~. This compares well with kinetic modified 
(FLR)-MHD eigenmode given by Eq. ( 13) with 
w = - 2.87c,/L, (3.38 x lo6 set- ‘) and mode width 
f=b = 0,342~~ at the same position. 

In Fig. 6(b) the qi-mode branch of the same EM equa- 
tion is found by solving Eq. ( 13 ) with the electrostatic eigen- 
mode as the first-trial function. The electromagnetically 
modified vi-mode solution has w = ( - 0.277 + iO.0272) 
X (c,/L, ) or ( - 32.7 + i3.21) X lo4 set - ’ eigenvalue and 
the ballooning mode width AX, = 0.69Op,. The electromag- 
netic modification has reduced y and the estimated xi. 

D. Electromagnetic integral equation analysis in 
sheared slab 

In Sets. II A and II B, the ballooning mode analysis was 
made by expanding the parallel ion motion in the small 
1 k i $/02 1 limit. Here, we study the slablike branch, called 
the top/bottom mode in Fig. 5, from another theoretical 
description taking into account w - ku ui for completeness. 
For the siablike mode, we use the integral equation code of 
Dong et a1.26 in the electromagnetic regime with nonadiaba- 
tic electrons. In the electrostatic limit with adiabatic elec- 
trons, the result gives the 44669 A maximum growth rate 

TABLE V. Growth rates and real frequencies obtained from the dimensionless local electromagnetic dispersion relation at various radii for the discharge 
44669. 

r 
W ( IOGec) 

Y 
(lO’/sec) 

kl, k, 
(l/m) (l/cm) 1114 

0.30 3.58 - 3.51 
0.30 3.58 - 50.9 
0.50 2.49 - 2.00 
0.50 2.49 - 33.9 
0.70 1.40 - 1.39 
0.70 1.40 - 18.9 

0.30 3.11 - 3.93 
0.30 3.11 - 39.8 
0.50 1.88 - 1.29 
0.50 1.88 - 22.9 
0.70 1.06 -0.482 
0.70 1.06 - 12.8 

Shot 44669 A 
1.64 0.268 
0 0.268 
0.882 0.148 
0 0.148 
0.367 0.0699 
0 0.0699 

Shot 44669 B 
2.55 0.267 
0 0.267 
1.36 0.148 
0 0.148 
0.969 0.070 
0 0.070 

2.18 - 0.104 0.0882 
2.18 1.07 0 
3.30 - 0.0746 0.0498 
3.30 1.09 0 
5.14 - 0.105 0.0468 
5.14 1.08 0 

2.57 -0.0403 0.103 
2.57 1.12 0 
3.86 -0.0259 0.0843 
3.86 1.11 0 
6.07 0.004 14 0.117 
6.07 1.10 0 
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FIG. 6. The eigenfunctions of the electromagnetic kinetic and FLR-MHD 
ballooning modes. In (a), thestable kinetically modified FLR-MHD mode 
is given from Eq. (13) (kinetic) and Eq. (13) (FLR-MHD). In (b), the 
electrostaticlike mode from the electromagnetic equation ( 15) is given. 

y,,, = 9 X 104/sec and the 44669 B value ~/m = 6.5 x 104/sec 
at r= 0.15 m. 

Within the adiabatic approximation for the electron dy- 
namics, the electromagnetic corrections are weak. However, 
the electromagnetic effects appear to be substantial at the 
inner radii when the assumption of adiabatic electron dy- 
namics is released. For example, the integral equation analy- 
sis shows that, at r = 0.15 m, the electromagnetic-nonadia- 
batic electron systems have a growth rate of only 
y = 4 X 1 O”/sec for 44669 A and y = 4.1 X 1 04/sec for 44669 
B, which are notably smaller than the values given above for 
electrostatic limit with adiabatic electrons. 

Because of the stabilizing effect of finite beta, some fa- 
vorable radial dependence of xi ( r) can be produced but the 
effect is found to be weak for discharge 44669. 

The quasilinear heat flux taking into account the induc- 
tive electric field dA,,/& and the perturbed magnetic field 
SB, for both the ions and the electrons is given by 

Q,= - 

+ 

Because of the slablike resonance approximation, this Qi is 
proportional to &,, (x) 1*/k i (x). For Qi only, the large k,, 
part of the wave number spectrum contributes and, for Q,, 
only the small k,, part of the spectrum contributes signifi- 
cantly. The solution of Ampere’s law for A,, shows that A,, is 
not negligible compared with 4, so that the effective cross- 
field correlation length is increased by the finite beta cou- 
pling to A ,, . Using the electromagnetic quasilinear diffusion 
coefficients from Eq. ( 16) evaluated at the mixing length 
amplitude 

Sx2 [ E,, (x I] *dx 
(Ax)‘= R- 

J-[-q cq2 ’ 

results in the electromagnetic diffusivity estimate of 
xi = am = 0.77 m’/sec (k,,p, = 0.3) compared with 
the electrostatic value of xi = 12 m*/sec (k,,p, = 0.5) for 
44669 A at r = 0.15 m. It is worth mentioning that xi = 2.45 
m*/sec and xi = 0.30 m’/sec are obtained, respectively, 
from electrostatic and electromagnetic perturbations if 
xi = y/k s is used to estimate the diffusivity. The differences 
are sufficient to indicate that, for the slablike modes, the 
electrostatic approximation is breaking down in the plasma 
core. 

III. OTHER STABILITY AND TRANSPORT EFFECTS 
A. Effect of steeper edge gradients 

The ion temperature c. is only measured at a small set of 
discrete radial points, and it is conceivable that the T, (r) 
profile is not a simple smooth function but may have small- 
scale oscillations with some regions of large gradients dT/dr. 
In order to test the sensitivity of our theoretical x’s to the 
experimentally measured gradients, “what if” numerical 
experiments are performed first of reducing L, and then 
reducing both L, and L, by one-half at the radius r = 0.7 m. 
The results from local kinetic theory for 44669 A state are 
that the growth rates and xi increase to about two times the 
reference value for both the two gradient variations. Even 
these large changes in L, and L,< seem to be insufficient to 
explain the experimental diffusivity result, which is over 10 
m*/sec at r = 0.7 m. 

B. Effect of carbon impurity 
The dominant impurity is fully ionized (Z = 6) carbon. 

Since the gradient scale lengths for carbon are not well 
known, we first studied the effect of including the carbon 
component flc = n,/n, in Eq. (1) within the slab approxi- 
mation with w* (C) = 0. The growth rates are reduced to 
about one-half their fl, = 0 value when flc -0.1 (or 
Z2n,/rz, N 3.6) in the A state and, in the B state, the effect is 
weaker with a reduction of about 2/3 in the growth rate. 
Taking O. (C) N - oIe leads to stronger stabilization with 
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the A state becoming stable forp, 2 0.05 and the stability of 
the B state is, again, less affected by the carbon component. 

C. Comparison with the Swedish stability and transport 
analysis 

The plasma theory group2’ at Chalmers University, 
Sweden has developed a model of the stability and transport 
for the ion temperature and collisionless trapped electron 
temperature gradient instability that is reported to produce 
agreement with the power balance thermal diffusivities in 
some JET and TEXTOR discharges.‘* Their theoretical 
model differs from that presented here in the following 
aspects. The model uses collisionless two-component hydro- 
dynamic equations in which the toroidal drift frequency wD 
is taken as completely dominant over the k,,ui resonance. 
The effect of magnetic shear is neglected as is the role of ion 
acoustic waves. The recent versionz9 of their theory contains 
a continued-fraction approximation for the reactive part of 
the drift resonance w = wD, which seems to provide a fairly 
good fit to the k,, = 0 kinetic results, even though the dissi- 
pative part (due to collisionless phase mixing) is ignored. 
(Extension to include the dissipative part might be done 
with a variation of the work of Hammett and Perkins.) Their 
theoretical modeling assumes the modes to be localized to 
the outside (0 = 0) of the torus and that the spectrum of k,, 
is sufficiently small to be negligible compared with the toroi- 
da1 drift wD effects. The key parameters are then L,/R and 
L,,/R, as well as the trapped electron fraction f, and 
r = T,/Ti. In the Swedish model, the stability, determined 
by the roots of a fourth-order polynomial in w, gives a 
trapped electron mode rotating in the electron diamagnetic 
direction, which is used to calculatex, and an vj mode rotat- 
ing in the ion direction, which is used to determine the xi. 
We have solved their polynomial dispersion relation for 
TFTR discharge (44669) and find that their growth rates 
for the mode rotating in the ion direction are somewhat 
smaller than those obtained in the kinetic analysis in Sec. 
III A. A typical comparison is that, in the A state at r = 0.5 
m before injection, their equation gives the ion mode 
w + ir = - 0.612 + 0.05371’ and the electron mode 
w + ir = 0.224 + 0.106i compared with the local kinetic 
value w + iy = - 0.274 + 0.148i in unit cJL,, where the 
adiabatic electron model used in Eq. (2) gives only the ion 
mode. 

The second major difference is in the formula used for 
the amplitude of the potential fluctuations by the Swedish 
group. They modify the mixing length level by including a 
factor of y/w, so that the quasilinear formula for xi is now 
proportional to 

This makes their-x formulas vanish at the rate 9 as y-0 as it 
does from large compressibility when L,/R) 1 in the plasma 
core. In this way, the resulting xi develops a radial profile 
that is closer in shape to the power balance xi (r) than that 
reported here in Table III. Nordman et aZ.” support their 
choice of the modified mixing length formula by appealing 
to agreement with a simple two-dimensional toroidal mode 
coupling simulation, which has no magnetic shear or wDi (8) 

variation. Their results for xi would appear, however, to 
contradict both the theoretical and simulation results ob- 
tained by Hamaguchi and Horton,’ where theXi is shown to 
vary as vi - vi,crit at small y, which is no faster than f and is 
close to y for the slab model. Of course, the problem of ob- 
taining accurate theoretical formulas for the saturation level 
is an unsolved problem, which leaves room for various mod- 
els. For the near marginal states y-0, bifurcation analysis’ 
gives a systematic calculation of the variation 
xi = (qi - rli,crit )x1, which does not agree with the T vari- 
ation in Nordman et aLz7 For comparison, we have applied 
the x formulas of Nordman et aL2’ to the TFTR discharge. 
We find that their extra power of y/w, in the fluctuation 
level formula and the $ = 0 approximation have the effect of 
making the xi (r) increase with radius. The formulas have 
the problem, however, of predicting that xc 24~~) contrary 
to theoretical expectations and to the power balance diffusi- 
vities that havesh4 xi > xe. For r” $ ( wk - $woD )2, the Nord- 
man et ai.*’ xi formula reduces to the usual estimate of 
y,+/k 2, consistent with Hamaguchi and Horton away from 
marginal stability. 

Rewoldt and Tang3* find a different behavior for the 
effect of the trapped electron mode. They find one eigen- 
mode with a Gaussian-like #,,( 19) that changes direction of 
rotation from the ion diamagnetic to electron diamagnetic as 
vi is decreased below 1 to 1.5. They call this continuous root 
the hybrid mode. When the mode rotates in the electron 
direction, the growth rate has an enhancement due to the 
trapped electron contribution. For larger qi, the growth is 
determined by the ion dynamics with y- 1.25 ( 1 + vi ) X lo4 
set for k,p, = 0.356, r/a = 0.21 in the beam-heated TFTR 
discharge 22014. Their quasilinear transport studies show 
xi >xe with xi and xc comparable to those obtained from 
power balance at the mixing length level. 

One may conclude from these comparisons of theory 
with experiment, as is also obvious from the proportionality 
of the quasilinear thermal flux with the square of the ampli- 
tude, that the actual fluctuation levels increase more strong- 
ly toward the outside than given by the mixing length level 
formula as presently understood and applied. The problem 
of the disagreement in the radial profile of xi may be re- 
moved if actual measured fluctuation levels are used in the 
quasilinear formulas. A recent study by Bravenec et a/.3’ 
reports ,& (p) using the measured fluctuation levels in the 
quasilinear formula in a study of electron power balance in 
TEXT. The study9 however, still shows disagreement in the 
radial profile ofXe (r) in the outer edge region of the Ohmic 
TEXT experiment. In all tokamaks, in both the L- and H- 
confinement modes, the measured fluctuation levels are, to 
the authors’ knowledge, strongly increasing toward the plas- 
ma edge. The problem with the radial profiles xi(r) and 
xc(r) then appears to reduce to the fact that the mixing 
length fluctuation levels AX/L, and AX/L,,, given by 
theoretical formulas used to obtain xi, do not increase rapid- 
ly enough with radius. Perhaps, it is necessary to fmd more 
directly the mixing scales in the edge turbulence and to con- 
sider the long-correlated ExB drift orbits that occur in re- 
gions where the vortex rotation parameter’ 
R, = k,ii,/Aw> 1. 
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D. Trapped electron destabilization 

When the profiles are such that the ion-temperature- 
gradient-driven turbulence is weak, it is necessary to calcu- 
latex, taking into the resonant trapped electron response as 
a drive to the same electrostatic drift modes D, (kp) = 0. 
In classical vi-mode theory, the resonant electron response 
is neglected since the contribution is subdominant for large 
vi and of a different physical origin. 

Because of the fast electron transit v,/qR and bounce 
E”‘v,/qR frequencies (with E = r/R) compared with the 
fluctuation frequencies, the electron response ii, is a bounce 
average of 4(8) over the parallel electron motion 
b=v,,/qR= -& [2 (E-pB)]“2/qR. For BzB,( 1 
- E cos 19) and the pitch angle variable R = pBdE, the ar- 

gument of the elliptic function integrals K(m) and E(m) is 
given by 

m, =1?=+(1++) 

I 0 at il = 1 + E (deeply trapped), 
= 1 at/Z = 1 - l (separatrix). (17) 

The pitch angle averaged trapped electron resonance is 

H:(k,w,w) = 

X 
dml 1 

w - E,ulewG(rnA,s) + iv,,/w3j2 ’ 

(18) 

with the reduced quarter-bounce period r(m, ) = K(m, ) 
X (2/jl~) “2, and 

2E(m, 1 
~ --++A . 
K(m, 1 

The trapped electron density response function is then 

ii e = (n e@/T )(l -PTr) e e e (19) 
with 

1 

(20) 

The classical theory3= of the trapped electron mode follows 
from D 2 = 1 - PF + T[ 1 - Pf(w,k)] = 0, where the 
nonresonant or hydrodynamic ion response function 
Pf(w,k) is taken for the ions and the resonant electron re- 
sponse Im PF drives the turbulence through 
yk = Im PF/(c~D,/&~). Th e nonadiabatic electron re- 
sponse in Eq. (19) gives a phase shift between ii, and 6 
leading to particle transport. 

For 44669 A at r = 0.3 m with 7, = 1.22, we find two 
roots of the electrostatic dispersion relation with Pf’. The 
root with the largest y has the behavior shown in Fig. 1 of 
Rewoldt and Tang3’ when 7i is varied from - 5 to + 3. For 
vi Z 2 the growth rate is dominated by the VI driving mecha- 
nism. The second root has a considerably smaller growth 
rate with y2/y, 5 l/6. 

The trapped-electron driven turbulence produces EXB 
turbulent diffusion of the ions and electrons given in the 
quasilinear approximation by 

XIm GT(k,w,w), 

with the thermal fluxes Qj and Q, given by 
(21) 

Qi = $Tiri + qi (22) 
and 

Qe = P-J, + q,, (23) 

where the qi and qe are the conductive part of the thermal 
flux due to (the out-of-phase) pj fluctuations. At the mixing 
length level of turbulence, where 

(fi,/Ti,)=E l/@ 2 ‘, > z (p:/L ‘, > (LJL,, 1, 
these fluxes from the trapped electrons can explain the mag- 
nitude and some of the parametric variations found in 
tokamaks.31p33p34 In Bravenec et aZ.,31 the fluctuation spec- 
trum measured by FIR scattering and the heavy ion-beam 
probe are used in the quasilinear formulas (2 1 )-( 23). The 
principal difficulty with using the trapped electron mode for 
xe in all regimes is the lack of a sufficiently strong q depend- 
ence and the tendency for the q, (r) flux to decrease rapidly 
with increasing radius r/a just as is the problem discussed 
above for the vi-driven xi formulas. 

A second source of electron thermal flux is obtained by 
including the short-wavelength VT,-driven electromagnetic 
turbulence. This small-scale v~-driven turbulence, which is 
the electron analog of the vi, produces a collisionless skin 
depth electromagnetic xe given by trapped electrons 

xe = E”~co,,~c~/w;~ = rv,c=/qR 20$. (24) 

As shown in Table II, rate ~6~’ from Eq. (24) can exceed 
that from the longer-wavelength part of the spectrum xL2’. 
For fixed T,, the electromagnetic xe in Eq. (24) vanishes 
with electron mass m, +O as m)‘2, whereas the electrostatic 
xe in Eq. (21) is independent of m,, which indicates the 
physically different origins of these transport components. 
The relationship between the xii’ skin depth transport and 
the xe (2) trapped electron mode is analyzed in Kim et aZ.35 

IV. CONCLUSION 
The TEAR supershot density-modification experiment 

of Zarnstorff et aZ.5*6 has been analyzed for local and balloon- 
ing mode stability to the vi modes. The analysis shows that, 
even though the ion temperature gradient parameter vi in- 
creases almost an order of magnitude (vi = 2.3 +21 at 
r = 0.3 m) from the flattening of the density profile, the 
growth rate and wave number of the dominant 7, modes are 
not strongly changed. The ion thermal diffusivity construct- 
ed from the linear kinetic growth rate and the isotropic tur- 
bulent correlation length AX,, -k ; i as required by the 3- 
D turbulence simulations, yields a decrease in xi in the post 
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injection state due to ( 1) the lowering of the ion and electron 
temperatures and (2) the increase of the toroidicity param- 
eter E, to the order of unity where compressibility is strongly 
stabilizing. The toroidal vi-mode growth rate yk (E, ,vi ) has 
a maximum at small E, for fixed vi. 

The stability analysis from both the local and nonlocal 
equations shows that the discharges are not near marginal 
stability. Even within the classical ~~-rnode approximation 
of adiabatic electrons, the VT,-driven modes are unstable 
both before and after pellet injection. The ion thermal diffu- 
sivities derived here are not sufficiently large to force the 
profiles to marginal stability. 

The previous theories predicted xi’s that were much 
larger than observed in the experiment. Our present calcula- 
tions do a better job by including a number of important 
effects that were not adequately treated in previous theories. 
Finite-gyroradius and kinetic effects (such as Landau damp- 
ing) are retained, which reduce the growth rate significant- 
ly, which is partially offset by the inclusion of toroidal driv- 
ing terms that had been missing from many of the previous 
theories that were in slab geometry. Also, we use a shorter 
mixing length I/jk,l rather than a longer mixing length, 
which sometimes is suggested by the linear radial mode 
structure but which is not expected to survive the nonlinear 
regime. 

There are a number of ways in which future work could 
build upon our calculations. We have employed local toroi- 
da1 calculations that are good for arbitrary k,,v,/w but 
which assume a k,, = l/(qR), and we have used a balloon- 
ing mode equation expanded for small k,, v,/w but which 
self-consistently determines a linear spectrum of k,,‘s. Al- 
though we have found good agreement between the two ap- 
proaches, it would be interesting to repeat the stability analy- 
sis using more complicated ballooning codes that do not 
assume small k,,~,~/m. We have used a simple s-a model 
equilibrium, but a more accurate equilibrium would, among 
other things, introduce a nonlocal dependence on integral 
quantities through the Shafranov shift A(r). At the edge of 
this plasma (ra0.65 m), A’= - (a/R)@, + 4/2) 
= - 0.65 is large, giving an enhancement in the pressure 

gradient by a factor of 2 to 3 while also shortening the con- 
nection length by a similar factor. 

The present 7i mode theories fail, however, to explain 
the radial dependence of the power balance xi over all radii, 
in particular, at the outer edge region. Attempts to obtain the 
observed increase of xi (r) with r/a by adding the effects of 
(i) the finite-beta drift wave-MHD mode coupling, (ii) the 
slablike mode, or (iii) the trapped electron resonances are 
found to be inadequate. The tracking 0.2 sxe/xi ~0.7 sug- 
gests that both the VTi and the collisionless-trapped-elec- 
tron driving mechanisms are operating. The disagreement in 
thex, andxe profiles appear to arise from the underestimate 
by theory of the actual fluctuation levels that are measured 
to increase strongly with radius, 

The problem of the lack of agreement in the radial vari- 
ation of the theoretical turbulent conductivities compared 
with the experimental power balance conductivities occurs 
for many forms of microturbulence. The conflict suggests 
one of several possibilities: (i) that another class of linear 

instabilities is controlling transport in the outer regions, (ii) 
that either the relevant gradient scale lengths L, (r), LT( r) 
in the dynamics of the plasma are substantially shorter in the 
region r/a > 0.5 than reported from the measured mean 
(temporally and spatially smoothed) profiles nj ( r), I;. (r), 
or (iii) that the actual mixing length AX,,,, is substantially 
greater than the theoretical values. Indeed, there is evidence 
on a number of tokamaks that the theories underestimate the 
actual fluctuation levels that are measured to increase 
strongly with radius. Theoretical transport effects outside 
the scope of the usual locally homogeneous turbulence mod- 
els related to the radial profiles of the gradient parameters, 
the shear profile, and the ExB shear flows created in the 
outer layer of the plasma may be responsible for the larger 
edge transport. The effect of a strongly localized ExB shear 
flow layer36-3R can distort the radial wave functions, and thus 
increase the radial mixing length. Studies of the shear flow 
layer effect are advancing and show that, if the shear flow 
scale length L, for the nonuniform flow vE(r) satisfies 
vH = u,/L, > (c,/L, ), the Kelvin-Helmholtz-like vortices 
are formed between the counter-flowing plasma streams. In 
this shear flow layer, the mixing width AX,, becomes as 
large as the vortex diameter, which is found to approach L, 
for sufficiently small L, .38 

Other mechanisms for increasing the mixing length may 
be the electromagnetic shielding of the induced parallel cur- 
rent filaments by the collisionless skin depth c/ape, which 
exceedsp, (L,/L, ) “2 at sufficiently low fl, characteristic of 
the edge region,9*35 and long-correlated EXB orbits in the 
amplitude regime above the mixing length level.“9 

In this work, we have clarified the basic problems that 
occur in using present theoretical models for understanding 
and analyzing power balance in the supershot regime in the 
TFTR. 
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APPENDIX: ELECTROMAGNETIC BALLOONING MODE 
EQUATIONS 

The calculations of the Vlasov parallel current and 
charge densities are given in Cheng,23 Hong et ai.,” and 
Horton et aL4’ The ballooning mode representation of the 
fields in a torus is used, and the mode frequencies are taken 
to be between the transit frequencies of the ions and electrons 
which is justified aposteriori. The condition of quasineutrali- 
ty is 
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a++S+o 
and the parallel component of Ampere’s law is 

i$+;itl,=o, 

where 

(A*) 

(A21 

ii(k,w,@= -l+r(P-I)- 
c2 ALpd 

W=q=R = a13 3 de ’ 

h(k,w,e) = 1 - s + -LpL ” 
w W2q2R = a0 = a6 ’ 

and 

The ion kinetic response functions, P and P, (j = 1,2,3 ), are 
given by 

(A3) 

(A4) 

P=,d”,(“)(;),(~), 

cd-‘(13 -ml;) m.v2 t 11 J2 

(w-ci~~~)j Ti ’ 

where F,(v) = (2~uf)-~‘~exp( -v2/2v:) with v, 
= ( T,/m, ) “2 and WK. = wli [ 1 + ?li ( v2/vf - 3/2) 1. The 

fluid limit of the P, (j = 1,2,3) functions is 

P{ = P.: = P{ E (1 - w*,/w)r,(b) - (w*i/w)77j{r”(b) 

+ b [r,(b) - ~o(Wl~, (A5) 
with F,(b) =I,(b)e-bandb=k:p:=k2p:(1 +?s2e2). 

All frequencies are measured in units of c,/r, and the 
wave number k, in units of pS = c( mi T, ) “2/eB. The di- 
mensionless complex frequency w [ c,/r, ] is a function of the 
seven dimensionless parameters k, fi,, q, E,,, S, rli, and 
r = TJT,. With the dimensionless variables, we write Eqs. 
(Al) and (A2) as 

(A6) 

+ P.: 

(A7) 

1. Limiting regimes of the kinetic eigenmode equation 
First we consider the limit that allows ion acoustic cou- 

pling terms to be zero with wA = (E,/q) (2% ) “2 fixed. If 
q+ CO but q2flc finite, Eqs. (A6) and (A7) reduce to the 
second-order differential equation 

where we used 

(A9) 
* _ *+7(1--P) 

7 1 - C&,/w 
from Eq. (A6) and note that 

El, = ik,,#(* - $/#I. 
The eigenmodes of Eq. (A8) have been analyzed in earlier 
WOrkS.2’,23-25 With the full ion kinetic velocity space integral 
P, we give the results of the kinetic effects on MHD balloon- 
ing mode. 

Equation (A8) also governs the toroidal vi mode in the 
low-beta limit 

(A81 

2 w,.,+w then D,,(w,k)=l+r(l-P)=O, (A*01 

with the mode characteristics ( /+I$ I$[ ). In the high-beta 
limit, Eq. (A8) reduces to the MHD ballooning mode 
(l4[-I$I) fork+Oatfinitew. 

In the j?- 0 limit, Eq. (A8) reduces to 

4 a [I -r(P- l)]w’a8k:$$=0. (A**) 

If we assume D,, = [ 1 - r( P - 1) ] #O, then we obtain the 
solution of Eq. (Al 1) as $-tan - ’ 0, which is an unphysi- 
cal solution having J de $? -+ CO. Thus, to have a solution 
that tends to zero for large 8, we must have 

D,, (k,w,0 = 0) = [ 1 - r( P - 1) ] = 0, C-412) 
which is the local dispersion relation of toroidal vi mode. 

Dispersion relation Eq. (A12) gives unstable vi mode 
when 

l?i>Vc--: and er, = r,/R ~0.35. (A13) 
Above the threshold, the mode has wk =ogi = - 2kcn and 
Yk-vi/(RrT,)“2. Recent H-mode discharge experiments 
show inverted gradient profiles with vl ~0 and E, ~0. For 
the dissipative drift wave and the trapped electron mode, the 
inverted profiles show substantial gain in stability for 
Y*, < 0.3 regime. For a fixed or local value of 0, the condition 
Im P = 0 yields the marginal stability frequency 

1 +3177il 

*, = 1 - 17#ril/len 1 w*i 
and 

Re P(w,,, I= [vi/En Ire(b), 
which leads to the instability condition of 

E < 7rom 
T, -= 

row s 1 
l+r 1 + Ti/Te 1 + Ti;:/Te 

(A14) 

for er, = r,/R = en/vi from a Nyquist diagram. 

2. Electrostatic toroidal integral equation 
In the limit where magnetic shear determines the mode 

structure and the drift velocities are taken local in 0, the 
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velocity integrals can be done without the expansion in 
P,, -k ivf/02 defined in Eq. ( 12). We obtain the integral 
equation 

(1 + rM(k,) = 
s 

+=kk,,k:)&k;)dk;, (Al5) 
-m 

where 

K(kx7ki) =& -m e P 

- iol - (k:- k,)“/4cr,t’ 

(: +Q& 
G(t>& 

(A161 
with the kinetic response function 

G(T) ~5 [ *r+ 1-+ + 277i 
t& @*e (1 +a,1 

x I- 
( 

kf + k;= -I- k,kI I, 
Ml +a,) d* +a,1 r, 

+ Tick: -kx12 4u,ff,t = I ro(k,,k; 1, (Al7) 

where 

a, = 1 + i(26,a,t/r), 

cr = ( 1/7-u, ) (LJL, )=, 

r&K&;) =Jo[k,k;/r(* +a,)] 

Xexp[ -k: + k12/2r(l -~-a,)], 

k; =k; +k;, k;2=k:2+k;, 

and T= Te/Ti. For s-0, the matrix K(k,,k:) is diagonal 
and the eigenmodes are #(k, ) = S( k, - q) with the q = 0 
mode from Eq. (A 15) giving the local toroidal dispersion in 
~~2/~)~; Iwl$kllvi, oDi, thesmall t limit G(t) = G(0) 

* * * of Eq. (A 16) returns the differential equa- 
tion valid for P,, < 1. 
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