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Nonlinear behavior of magnetohydrodynamic modes near marginally stable
states. Il. Application to the resistive fast interchange mode

Noriyoshi Nakajima® and Satoshi Hamaguchi

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 10 July 1989; accepted 26 February 1990)

With the use of the general formulation developed in an earlier paper, the nonlinear evolution
of the resistive fast interchange mode near the marginally stable state is obtained analytically.
The nonlinear amplitude equation of the mode is shown to be of the Landau type. It is also
shown that there is a stable equilibrium bifurcating from the initial equilibrium. Comparing
this analytical result to numerical simulations, it is confirmed that the saturation level and the
saturation time are well estimated by this Landau type of nonlinear amplitude equation.

I. INTRODUCTION

In our previous paper,’ a general formulation was pre-
sented to obtain the nonlinear equation describing time evo-
lution of the mode near the marginally stable state. It was
shown there that two different types of nonlinearity exist,
depending upon the properties of the linear operator of the
mode under consideration—one leads to a Hamiltonian-
type equation for the amplitude, and the other leads to a
Landau-type equation for the amplitude.” The Hamiltonian-
type equation may be obtained in the case where the linear
operator is degenerate at the marginally stable state, i.e.,
when the linear dispersion relation has a double root for the
frequency at the marginally stable state. The Landau-type
equation may be obtained in the case where the linear opera-
tor is nondegenerate, i.., when the linear dispersion relation
has a single root. In magnetohydrodynamics (MHD), the
Hamiltonian-type equation may be obtained for nonreso-
nant ideal modes, and the Landau-type equation may be ob-
tained for resistive modes. In Ref. 1, the nonresonant kink
mode in reversed field pinches (RFP’s) and the quasi-inter-
change mode in tokamaks were examined by means of this
general formulation." These modes are the nonresonant
ideal MHD modes and the corresponding nonlinear ampli-
tude equations are shown to be of the Hamiltonian type. Asa
result, we find that both the nonresonant kink mode and the
quasi-interchange mode are nonlinearly stabilized, and the
new stable equilibria bifurcate from the initial equilibrium.
This is a manifestation of nonlinear saturation of those
modes.

In this paper, we examine the nonlinear behavior of the
resistive fast interchange mode,** which will be shown to
lead to the Landau-type equation of amplitude, a different
type from the one obtained for the nonresonant ideal MHD
modes in Ref. 1. Although our main goal in this paper is to
present an example of the Landau-type equation, it should
be noted that the nonlinear evolution of the resistive inter-
change mode plays an important role in terms of energy con-
finement in current fusion experiments.>®

The rest of this paper is organized as follows. In Sec. II,
we derive the nonlinear amplitude equation for the resistive

) Permanent address: National Institute for Fusion Science, Nagoya 464-
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fast interchange mode, based upon the reduced nonlinear
equations used in Ref. 6. Comparison between the analytical
results and the numerical simulation results is made in Sec.
I11, where it is shown that the saturation level and the satura-
tion time are well estimated by the analytical theory. Section
IV contains conclusions and discussion.

ll. THE DERIVATION OF THE NONLINEAR AMPLITUDE
EQUATION

We apply the general formulation in Ref. 1 to the resis-
tive fast interchange mode in order to elucidate the satura-
tion mechanism of the mode near the marginally stable state.
The resistive interchange mode is an instability caused by the
pressure gradient acting against the curvature of the magnet-
icfield in a plasma with finite resistivity. When the resistivity
is small and the plasma is stable for ideal interchange modes,
which means that Suydam’s criterion® is satisfied, i.e.,
D < 1/4, where the parameter D is specified later, the unsta-
ble resistive interchange modes are known to be localized on
a particular magnetic surface.>* There are two different
types of resistive interchange mode. One is the resistive slow
interchange mode whose solutions must match those of the
ideal interchange mode and the other is the resistive fast
interchange mode, which has high poloidal and toroidal
mode numbers and is localized in the resistive layer. For
these localized modes, the original resistive MHD equations
describing the modes may be simplified with the use of an
asymptotic expansion. Here we only consider the resistive
fast interchange mode under the condition that the ideal in-
terchange modes are stable and we use the resistive fast inter-
change ordering®’ to obtain the dynamical equations of the
fluctuations. In the resistive fast interchange ordering, the
perturbed density p,, velocity v,, magnetic field B, and pres-
sure P, are assumed to be of O(8), compared to their corre-
sponding equilibrium quantities of O(1), except for
v, = O(5%). Here the subscripts 0 and 1 denote the equilibri-
um and perturbed quantities, respectively, and & is a small
parameter of O(y/77) where 7 is the resistivity. It is also as-
sumed that the mode is localized along a mean magnetic field
line so that the perpendicular derivative of a fluctuating
quantity is of O(8~') and the parallel derivative of a fluctu-
ating quantity is of O(1). The dynamical equations of the
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resistive fast interchange mode then become,® with the subsi-

diary expansion in the inverse aspect ratio
e~B=2P/B;<]l,

N 1

d apP 2

x Ap—VAY+ > MAlp= —{pA o} + {pA, ¥},

(2)

apP dp

— 4+ DL _yA P= —{oP} 3
ot + gy X8, {g.P} (3)

The dependent variables in Egs. (1)—(3) are defined by
1 VPo

=rsBeoBo i (p="sBeoBo v
and
PE(Z/B(Z)la'()P,Z)P]’ (4)
and the independent variables are defined by
r—r, B, |o,|"?
x=|0,|'? » V= 20| (z — uo9),
rs rsBO
and
1= (390‘0'0'/’:\//’—0)7'- (5)

Here, (r,6,z) denote the polar coordinates of the cylinder in
which the plasma is contained; 7 denotes the time; r = r, is
the radius of the resonant surface; and B,, B,,, and B, indi-
cate the absolute value and the azimuthal and longitudinal
components of the equilibrium magnetic field B,, respective-
ly. The perturbed magnetic field B, and the perturbed veloc-
ity field v, are expressed by B,=V,¢¥,;Xb and
v, = V, @, Xb, where b = B,/B . The parameters used here
are defined by

D= —2r,P;/B%0%, S=r,Boo/1pos

ME.UL/":Bao\/P—O’ X=(T — Dk /rBgo\po, (6)
Ko=1B,/Byo, 0o=Byop/B,.

In Egs. (6) aprimedenotesd /dr, I is the ratio of the specific
heats, and i, and «, indicate the perpendicular viscosity and
the perpendicular heat conductivity, respectively. Note that
all the equilibrium quantities are evaluated at the mode ra-
tional surface » = r,. The parallel diffusion coefficients are
ignored for simplicity. In the following argument, we only
consider nonlinear saturation of the mode occurring near the
marginally stable state with small amplitude. Therefore, we
may ignore nonlinear interactions of the modes with differ-
ent helicities localized on different resonant surfaces and we
only need to take into account nonlinear interaction of the
single helicity modes, the helicity of which is given by .
Therefore, the parallel derivatives become V = xd /dy in
these equations. The Poisson bracket { , } and the perpendic-
ular Laplacian are defined by

u=32u + 3%u
YT ax T g
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The domain of the mode is defined as |x| <8, and |y|<8,
with &, and 8, being positive constants of order S ~'/2, which
represents the narrow boundary layer within which the
mode is considered to be localized. Asin the case of the linear
resistive fast interchange mode,* we assume that the mode
decays rapidly away from its mode rational surface x =0
and ¥, @, and P are periodic in y with period 25,. Here we
note that the plasma is assumed to be stable for ideal MHD
modes and that the mode under consideration is restricted to
the resistive fast interchange mode so that the localization of
the resistive mode along the mode rational surface is justi-
fied.

We now consider the situation where the equilibrium
pressure gradient, indicated by the parameter D, is slightly
larger than its critical value D, (which corresponds to the
marginally stable state and will be determined later as an
eigenvalue of the linearized system) but satisfies Suydam’s
criterion, i.e., D, S D < 1/4, so that only the resistive inter-
change mode is weakly linear unstable. It should be noted
that the resistive fast interchange mode near the marginally
stable state has a similar eigenfunction to the marginally sta-
ble state,5 so that the following expansion around the mar-
ginally stable state is valid. It is known that this unstable
mode has no real frequency and that the functions ¥, g, and
P have odd, even, and even symmetry with respect to x, re-
spectively.®

We apply the general formulation in Ref. 1 to Eqgs. (1)-
(3) as follows. The expanded forms of ¥, ¢, and P are given
by

¥ ¥ ¥, ¥
pl=2|o |+ 2% @ | + A3 @ |+ -1, (8)
P P, P, P,

where A is an ordering parameter. We introduce the follow-
ing form for ¢, and also the multiple-time-scale method:

¥, = Ay, (x)cos ky, (9)
71 =A't9 P! =/{2t)---s (10)
a a a

—_— =A== /{2_ ey 1
at dry + a7, * (b
A= A(1,,75...), (12)

where 4 and ¢, (x) are real functions. In Eq. (11), we make
use of the fact that the real frequency vanishes. Finally, we
choose the mean pressure gradient D to be the parameter p in
the general formulation, so that

D=D, + 1% (13)
where D, denotes the critical value (or the linear stability
limit) of D and the plus sign corresponds to the linearly
unstable situation. Substituting Egs. (8)-(13) into Egs.

(1)-(3) yields simultaneous equations for each order of A,
which we solve beginning from the lowest order.

A.Order A

This order corresponds to the marginally stable state,
and we have the following linearized equations:

N. Nakajima and S. Hamaguchi 1185



2
—sza‘pl'i'MAi‘Pl _%
L ¢']= . > ¥ o
P, 9@, X AP,
dy A
(14)
and
1)
Ay = —ijt;-. (15)

Assuming ¢, is given by Eq. (9), we may have the following
type of linear solutions:

' ¥,(x)cos ky
@ | =4 @ (x)sinky]. (16)
P, P,(x)cos ky

The real functions ¥, (x), ¢,(x), P,(x), and D, are, respec-
tively, the eigenfunctions and the eigenvalue of the following
eigenvalue problem:

with ¢,(x) =0 at |x| = §,.. Here the linear operator L, is
given by the / = 1 case of the following operator:

S(lkx)* + M [3%
L=

— (Ik)*]? Ik
2 _ ()7

Ik
(19)

It is seen that L, is a Hermitian operator with respect to the
following inner product:

(“1’“2)[31] = (u,v, + u0,), (20)
2
where
5,
(w)= dx w(x'). @2n

25

We assume in what follows that the solutions of Eqs. (17)
and (18) are unique.

¢’1(x)]
1| p ) 0, an
where ¢, (x) = P,(x) =@ (x) =0at x| =§,, and B. Order A2
(32 —kHY(x) = — Skxg,(x), (18) The equations in this order are given by
|
a a2
{¢1, 1?1} Sx {¢’1:¢1} {'/’I!Al ¢1} +—A @ - ¥
@ % o P T o
Llpl= 1 3 (22)
2 - D. ({‘Pupl} + a_lpl)
t
and 04

A= —5c 24 Slpo} +SZE

T
From the inhomogeneous terms of Eqs. (22) and (23), we
see that ¥,, @, and P, have components with the same phase
in y as the order-A4 solutions: #,,(x)cos ky, @,,(x)sin ky,
and P,,(x)cos ky. Here the functions #,,(x), ¢,,(x), and
P,,(x) are given by

(23)

@2(x)
Py, (x)
(3% — k) @y (x) + Skxp (x)
=9 — L P ’ 24
with @,,(x) = P, (x) =@, (x) =0at |x| =6,, and

A
(82 = k) () = — sy (x) + 9 Sy (),

‘ (25)
with #,,(x) = 0 at |x| = &, . From the solvability condition

of Eq. (24), we obtain
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(9_7'1< - {[ax¢l(x)]2 + [k¢71(X)]2} + {[ax¢1(x)]2

+ [k (017} — D‘

c

P%(x)) _ (26)

The averaged quantity (---) in Eq. (26) does not vanish
generally, and hence we have

= =0. (27)

Then, the inhomogeneous terms of Eqs. (24) and (25) van-
ish, and so we have the solutions proportional to the order-A
solutions. According to the general formulation, however,
these solutions could be transferred into the order-A ones by
redefinition of the coefficient 4, and therefore we set

¥, (x) = @,,(x) = P,,(x) = 0. Then, from Eqs. (22) and
(23) we have
¥ ¥a0(x) ¥ (x)cos 2ky
@2 | =A% @ro(x) | + 4%| @ra(x)sin 2ky |, (28)
P, P,y(x) P,,(x)cos 2ky

where ¥, (x), @,; (x), and P,; (x) (j = 0,2) may be obtained
from the following equations:

N. Nakajima and S. Hamaguchi 1186



0
P2(x)| _
NPyp(x)] ‘2-5-5x[¢1(X)P1(X)] ’ (29)
with @,0(x) = Pyy(x) = @30 (x) =0at |x| =4,,
d3th0(x) = — (kS/2)8, [ (X)) (x)], (30)
with ¢¥,4(x) =0 at |x| =4§,, and
L7
P22(x) 2
= 31
2LPy,(x) —"k—Pz(x)a (?’1(35)) GD
2D, T\ Py(x)
with @,,(x) = Py(x) =@ 5, (x) =0at |x| =§,,
[a)zc - (Zk)z]'/lzz(x)
kS @(x)
= — 2Skx — ax(‘—), 32
P22(x) + > ¥ (x) () (32)
J

with ¢,,(x) =0 at |x| = §,, where
2 —k2)¢,(x))
@1(x)
3% — k2)¢1(x))
¥(x)

28 3 —4’1(")).
+ 25x¢7 (x) ‘(¢,(x)

Here we note that @,4(x) = 0.

= —¢%(x)ax(

- (x)ax(

(33)

C.Order A3

In order to obtain the nonlinear equation for 4, we con-
sider the solutions ¥,, @5,, and P;, that have the same phase
in y as that of the order-A4 solutions, i.e., 1¥5,(x)cos kyp,
@31(x)sin ky, and P; (x)cos ky. The functions s;,(x),
@11(x), and P;,(x) are the solutions of the following equa-
tions:

A+ 22102 — k9,0 + Skt ()]
2

@31(x)
L‘[ - ; (34)
P31(x) _ASi_ lAk __(211 P
D, (1) Dc @1(x) 672 Dc 1(x)
with @3, (x) = P3;(x) = @3, (x) =0Oat |x| = §,, and
(3% — k) (x) = — Skxps,(x) + 4°Sh, +STAS'/’1(x), (35)

2
with ¢;;,(x) =0 at |x| = &,, where

L=k —3,0:(x)[9% — (2K)?]@1(%) + @,,(x)3, (32 — k)@, (%) —4@1(x)3, [9% — (2k)?] o (x)
+ 19,922 (x) (3% — kD)@ (x) + 3,9, (x) [33‘ - (2k)2]l/122(x) — ¥n(x)3, (3% — kD)9 (x)
+4,(x)d,[32 — (2k)2]¢22(x) — 30, ¥2,(x) (2 — k)¢ (x)

— (X33 h,0(x) + 9, 20(x) (3% — k2)¢1(x) + Sxh,},
8= — k [@1(x)0, Pyo(x) + 8,0,(X) Py (X) + @2(x)3, P (x) + i, (x)3, Pyy(x) + %axfpzz(x)Pl(x)]s

h=—k [¢1(x)ax¢2o(x) + 3, 9,(X) ¥y (x) + @2 (x)d, ¥, (x) + %¢’1(x)ax¢22(x) + %ax¢’22(x)'/’1(x)]-

InEq. (34), the term involving the factor of 4 1comes from
Eq. (13). The solvability condition of Eq. (34) yields the
following nonlinear equation, as was proved in the general
formulation' in the nondegenerate case:

dogiidlA +dA®=0,

T

(39)

where
do={(—{[0,9:(x)]* + [k, (x)]*}

+{[0:4(3) ] + [kt ()17} — (1/D,)P} (1)),
(40)

d,=(x/D2)([3,P,(x)]* + [kP,(x)]?), (41)
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(36)
(37)
(38)
[
dy={g,(x)f; — (1/D,)P,(x)g,). (42)

Rewriting Eq. (39) in terms of the original variables, i.e.,
t=1,/A% and & = A4, we have the nonlinear amplitude
equation:

d, df +(D=D,)d\of +dyat® =0, (43)
where we used Eq. (13). Defining
= —(D-D.,)d,/d, (44)
IE 2d3/do, (45 )
we obtain
N. Nakaiima and S. Hamaauchi 1187



dot?
dt

This equation is the Landau-type equation well known in
fluid dynamics,® the solution of which is expressed analyti-
cally as

2 o
(U720) 5+ [1— (1/20) L} ] e >

where &/, is the initial amplitude. It should be noted that o
gives the linear growth rate of the mode.

The solution, Eq. (47), exhibits wide classes of nonlin-
ear phenomena, depending upon the signs of the coefficients
oand /. For example, consider the linearly unstable case, i.e.,
o> 0. In this case, if the mode under consideration cannot be
nonlinearly stabilized by the second term on the right-hand
side of Eq. (46), i.e., / <0, the solution becomes unbounded
in time, so that none of the higher-order terms may be trun-
cated and there is a fast transition to turbulence. On the
other hand, if the mode is nonlinearly stabilized, i.e., />0,
then a new stable equilibrium bifurcating from the initial
equilibrium is obtained. In this case, the amplitude &
asymptotically approaches its saturation level 7, given by

Jle=\[20/l =\/—'(.D—Dc)d1/d3, (48)

for any positive initial amplitude /> 0.

It is easy to show that this saturation amplitude 7, is
identical to the one given in Ref. 6, which was obtained by a
somewhat different nonlinear analysis. In the perturbation
method presented in this paper, however, we also obtain a
nonlinear time evolution of the mode from the initial ampli-
tude .7, which was not assessed in Ref. 6. Such time evolu-
tion of the mode at the initial stage is characterized by the
saturation time A7, or the time that elapses from
& =0.14, to & = 0.9/, which is given by

Ar=~3/0.

=20%—lod*. (46)

,  (47)

(49)

Hil. COMPARISON BETWEEN THEORY AND
NUMERICAL SIMULATIONS

In this section, we present sample calculations of the
nonlinear evolution of the resistive fast interchange mode,
using both theory [Eq. (46)] and direct numerical simula-
tions of the nonlinear system of Eqs. (1)-(3). The coeffi-
cients o and / in Eq. (46), given by Eqgs. (44) and (45),
respectively, are calculated from the solutions of the linear
equations (17), (18) and (29)—(32). The details of the nu-
merical simulations of Egs. (1)-(3) may be found in Ref. 6.
Following Ref. 6, we use the scale transformation

x_’S—l/zx’ y—»S_llzy,
¢—>S_'1/J, ¢7—>S_1¢7, P-S—12p

and introduce new parameters M, =SM and y, = Sy in
order to eliminate the explicit dependence of the system on
the parameter S. The following values were chosen for pa-
rameters in our calculations:

M, =10, y,=01,
5,8'2=25 685" =nm.

(50)

(51)
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In the numerical simulations of Egs. (1)-(3), 150 grid
points in the x direction and seven Fourier modes (0<m<6)
in the y direction were employed, where the mode number m
is defined by the relation d/dy = k= mn/§,. It is con-
firmed that these grid points and the number of Fourier
modes give sufficient numerical resolution to obtain correct
mode saturation in the calculation presented in this section.
With these parameters, we obtain the eigenvalue D, from

Eq. (17),

D, =0.085, (52)
and the parameters of Egs. (44) and (45),
o/(D—D,)=38%X10"", I=12X10. (53)

Because />o0/(D — D, ), the mode under consideration is
nonlinearly stabilized when DX D..

Figure 1 shows time evolution of the normalized energy
E for the case of D =0.13(>D,) as calculated from the
theory [Eq. (46)] (solid curve) and as obtained from nu-
merical simulation of the system of Eqs. (1)-(3) (broken
curve), where

S (%) (2]
d d - I ) 54
28,0 f.sx *1_.P\ax) T\ 9

with the typical mode width A in the x direction given by
A = §,.° The analytical result is in good agreement with the
simulation result. The overshooting that appears in the nu-
merical simulation seems to manifest a higher order nonlin-
ear correction, which is not included in Eq. (46).

E=

IV. CONCLUSIONS AND DISCUSSION

Using the recently developed general formulation,' we
have examined the nonlinear evolution of the resistive fast
interchange mode analytically. In the case of the resistive
fast interchange mode, the linear operator is nondegenerate
at the marginally stable state, i.e., the linear dispersion rela-
tion of the mode has a single root of the frequency at the
marginally stable state. Therefore, as shown in Ref. 1, the
nonlinear amplitude equation of this mode turns out to be of
the Landau type. It is found that a new stable equilibrium
bifurcates from the initial equilibrium. Comparison between
the perturbation theory and numerical simulations of the

107 T T T y T
E s -
107 _
1078 ]
- g
o 400 800

FIG. 1. Time evolution of the normalized energy E in Eq. (54) for
D = 0.13. Analytical and numerical results are shown by a solid curve and a
broken curve, respectively. The unit of the time ¢ is defined in Eq. (5).

N. Nakajima and S. Hamaguchi 1188



system of Egs. (1)—(3) was made, from which we confirm
that the saturation level and the saturation time are well
estimated from this nonlinear amplitude equation.
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