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Fluctuation spectrum and transport from ion temperature gradient driven

modes in sheared magnetic fields
Satoshi Hamaguchi and Wendell Horton

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 13 September 1989; accepted 5 April 1990)

The ion temperature gradient driven mode or 7,-mode turbulence is reinvestigated based on
two-component compressible fluid equations with the polarization drift velocity and adiabatic
electrons. The scaling of the anomalous ion heat conductivity with magnetic shear s =L, /L,
and the excess of 7; over the critical value 7, . for marginal stability is found to vary as

X: =8(ps/L,)(cT,/eB)(n; — ;. )exp( — as), where g~1 and a =5.

I. INTRODUCTION

Recent experimental studies in tokamaks both with re-
gard to the ion thermal confinement properties' and with
respect to the fluctuation spectrum* indicate that the ion
temperature gradient driven drift mode or 7; mode™® is
probably a determining part of the thermal confinement
properties in tokamaks. In view of these experimental
developments we reconsider some of the theoretical differ-
ences’~' that are found in the earlier formulas for the 7;-
mode turbulence and the associated anomalous ion heat con-
ductivity y;. In particular we investigate the magnetic shear
s=L, /L, dependence of the anomalous heat conductivity
X: (s).Here L, and L denote the scale lengths of the density
gradient and the magnetic shear, respectively. The early 3-D
nonlinear study of Horton, Estes, and Biskamp’ reports that
¥: decreases weakly as s~ '/? with increasing shear, whereas
the subsequent theoretical works of Connor,® and Lee and
Diamond”® indicate the opposite tendency with y; increasing
linearly with the shear s. Recent work of Terry et al.'® argues
that the anomalous ion heat conductivity y; obtained by Lee
and Diamond® should be enhanced by the factor (2/ + 1)?
from the effect of unstable radial eigenmode numbers /. In
the work of Connor,® such scaling of y; was derived using
dimensional analysis of a system further simplified from the
original sheared slab model of the %, mode. In the work of
Lee and Diamond® a~d the work of Terry et al.'® the authors
essentially attempt tv explain the shear dependence of y;,
with the linear gro+th rate increasing linearly with the shear
s under the assumption of small poloidal mode numbers

[k3p*(m; + 1) « » with k,, being the poloidal wave number,

p being the ior Larmor radius, 9; = L, /L, and L, being
the scale leng: 4 of the ion temperature gradient] and fixed
radial eigenmode numbers /. The dependence of y; on the
ion temperature gradient 7, is also of basic importance. In
these previous works the 7; dependence of y; scales as
X:i < (9, + 1)* with § Sa<2. Since the model equations of
the 7; mode on which all these previous results are based are
the same,'! the correct scaling of the ion anomalous heat
transport y; due to the slab 7, -mode turbulence has not been
established yet.

In order to settle this discrepancy, we reinvestigate the
problem using more rigorous analyses and numerical simu-
lations based on the same two-component compressible fluid
equations with adiabatic electrons. The parameter regime of
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interest is s<€ 1 and finite L,,, a typical parameter regime of
high-temperature tokamak plasmas. We solve the linear
eigenvalue problem analytically with perturbation theory
and numerically with the shooting code and the initial-value
code. Based on the space-time scale obtained from the linear
analysis, mixing length theory is applied to estimate the
anomalous ion heat conductivity, which is then compared to
the results of the amplitude expansion method and numeri-
cal simulations. In the amplitude expansion method, the set
of nonlinear equations of the %, mode is solved rigorously
near the marginally stable state, and the dependence of y, on
the ion temperature gradient 7, is obtained. The nonlinear
initial-value code is used to solve the 2-D and 3-D equations
for finite amplitude fluctuations. In the steady state of turbu-
lence the scaling of the anomalous ion heat conductivity
X (s,m,) is obtained for a wide range of the parameter space.
The simulations use a second-order finite difference formula
in the radial direction x and Fourier component representa-
tions in the perpendicular y and z directions. This numerical
method contrasts with the finite difference formulas in the
three-space directions with upwind derivatives in the
EXB-V nonlinearity used by Horton, Estes, and Biskamp.’

An important result of the stability analysis is that the
linear mode is most strongly excited when
k,p.=(1+4m;)~""?and (2! + 1)s= const and the growth
rate of this fastest growing mode y,, is a weakly decreasing
function of shear while localization of the mode around the
mode rational surface becomes stronger with increasing
shear. Suppose such strongly excited linear modes are re-
sponsible for the nonlinearly saturated turbulent state, the
associated anomalous ion heat transport can be shown to
decrease with increasing shear, unlike the y; scalings report-
ed in Refs. 8 and 9. Although numerical simulations show
that the peak of energy spectrum is downshifted from the
wave number giving the fastest growing linear mode, the
mixing length estimate based on the most unstable linear
mode provides the general tendency of the y, scaling that
agrees reasonably well with the numerical results. Physical-
ly, this is expected since the fastest growing linear mode is
the energy input to the turbulence.

Based on a more rigorous nonlinear analysis and para-
metrization of the numerical results, we find that the anoma-
lous ion heat conductivity is given by

X: =8(p/L,)(cT;/eB)(q, — 5, )exp( —as), (1)
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when 7, is close to its critical value 5, (77,.<%; =3). Here
g=1 and a~5. We note that although the parameter
a = a(n;) in Eq. (1) is generally a function of 7,, we use
a = a(n,.)=>5 here. In the limit of 7, —» «, however, Eq.
(1) is transformed to the following formula obtained from
numerical simulations:

ps (CT'I) ( Te LT)
, = —= Jexp| — ,
Xi=e o5 )™\ ~PT L

where S~4. In other words, a(n;)—(T./T;)(B/7,;) as
7, — . The detailed study of the dependence of @ on general
77, will be presented in the future.

In deriving the shear dependence y; (s) in Eq. (1), we
consider both power law s* and exponential fits. With the
alternative power law parametrization of y; (s) we obtain
v= —2 for 2 0.5, as in resistive g-mode turbulence, and
v= — }fors=0.1. As shown in Sec. V, the exponential de-
pendence fits well the entire range of shear. It is found that
the scaling obtained by Horton, Estes, and Biskamp’ agrees
reasonably well with the scaling above in the limited range of
the shear parameter 0.05 $550.1 while it underestimates
the strength of the shear dependence for larger shear. On the
other hand, the scalings of Connor,® and Lee and Diamond’
(v = 1) give wrong qualitative dependence on shear; i.e., y;
increasing with shear.

For smaller shear, the locally unfavorable toroidal cur-
vature €, = L, /R effects are dominant'*"'® and the sheared
slab model of the 7, mode becomes no longer applicable. The
anomalous ion heat conductivity y; calculated by Horton,
Choi, and Tang'? from the toroidal 7; mode, however, also
shows that y; is a decreasing function of shear, scaling as
¥: « 1/s. In the work of Hong and Horton,"” the limit s— 0 of
the toroidal 7; mode is reexamined. For sufficiently small
shear, the radial profile of the electron diamagnetic frequen-
cy . (r) and the ion temperature gradient 7, (#) must be
taken into account over the mode width Ar.

The present work is organized as follows. In Sec. IT we
give the nondimensional field variables and the dynamical
equations along with their conservation properties. In Sec.
III the linear analysis is presented, assessing the shear stabi-
lization effect due to the parallel compressibility and the par-
allel diffusion. In Sec. ITI we aliso present the mixing length
estimate, deriving as a reference formula the anomalous ion
heat conductivity y; (s,5;) of the ,-mode turbulence. In
Sec. IV, the amplitude expansion method is used to solve the
nonlinear equations and the 5, dependence of y; is obtained.
The results of the 2-D and 3-D numerical simulations are
shown in Sec. V and the scaling of y; is derived therein. The
conclusions and brief critiques to the previous results are
given in Sec. VI.

1l. DYNAMICAL EQUATIONS

In this section we present the dynamical equations of the
ion temperature gradient driven mode and review their basic
properties. The fluid model of the electrostatic ion tempera-
ture gradient driven mode in a sheared slab is derived’ from
the two-component fluid equations (Braginskii equations)'®
with the finite ion Larmor radius stress tensor and the ion
heat balance equation. Assuming charge neutrality, con-
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stant electron temperature, and zero electron inertia, the
parallel component of the electron momentum balance
equations is used to derive a Boltzman distribution of elec-
trons

n=n‘.=ne=n0(x)(l+eq>/Te)’ (2)

where n; and n, are the ion and electron densities, respec-
tively, n,(x) is the unperturbed density, ® = ®(x,y,z,2) is
the electric potential, e(e > 0) is the magnitude of the elec-
tron charge, and T, is the (constant) electron temperature.
In Eq. (2) we assumed that |e®/T,|<1. The coordinate
system (x,y,z) is the usual orthogonal coordinate system
represented by three unit vectors X, §, and Z. Here X repre-
sents the radial direction of a plasma cylinder, Z represents
the direction of the magnetic ficld B at a rational surface, the
position of which is indicated by x = x,,. To the lowest order,
the ion fluid velocity v may be written as the sum of the ExXB
drift velocity vz and the ion diamagnetic drift velocity v,
where

vz =c[(EXB)/B?]
and
vy =c[(2XVp;)/enB].

Here E = — V® is the electric field, c is the light velocity,
B = |B| is the magnitude of the magnetic field at x = x,, and
p; is the ion pressure. To the next order of v, we have the
polarization drift velocity
—cm, (3

Y, ='—e§'2——(5+ (VE +VD)'V)V1¢, 3)
where m, is the ion mass and V, is the gradient perpendicu-
lar to the direction of the magnetic field B. Denoting the
parallel velocity by v, we write

n=ny(x) + i =ny+ ned/T,,

P =Pp(X) + P,

‘b == é, and U" - 17",
where the subscript 0 denotes the unperturbed quantities
which are assumed to be functions of only x, and the tilde
denotes the fluctuating quantities. Here we assume that the
unperturbed parts of the velocity field v and the potential ¢
are zero. In order to write down the dynamical equations in a
nondimensional form, we define the following characteristic
velocity and space scales:

Te 172 c, C(m,- Te)l/Z
Cs = 3 ps = -_—
m; @ eB

nm) b= (g Te)
L,=—|—Inn , L= —|—InT, ,
(dx ° d dx "o
and the nondimensional parameters
N, =L,/Ly, K=(T/T)(1+mn,),

2

I'=vyT,/T.,.
4)

Here ¥ denotes the ratio of the specific heats, w,; is the ion
cyclotron frequency, and all the unperturbed quantities are
again evaluated at x = x,. In the present work, we assume
that O(7;) = 1sothat L, (=L ) is the typical macroscopic
length of the system. It is known'®?° that, in the case of the
flat density profile (L, > L), the %, mode has different
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properties. The appropriate nondimensional space-time
variables are

g=2"%0 )7=L, =2, r= tcs.

ps Ps L, L,

Assuming that the fluctuation level is small in the sense
that the ratios #2/nq, b, /¢;, p;/py, and ed/T, are of order of
ps/L,, and the fluctuating quantities vary more rapidly in
space than the corresponding unperturbed quantities, the
nonlinear evolution equations of the fluctuations are given
by

a _vz>—‘;§= —+k% vy sV}

ED
% = — V(¢ +p) — {8} + . V2o +p Viv, (6)
3 E]
%P _ k% v {pr+ Vi + 1 Vin
or ay

(M

where only the EXB convective nonlinear terms are re-
tained as nonlinearity for simplicity. It is shown in Ref. 7
that the other nonlinearities arising from v,V ,vand v,V p
are negligible if p, €L, ,L,. Here the dependent variables
are defined by

¢ = (e®/T,)(L,/p,),
V= (f)"/cs)(L,,/ps),
p= (ijl/px))(Ln/ps)(T':/Te)’

all of which are of order of unity, the Poisson bracket {f,g}
and the perpendicular gradient V, are defined by

N df dg df dg
o} = 2V Veg=225_2 5
{fg}. 2V, fXV,g %o 5 o

V, =—%X+—7¥. (3

In deriving Eqs. (5)—(7), the magnetic field is assumed to
take the form

B =B{2 + [(x —x0)/L, 1},

where L, is the shear length. With the definition of the shear
parameter s = L, /L, the parallel derivative V, in Egs. (5)-
(7) may be written as

v, = 9 + sX —a: . (9
9z )%

The constants u,, and y,, in Egs. (5)-(7) are appropri-
ately chosen dissipation rates. For a collisional plasma the
values of 2 and y may be taken from the Coulomb transport
theory.'® For the high-temperature tokamak plasmas of in-
terest the appropriate choice of 1 and y, is to model the
collisionless ion Landau effect.

The domain on which Eqgs. (5)—(7) are solved is given
by the cubic box |%|<L,, 0<j<L, and 0<Z<L,, L, and L,
being constants of order unity. The size of the box in the x
direction L, is taken tobe large enough, so that when there is
magnetic shear (s#0), single helicity modes localized at
X = O decay sufficiently as |%| — L, . In the case of zero shear
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2L, represents the width of the constant background ion
pressure gradient and/or the constant background density
gradient. For the boundary conditions of Egs. (5)—(7), all
the dependent variables are assumed to vanish at |X| = L,
and to be periodic in the j and Z directions.

We define the space average ( ) by

1 L, L, L,
=—— | ax| | &
€ 2LLLJ_LX x.[) yJ; “

xdydaz

(10)

and we introduce the averaged fluctuation energy densities
E¢ = %<¢2 + |v1¢|2>’
E,=1(¥), and E, =1{p°).
The energy transfer rates between the three energy densities
are given by the compressional work W_,,, done by Vv,
Wcomp = <pv|| v)9
and the ji E | work done on the parallelion current j; =ev,
W’E = — (vV“ ¢).

J
It follows from Egs. (5)—(7) that the energy transfer equa-
tions are given by

dE
‘Ef_z — Wi “l~‘1<|vf¢|2>,
dE,
dt = Wi + Weomp — (V0% “l‘"((vnv)z),
and
dE
d: =KQ — TWeomy — x:{IV.21") — 1 <V2)?),
where
- 3¢)~ _(!L_CTE !’_ﬂ_i)_l 5is) (11
Q‘(”E =\t a1 7)) @0

is the anomalous ion heat flux across the magnetic flux sur-
face and g, = v;*Vx. These anomalous transfers Wz and
W.omp take energy out of the thermal ions and produce a
growth of E,, E,, and E,. The source of the turbulence
arises from the unperturbed ion pressure gradient

dpy L, T;
K= — dx neT. =-—i—(1 + 1),
which drives the total fluctuation energy density
E,=E,+E,+ (I/T)E, (12)
with
P _K9_sp, (13)
dt r p

where P, are the dissipation rates given by

Py =ﬂ1<|vf¢|2)» Py=pu, (|V.0]*),

Py=p, (|V"v|2), Pi= (x./T){|V.p0|%),
In the turbulent steady state the free-energy production
KQ /T is balanced by the energy absorption given by 2, P,
in Eq. (13).
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. LINEAR STABILITY THEORY AND MIXING LENGTH
THEORY

Having presented the dynamical equations of the 7,
mode in the preceding section, we examine linear properties
of the system, especially focusing on the shear stabilization
effect associated with plasma compressibility and parallel
diffusion. We also attempt to clarify the physical meaning of
the n; mode using the local approximation of the linearized
system, which will serve as the basis of physical interpreta-
tion of our conclusions discussed in Sec. VI.

A. Local stability theory

In the local approximation, in which /3% and V are
replaced by constants zk and ik |» respectively, the linear
dynamics of Egs. (5)-(7) is given by the dispersion relation

ki(1+Kk,/d)
1-Tk}/&

(1+k%)&* — k,o(1 —Kk?) —
(14)

Here y, Z, and 7 dependence of the independent variables are
assumed to be exp i(k,j + k,z — &r) and k2 = k2 4+ k2.
All the diffusion coefficients in Eqs. (5)—(7) are ignored in
Eq. (14) for simplicity in the weakly dissipative, long-wave-
length region. In the local approximation, the constant k"
models V, with the relation k N= sA, ky + k,, where A, de-
notes a typical mode width in the x direction. When the
shear s is small, the parallel derivative V is approximately
given by the constant &, and the dispersion relation of the
linearized system of Eqs. (5)—(7) is also approximately giv-
en by Eq. (14). In this case, the parallel dynamics is domi-
nated by the effect of the periodicity in the Z direction rather
than the y direction. In the case of zero shear, Eq. (14) be-
comes the exact dispersion relation of the linearized system
of Egs. (5)-(7) with the relation k” = k
In the dimensional form, Eq. (14) may be written as

(1+klps)a) — wo¥*(1 — Kk1p?)
(1 —aok/w)
l—l‘k"cz/w

where
ot = (cT,/eB)(k,/L,),
o} = — (cT;/eB)(k,/L,)(1 +7,) = — ?K,
k,=k/p, k =k/L,, o=cd/L,.

Balancing the first term and the second term in Eq. (15)

* gives the dispersion of the drift wave, the frequency of which
is downshifted from o* to

o —w“(l—Kklps)/(l—i—klps), (16)
for |wi>°|» Ik, c,. The downshift of the local frequency in
Eq. (16) is due to the perpendicular compressibility in the
continuity equation. When the ion pressure gradient effect
Kk ?p? is small, the wave traveling perpendicular to the field
line propagates in the electron diamagnetic direction. The
third term of Eq. (15) represents the ion acoustic wave cou-
pled with the thermal mode arising from w3 . The modified
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sound velocity c,,, is given by

w:l / (D) 1/2’

where the finite I effect or the parallel compressibility in Eq.
(15) isignored. Since the local mode (16) has low frequency
(|o| €|wp;|) for |w}k| ~w¥, the modified sound velocity be-
comes complex as @ becomes complex, which is the manifes-
tation of the 77; mode. We now estimate the growth rate from
Eq. (15). For the mode with small perpendicular wave num-
ber |k, p,| <K~ "? and low frequency |w| €w* ~ |w¥], the
second and third terms in Eq. (15) become dominant, and
the complex eigenfrequency is given by

a)sz"c‘ﬂ/—]?. (17)

However, by choosing the wave number %, in such a way
that the first term becomes more dominant than the second
termin Eq. (15),i.e., k,p, = K~ '/%, we obtain the complex
frequencies

Csm =cs(1—

o=(—ofkic)'”?, [(—1+£/B)2](—atkich"?,

(18)
by balancing the first term with the third term in Eq. (15).
Since modes with small parallel wave numbers (k | Cs €0OF)
are of interest, Eq. (18) gives a larger growth rate than Eq.
(17).

The parallel and perpendicular diffusion coefficients in
Egs. (5)-(7) significantly stabilize the modes with high
wave numbers. Taking into account the finite diffusion coef-
ficients, we now solve numerically the more complicated dis-
persion relation obtained from Eqs. (5)—(7) under the local
approximation. Figure 1 shows the contours of constant
growth rate ¥ = Im o as a function of &, and k with finite
diffusion coefficients. Since the maximum growth rate gen-
erally occurs for finite k., k, is chosen in such a way that
y=1y(k,k;) takes its maximum value or
v = max, y(k,,k,.k, ). InFig. 1(a), where only the parallel
diffusion coefficients 1z and y; are taken to be finite, growth
rate distribution on the (k,.k 1) plane is more widespread in
the k,-direction than the growth rate in Fig. 1(b). In Fig.
1(b) the perpendicular diffusion coefficients ., and y, are
also taken into account.

B. Eigenmode stability theory

Now we consider the eigenvalue problem in more detail
without using the local approximation. The solutions of the
linearized equations of the system (5)—(7) with the follow-
ing forms are considered:

¢ = $(X)exp i(kp — 7)),
v=0(x)exp i(ky — @&1),-
p=Db(X)exp i(ky — ar),

where @, :;S(x), v(x), and p(x) are assumed to take~complex
values and k£ denotes the real wave number k = k. The Z
dependence of the solutions is ignored since, in the case of a
finite shear s, the Z dependence of the linear solutions only
shifts the position of their mode rational surfaces in the x
direction. Assuming that z;, = y, =0 in the system (5)-
(7) for simplicity, the linearized equations of this system are
reduced to the following eigenvalue problem:

S. Hamaguchi and W. Horton 1836



1-Q B+K &%
__¢ _kz
X2 +( +Q+K+Q+KAB—-s25c2F

)& =0,
(19)
where
A=+ iy ks’%?,
B=Q + iy ks*%,

and Q = &/k = w/w*. The relations of b and j to ¢ are given
by I

9= [s%(K + B)/(4B —$%'T)]¢
and
p=[(4K + %)/ (AB — 5T 1.

In this subsection, we only consider an ideal sheared slab or
L, = «. As discussed in Sec. II, therefore, the boundary
condition of Eq.(19) is such that |¢(x)| -0 as |%| - o.

It is known’ that, in the case where m=x, =r=0,
Eq. (19) gives the following eigenvalue 2 and the eigenfunc-
tion ¢:

Q=120+ k){[1 k2K —is2l + )] + VT =k K —isQ2 + DI —4is(1 + k(2] + DK }

DA SY
ky Ps

FIG. 1. The contours of constant linear growth rate y as functions of k, and
k 0 obtained from Egs. (5)-(7) under the local assumption. Here &, is cho-
sen so as to maximize y = y(k,,k,,k ). The solid lines represent ¥>0 and
the dotted lines represent ¥ <0. In (a), K=3.0,T =2.0, 4, =y, = 1.0,
and g, =y, =0. The maximum of y=028¢,/L, is obtained at

k,p, = 0.82and k; L, = 0.41. Thedifference between the two contour lines
indicates Ay = 1.2X 10~ 2¢,/L, . In (b), all the parameters are the same as

those in (a) except #; = y, = 0.1. The maximum of ¥ = 0.22 ¢,/L, is ob-
tained at kL, = 0.34 and k,p; = 0.73. The difference between the two

contour lines indicates Ay = 0.90x 10~ %¢,/L,,.
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(20)

:!md
a=e_‘"—r’/2H,(UV2i), (21)

where o = is/Q,l(1>0) is the radial mode number associat-
ed with the / th eigenvalue of the Weber equation, and H, (z)
isthe/ th-order Hermitian function of the complex variable z.

Since the shear parameter s is generally a small number,
we are able to reduce the expression for €} in Eq.(20) to a
simpler form in the following two limiting cases. First we
consider the case where

5/(1 — k2K)| <1, (22)

with § = (2/ + 1)s. Although we do not take any specific
ordering of k?, the condition above is in practice satisfied
when |k 2K | €1,soweassume | — k K > O under this condi-
tion. We note that the mode under consideration is not the
fastest growing mode. We also note that, in the local approx-
imation, the condition (22) causes the balance between the
second term and the third term of Eq. (14) or, in other
words, strong coupling of the drift wave with the ion acous-
tic wave. In this case, the term given as the square root in the
right-hand side of Eq. (20) is analytic at s = 0. Therefore we
expand Qintermsof e, =5/(1 — k 2K) around €; = 0. Tak-
ing up to the third order of €,, we obtain

14 k2 )((21+1)s)2 .
ReQ= —K(1 K o
€ (+1—k2K 1—rx) TOE)
(23)
and
2
Imﬂ:————(21+l)SK——K(l+2——————l+k K)
1— kK 1— kK
1+ k2 )((21 +1)s)3
x|1 o(e).
(+1—k2K i—xk) "~ (1)
(24)

A stabilizing effect of a larger shear s appears as the O(e})
correction in Eq. (24). It follows from Egs. (23) and (24)
that to the lowest order in €,, the fundamental mode (/ = 0)
with a small wave number k is a purely growing mode with
the complex eigenfrequency

Q =isK, (25)
orw = —iwys (o) <0).

The maximum growth rate is, however, attained when
|1 — k2K | €1, as also seen in the local analysis. Unlike the
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condition (22), under the condition

1 — k2K |55 <1, (26)
the square-root term of the right-hand side of Eq. (20) is no
longer analytic at s = 0. We therefore expand the square-
roottermintermsof (1 — k2K + 5)%/i5(K + 1) and obtain
both maximum Im  and maximum growth rate ¥:

Imﬂ=£( 22 +1)s Q2 +1)s
2 K +1 K +1

+0(€g/2)), (27)
y=kImQ = VK [ [2QI+1)s (21 +1Ds
2 \ K+1 K +1
+0(€g/2))’ (28)
at
k*=1/K + O(ey). (29)
The real frequency at this wave number £ is given by
Reﬂ:ﬁ(_ 21 +1)s 32l +1)s
2 K +1 K +1
ro@) 30)

Here €, = (2/ + 1)s/(K + 1). For the fundamental mode
(I = 0) with large K, we obtain the familiar formulas’

ImQ~sK/2

and

ReQ~ —/sK /2, 31)

to the lowest order of s. In the dimensional form, the com-
plex eigenfrequency is given by @=(—1+i)Js/2
X (¢,/L,), i.e., independent of K to the lowest order of s.
Under the condition (26) the instability obtained here is
more due to the balance between the first term and the third
term of Eq. (14) or the destabilization of the ion acoustic
wave by the thermal mode, rather than the coupling of the
drift wave with the destabilized ion acoustic wave.

So far we have considered the case where the radial
number /is small enough so that either Eq. (22) or Eq. (26)
holds. However, as shown in Egs. (24) and (27), larger radi-
al eigenmode number / tends to increase the growth rate
when the shear s is small. Since the dependence of {2 in Eq.
(20) on/is given by its dependence on§ = (2/ + 1)s, we plot
the growth rate y = Im @ = &k Im Q as a function of § and &
in Fig. 2. Here k =0.2m and K = 3.0. The maximum of
Ymax = 0-753 is obtained at § =§,,,, = 0.75and & = 1.4 (or
m = 7). As a function of small shear s(s<1), the growth
rate ¥ remains constant at its maximum ¥,,,, since, as s (not
5) decreases, the radial eigenmode number / increases so as
tokeep$§ = (2! + 1)sattheconstant values =35,_,, . Figure 3
shows the dependence of ¥ on s (not 5) calculated from Eq.
(20) when K = 3.0. Here /and m (or k) are chosen to maxi-
mize the growth rate . It is shown that the / = 0 mode is
dominant when 5>4.1 and the / = 1 mode is dominant when
1.8<s<4.1. Fors = 0.1, which is a typical shear parameter of
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s=(24+)s

FIG. 2. The growth rate ¥ (normalized by c,/L,) as a function of
5= (2] 4+ 1)sand k = k,p, calculated from Eq. (20). The parameters are
K=3.0, k=02m (1<m<10), and T ==Xy =# =), =0. The
growth rate y attains its maximum value 0.753 ¢,/L, at §= 7.65 and
k=14

a tokamak plasma, the radial eigenmode number is given by
! =38 when K = 3. We note that this unrealistically high
radial eigenmode number / is reduced when the effect of fi-
nite I" and finite diffusion are taken into account, as will be
shown later.

Returning to the original eigenvalue problem of Eq.
(19), we now seek the stabilizing effects of the compressibili-
ty of the parallel fiow (i.e., I'#0) and the parallel diffusion
(i-e., ) ,x #0). It should be noted that by using nonzero
values of ) and y, we are able to avoid the singularity of
the last term of Eq. (19) arising from the finite value of IT".
Assuming that s°T, |u, ks?| and |y, ks?| are small, we expand

(XIO") T T T T T T
7.6

75
74

Ym
73

72

71

B

L 1 1 1 1 1 1 T

0 20 40 60 80 100 120 140
S

FIG. 3. The largest growth rate ¥,, (normalized by c,/L,, ) as a function of

the shear s, calculated from Eq. (20). All the parameters used here are the

same as those in Fig. 2. The mode numbers / and m are chosen so as to

maximize y. For s 4.1, the / = 0 mode is dominant and for 1.8<s<4.1, the

/=1 mode is dominant.
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the last term of the left-hand side of Eq. (19) as a Taylor
series in x. Here we also assume that the mode is localized
near x = 0, or more precisely, we solve Eq. (19) on a finite
domain of x(|x|<L,) with the boundary conditions that
|| = 0 at |x| = L, . Therefore, by taking the values of s’T’,
|14 ks?|, and |y, ks?| to be small enough, the Taylor expan-
sion is uniformly convergent. The size of the domain L,
however, is taken to be large enough, so that the lowest-order
solution of Eq. (19) is well approximated by Eq. (21) with
the eigenvalue Eq. (20).

Writing () as the sum of the lowest-order growth rate §),,
given by the right-hand side of Eq.(20) and the remainder
Q,, where |£2,/€,| is also assumed to be small, we expand
Eq. (19) in terms of these small parameters. Retaining up to
the term of %%, we obtain

2 -
4G | (Ey+E, — V(%) — V(0] =0,

dx® (32)
where
Ey= —k*+ (1 -Q0)/(2+K),
E = — [(K + 1)/(Q+ K)?]9,,
Vo= — S5/08, (33)
V, = (1/92)[(2Q,/9,)5°%* — Ds*%*],
and
I ST (LN (LA
02 Q, Q,+K
To the lowest order, Eq. (32) becomes Eq. (19) or
Lo 1 By = Vo(0) ]G =0, (34)
where we expand ¢ as
$=do+éi+ . (35)

The /th eigenvalue Q,= Q" and the /th eigenfunction
do = 5" of Eq. (34) are given by Eqgs. (20) and (21), re-
spectively. From the next-order equation and using the solv-
ability condition of the inhomogeneous equation, we obtain
the following relation:

o © -1
E,=J V,(%)psP? diq ¢§,”2d5c) ,

where the integral is taken over the total domain (i.e.,
|%| <L, in the case of the finite domain). Using Eq. (21) as
P, we rewrite Eq. (36) as
El = - D(S4/930'2)A, + (NQ]/Q%U)B,,
where

(36)

(37)

e : 3
A, = SeEHHEYdE=—21* +2] + 1)
=g | gt A=
and
1 fgze-E’H}(g)dg=i(zl+1).
m20 V- 2

Equating Egs. (33) and (37) and solving the resulting equa-
tion for Q, yields

sB\ !
QP = —SZDA,(—K-_H-—Z—ZI'—I) , (38)
(Q+K) Q32
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which is the first-order correction to the / th eigenvalue §".

In order to observe the stabilizing effects arising from
finite values of &, ¥, and T, we further simplify Eq. (38)
under the assumption (22) or |€,| €1. Since Eq. (38) givesa
|s|? order correction to the unperturbed eigenvalue ", we
need the expression of Im Q" correct up to O(e? ):

(21 4+ 1)sK
1 - kK
Substituting this expression to Eq. (38) and keeping the

terms up to O(€? ), Eq. (38) becomes

Im QY = + 0(€).

3 (K + 1)T's?
Re QP ==—(2/*?+2l + N—L"""" , O(&
el 4'( + 2/ + )(l—sz)2+ (1)

and
Im QP = —3(212+21+1)s
: 421 +1)
(21+1)Ks)
r+k _ o(e).
X( + (,u“ +X") 1 k2K + 0(&)

Therefore the growth rate of the
Im O =Im Q§" + Im Q" is given to O(€&) by

3 QP42+

mode

K
Im Q¥ = (2] ls[
m 2+ 1) -

2k 4 QA+1)2
(21+1)Ks)]
r+k - "1l
X( + (,u||+X||) 1 — kK (39)

It follows that in the case of / = 0 and small k2, Eq. (39) is
reduced to

Im Q@ =s[K — 3T — 3k(yy + x) ) Ks] (40)

to the lowest order of k 2. We thus find from Eq. (40) that the
growth rate is reduced by the compressibility of the parallel
flow (i.e., nonzero I') and parallel diffusions (i.e., nonzero
4, and y, ). We, however, note that Eqs. (39) and (40) are
valid only for a specific k£ that may vary in the small range
0<k 2« 1/K. Therefore, the expressions of the growth rate
given in these equations do not represent the general k de-
pendence of the growth rate. We also note that the radial
eigenmode number / and the wave number k are fixed in the
above calculations. Figures 4(a) and 4(b) show Im 2 of
Eq.(40) as a function of K and s, respectively, as well as the
exact eigenvalues Im () obtained from Eq. (19) with the use
of a shooting code.

Although Eqgs. (39) and (40) are derived under the as-
sumption that the stabilizing terms associated with I, p
and y, are small, we extrapolate the result to the case where
the second and third terms in the parentheses of Eq. (40) are
comparable to the first term K in order to estimate the criti-
cal value K (¥ (k) of K for a given small wave number k.
Setting Im Q© = 0 in Eq. (40), the critical value K (k)
is approximately given by

K (k) =3T[1 + 3k(g) +x))5), (41)
or, in terms of 7;, the equation above may be rewritten as

3 9 i +ma) (L
Ok p) =y 1 4 D Vi T MKy ) (n)
e’ (kyps) =y — 1+ mae L, P\

5

(42)
Here v, and « are the parallel viscosity and the parallel heat
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FIG. 4. The growth rates expressed by Im Q for the fundamental (/ =0)
mode with g, = y, = 0. The solid lines are obtained from the shooting code
solving Eq. (19) and the broken lines from the theory [Eq. (39)]. The two
cases, ' =0 and " =2, are presented. (a) u; =y, = 1.0, s=0.1, and
k=kp =05 (b)y =y, =20,K=20,and k=0.2.

conductivity in the dimensional form, respectively, defined
by v| = m;nc,L,p and x = noc, L,y . For example, in
the case where y =2, p, =y, =2, k=k,p, =0.5, and
s=L,/L; = 0.3, we have {2 (k = 0.5) =~ 1.2. The critical
value 7; of the mode, denoted by 7, ., is the minimum value
of 72 (k), i.e.,, 1;. = min,, 77{? (k). As we noted, however,
Eqgs. (39) and (40) are valid only for a limited range of k and
not appropriate to estimate 7, .. The critical value 7, . may
be obtained with the use of the unperturbed eigenvalue
evaluated near k = K~ "2 given in Egs. (27) and (30) with
an appropriate choice of /. However, we do not proceed to
this calculation here since our objective in the perturbation
analysis presented here is to demonstrate the stabilizing ef-
fects arising from I, i, and y, which is shown in Eq. (39).
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C. Mixing length estimates

We now estimate the nonlinear saturation level of the
7,-mode turbulence using the linear properties obtained in
this section. By means of the mixing length theory, the
anomalous diffusion coefficient D is estimated as

D =yAL, (43)

where A, is the typical mode width in the X direction. We
here use the following definition of A, :

AW
Re({G8200 )|
(¢%)
For the lowest-order solution ¢ = ¢, of Eq. (34), we obtain

A= (44)

A= |Re[/l —io(2] + l)]l, (45)
where
A= —k*+(1-Q)/(Q+K). (46)

Choosing the fundamental mode (/ = 0) with a small wave
number (|k 2K | €1), we obtain from Egs. (25), (45) and
(46)

D =2ksK?, (47)
to the lowest order of 5. In this case, the mode width
A, =+2K estimated from Eq. (45) does not depend on the
shear s.

If we use, however, the most strongly excited mode to
evaluate Eq. (45), we obtain a different scaling of D. To the
lowest order of s, the fastest growing mode is obtained when
k=~K~'?and (2! + 1)s = §,,,,, the growth rate of which is
given by Eqgs. (27) or Im Q=~+/(2] + 1)sK /2 if K is large.
Here, as before, 5,,,,, denotes the value of § = (2/ + 1)sthat
maximizes Im ) given by Eq. (20). With the use of this
growth rate, the anomalous mixing length diffusion coeffi-
cient D is evaluated by

D=2k,

which is independent of the shear s. In this case, the mode
width A, of the fastest growing mode is given by

A=/ ¥ Ds/2K (49)

to the lowest order of s. For the fixed radial mode number /,
A, scales as s~'/* while with the choice of / such that
(2] + 1)s =5,,,4, A, is independent of shear.

In more realistic cases of finite I" and finite diffusion, we
use the linear initial value code to obtain the growth rate of
the fastest growing mode. Figure 5 shows the growth rate
¥ = k Im ) calculated from the initial value code as a func-
tion of the shear s,where XK = 3.0, =2, #y =x; = 1.0,and
p; =y, = 0.01. The linear initial value code used here is the
same code as the nonlinear initial value code described in
Sec. V except for the nonlinear terms dropped in these calcu-
lations. In Fig. 5, it is shown that the growth rate y is approx-
imately a decreasing function of s in contrast to y in Fig. 3
which is almost constant when sX 1. Figure 6 shows the
anomalous diffusion coefficients D calculated from the mix-
ing length estimate D= yA2 as a function of s. Here
y=yL,/c, and A7?* = ((dg/dx)?)/{4*) are evaluated by
the linear initial value code with the real-valued function ¢
and the same parameters used in Fig. 5. With the effects of

(48)
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FIG. 5. The largest growth rate ¥,, (normalized by ¢,/L,,) as a function of
5, calculated by the linear initial value code. The parameters used here are
K=30,T=2 u, =y =10, and y, =y, = 0.01. The wave number
k = 0.2m s chosen so as to maximize y. Under these parameters, the m = 4
mode is most strongly excited.

finite I" and finite diffusion, Fig..6 shows weak dependence
of D on s as Dacs™ "2 in contrast to Eq. (48). Taking into
account this shear dependence of D forces the modification
of Eq. (48) to become

D« (K /s)'2. (50)

The previous work by Lee and Diamond® reports the
scaling of the anomalous ion heat conductivity y, essentially
identical to Eq. (47) while the previous work by Horton,
Estes, and Biskamp’ reports the scaling of y, similar to Eq.
(50). Asshown in this section and also as will be discussed in
Sec. VI, the disagreement between these two previous results
arises from the choice of the linear mode used to evaluate the
nonlinear saturation levels; in Ref. 9, the fundamental mode
withsmall k,p, (ie.,/ =0, |k K| «]1) is taken to be respon-
sible for the nonlinear process while in Ref. 7 the most
strongly excited mode is considered to be important. Since
the mixing length theory does not provide information about

20 e A e o T
[ ]
——0—

IO e o e 4
D 3

0.5 1
02 A 1 I | | [

0.02 0.05 . 0.1 02 03

FIG. 6. The anomalous diffusion coefficients D as a function of s, calculated
from the mixing length theory or D = #A2. The linear growth rate # and the

mode width A, are evaluated from the most unstable linear mode obtained
from the linear initial value code. The mode width A, is defined by
A7 = ((dé/dx)?)/{#*). Fors2 0.1, Dscalesas s~ 2.

linear process, we need to proceed to more rigorous analyses
and numerical simulations.

IV. NONLINEAR THEORY: BIFURCATION NEAR THE
THRESHOLD

We now derive the saturation amplitude of the nonlin-
ear 7; mode and the associated anomalous heat flux as a
function of the ion temperature gradient or 9, near its criti-
cal value %, .. The method used here is the amplitude expan-
sion method,?** in which we regard the nonlinearly satu-
rated mode with small amplitude as bifurcation from a
marginally stable state and expand the dynamical equations
with respect to a small amplitude around the linear solu-
tions.

For convenience, we rewrite the dynamical equations
(5)-(7) as follows:

M£—¢+$(K)¢+N(¢,¢) —0, 1)

such an a priori choice of linear modes important in the non-  where
]
¢
y=|v}
1—-A, 0 O
ZL(Ky=L,+KL,, M= 0 1 0}
0 0 1
3/ +m,V} \{ 0 Vi3/3p 0 O
L= v - Vi —m Vi v L= o 0 0}
0 IV, -V -0 V3 d/dy 0 O
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The nonlinear vector term N(3,¢) is defined as

- {fl’vigl}
{fl:g2}
{.8:}

for f= (fios)T and g = (g,,82,8;) ", where the super-
script 7" denotes the transpose of the matrix. The linear anal-
ysis in Sec. II shows that Eq. (51) generally has a time peri-
odic solution in the zero amplitude limit. We therefore
expect that there also exists a time periodic solution at the
marginally stable state to the nonlinear system (51), the pe-
riod of which is generally a function of the amplitude. For a
sufficiently small amplitude € we search for the nonlinear
solution 3 of Eq. (51) by expansion in €. We therefore intro-
duce the new variables

¥ = €u(x,s),

s=w(e)T,
such that u is 27 periodicin sor #(x,s + 27) = u(x,s). Here
€ is the amplitude of the mode defined by

1 27
eZ=_f dfd 3
27VJo s 1 akd

where x = (X,7,2), V is the total volume of the domain de-
fined in Sec. I1, and |¢|*> = |¢|? + |v|*> + |p|*. Considering a
set of functions H = {f(x,5) = (fi/5/3)7}, where f;
= f; (%,5) (1<i<3) is 27 periodic in s and satisfies the
boundary conditions given in Sec. II [and has appropriate
regularities in (x,s) ], we define the inner product of f,geH
as

N(fg) =

(52)

(53)

1 2” “ ok
e = 21TVJ(; ds .[defg ’
Here g* denotes the complex conjugate of g and
fg* = 2. f.g¥(1<i<3). Clearly u(x,s) defined in Eq. (52) is
an element of H. Using Eqgs. (51)-(53), we have

w(e)M‘;—’s‘+g(K)u+eN(u,u) —0, 56

llull =1,

where ||u|| = (u,u)'">. The goal of the analysis in this sec-
tion is to solve Eq. (54) in the limit of small €.

In the case of € = 0, Eq. (54) reduces to the linear sys-
tem discussed in Sec. III, the solution of which exists only
when X satisfies the dispersion relation, i.e., K = K,(w). We
therefore expect that also for nonzero €, Eq. (54) has a solu-
tion only when K and w (¢€) satisfy a certain relation or Kis a
function of €. Assuming that w, K, and u are analytic func-
tions of €, we expand them as follows:

O =0y+ 0 €+ 0.+,
K=K, +Ke+K,e+ -+,
U=uy+ u€+u e+,

ueH,

(55)

where
é;

U. = Ui

i (i>0).
Substituting Egs. (55) into Eq. (54), we obtain the linear
equations to the lowest order

T uy,=0, (56)
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luoll =1, and wu.eH, (57)
where 7 =wM(3/3s) + L, and Lo=L,+ K,L,.
Since we are interested in a saturated state near the margin-
ally stable state, we have

Imw, =0 ((>0)
and

KO = Kc .

It should be noted that, as discussed in Sec. III, the real
frequency Re @, does not vanish generally at the marginally
stable state, and the growth rate Im @, changes from nega-
tive to positive as K passes K, from below, i.e.,

d(Im w,)
dK K=K,
The two independent solutions of Eq. (56) are given by
uo = e £ and e~ “£ *, where £ satisfies
Mg + £ o5 =0,
EN = 1.

For simplicity we assume that there is a unique solution £ of
this system at the marginal stable state. Since a real-valued
solution of Eq. (56) at the marginally stable state is of inter-
est, we may choose u, = Re(e”£) = J(e"€ + e~ £ *) with-
out loss of generality.

To the next order of €, we obtain from Eqs. (54) and
(55)

ful - b,
where

>0. (58)

(59)

(60)

b= — m,M%— K\Lyuy — N(ugto),

and uEeH.

In order to write the solvability condition of Eq. (59), we
need the solutions u' of the equation

Tyt =0, (61)

where .7 is the adjoint operator of 7. Since M is a Hermi-
tian operator, .7 1 is given by

<u|,uo> =0,

T = —a)oM-g—+.fZ;,
Js

where .} is the adjoint operator of .£,,. The two indepen-
dent solutions of (60) are givenby ¢“£ Yand e ~ “£ ¥, where £ '
satisfies

— i MET + LLE =0,

Writing the two solutions u},, = ¢“£ ' and u},, = e~ "£*',
the solvability condition of Eq. (60) is

(ul) b)Y =0 (i=12). (62)

From the s dependence of the term N(vg,v,), it is easy to
show that

(4}, N(ugue)) =0 (i=12).
Therefore Eq. (61) becomes

<u’{,-, ,a),M%u0 + K,L2u0> =0 (i=12), (63)
which determines @, and K. Writing Eq. (63) in terms of £,
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we obtain

im1<§T’M§> +K|(§T’L2§) =0 (64)
and its complex conjugate. Since the solution £ of Eq. (59)
exists only when w, satisfies the dispersion relation with X,
i.e., wy = wy(K) for the parameter K, differentiating Eq.
(59) in terms of K yields

( ‘:“’OM +L2); + (iwM + Ly d—f_o (65)

Evaluating Eq. (63) at K = K and taklng the inner product
of £ and Eq. (65), we obtain

'_d“’O) t M, tLE) =0
(o) | (ETME) + (£1LE) =0,
where we used

<§* (iweM + f&ji,)

= (% (— oM + 23)e") =
From Eqgs. (64) and (66), we obtain
o=, ., ey =o

Since Im w, is taken to be O for the marginally stable state, it
follows from Eqs. (58) and (67) that

wl = K 1 = 0.
To the order of €2, we derive from Eqs. (54) and (55)

(66)

(67)

Tu,= — o)zM—(;luo — K,L,uy — F,, (68)
s

where
F, = N(ug,u,) + N(u,,u,).
The solvability condition of Eq. (68) then becomes

w2<u'{,-, ,M%) + K, {ul,),Loug) + (u},F,) =0,
which may be further reduced to

i[w2 - Kz( ‘2“1’{0 )K=KJ<§*’M§> + 2uln ) =0

and its complex conjugate, where we used Eq. (66). Separat-
ing this equation into the real and complex parts, we obtain

S Sy (o o M

_ d(Rewo)) . (2(u?sz>)
a)z—Kz('_—dK K=K, Im __<§T,M§> .

Using K, obtained above and the linear marginally stable
solutions, we calculate the anomalous heat flux (p d¢/dy) to

its lowest order. Assuming that K,#0, we have
K — K, = K,€* to the lowest order. Therefore,

3¢> < 3¢o> 1 < 3¢o>
e (K _'Kc), (69)
( YA S A A GF > ,

where p, and ¢, are the linear marginally stable solutions.

We note that the coefficient {p, d¢,/3p)/K, of (K —K_) is
a function of K, and s but does not depend on K.

and
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Thus we have derived the dependence of the anomalous
heat flux (p, d¢,/dp} on the ion pressure gradient K in the
limit of small amplitude. The dependence of the anomalous
heat flux on the shear parameter s is not clear from Eq. (69)
since the linear solutions p, and ¢, as well as K, are generally
complicated functions of s. The shear dependence of the co-
efficient {(p, 3d,/dp) in Eq. (69) may be obtained by solving
the linear equations (56) and (57) numerically. However,
we now proceed to direct numerical simulations of Egs. (5)
and(6), rather than studying the shear dependence of Eq.
(69) in detail. The numerical simulations of the original dy-
namical system presented in the next section give the de-
pendence of the anomalous heat flux on the shear s as well as
the ion pressure gradient X under much wider range of pa-
rameters than the method used in this section and check the
validity of the analytical result given in Eq. (69).

V. NUMERICAL SIMULATIONS

In this section we report the results of numerical simula-
tions of the %, modes and compare the results with the analy-
tical predictions presented in the previous sections. The ini-
tial value code used to solve the nonlinear partial differential
equations (5)—(7) is developed from the HIB code.*** In
the initial value code, Fourier representation for the y and z
variables and a finite difference scheme for the X variable are
employed. At each time step the dependent variables are
advanced by means of the predictor—corrector method. The
boundary condition is that all the physical variables are peri-
odicin y and Z with periods L, and L, , respectively, and they
vanish at |X| = L,, as discussed in Sec. II. We refer to the
(m,n) mode of the Fourier representation as the mode
whose y and Z dependence is given by the phase 27
X(m y/L — nz/L, ). The wave numbers k and k are thus
given by k = 2mm/L, and k, =2mn/L,. In the 2-D calcu-
lations of the nonlmear single helicity modes,the Z depend-
ence of the mode is ignored and the relation V| = sx @ /dy is
used, which induces single helicity modes localized at X = 0.
In the 3-D calculations, the rational surface of the (m,n)
mode is at X = nL,/msL, since

V, < (msx/L, —n/L,) = (ms/L,)(x —nL,/msL,)

for the (m,n) mode. As initial conditions, small perturba-
tions are given to each (m,n) mode at 7= 0.

The typical parameters used in the simulations are
uy=x1=10u =y, =0011t001,T=2s5=0t003,
and K = 0.4 to 3.0. As noted in Sec. I, the parallel diffusion
parameters &, and y, are chosen so as to model the collision-
less ion Landau effect for high-temperature plasmas. The
perpendicular diffusion coefficients z, and y,, on the other
hand, may be taken from the classical collisional transport
theory."" Using the classical viscosity v, ~nT;/w? 7, and the
classical heat conductivity x, ~ T,/m,w? 7;, the normalized
perpendicular diffusion coefficients , and y, of Egs. (5)-
(7) are given by

Van Tv: Ln
B = =~

2
m;nc.p; T, ] c,7;

€

and
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where 7; denotes the ion collision time. For a hydrogen plas-
mawithL, = 1m,T; =T, =3.5keV,n =6.6X10°m~?3,
and Z_; = 2, we have u, ~y, ~0.012. The shear parameter
s may be related to the safety factor ¢ of a toroidal plasma by
s= —€,n,q'/n,q’, where €, is the inverse aspect ratio.
Therefore, the parameters chosen for the following simula-
tion results are in an appropriate range of the parameter
space of current tokamak experiments.

We first present the results of 2-D simulations of nonlin-
ear single helicity modes. The size of the domain used for the
2-D simulations is L, = 20~40 and L, = 10w, so that the
smallest finite wave number k, of the m = 1 mode s given by
k,p; = 0.2. The equally spaced 150 mesh points in the case
of L, = 20 and 300 mesh points in the case of L, = 40 are
used for discretization of the interval — L, <X¥<L,. Wealso
employ the Fourier components of 0<m<6-12, which is
confirmed to give enough resolution of the saturated state.
Figure 7 shows the time evolution of the total energy E,
[Eq. (12)] for K = 3 and s = 0.1, where the saturation of
the modes is observed at 7~50. The contours of constant
potential at 7 = 500 under the same conditions are shown in
Fig. 8. The constant potential contours are the streamlines of
the EXB flow. For comparison the contours of constant
potential at saturation with a larger shear s = 0.5 is also
shown in Fig. 9. It is observed that the modes are more local-
ized to the rational surface ¥ = 0 in the case of strong shear
while the modes are spread over a wide range of X in Fig. 8
for weak shear. The saturation in the 2-D simulations pre-
sented in this section is mainly due to the flattening of the
mean ion pressure gradient or the quasilinear saturation. Al-
though the background ion pressure gradient X is kept as a
constant parameter during each numerical simulation, the
m = n = 0 mode of the perturbed pressure p evolves to can-
cel the background ion pressure gradient K, as shown in Fig.

1O S .
10
ET 4
102
Tl
0 100 200
teg/L,

FIG. 7. Time evolution of the total energy E;, obtained from the single-
helicity calculation, where K=3.0, s=0.1, I' =2, 4, =y, = 1.0, and
4, =y, =0.01. The domain is |x/p,|<L, =40 and L, = 107. Seven
modes (0<m<6) are included in this calculation with k,p; = 0.2 for the
m = 1 mode.
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FIG. 8. The contours of constant ¢ at 7 = t¢, /L, = 500, obtained from the
long-time extension of the simulation shown in Fig. 7.

10. Since the system (5)—(7) with the boundary conditions
employed here does not have any external heat source nor
allow cooling at |%| = L,, the mean ion pressure gradient
(i.e., the sum of the background ion pressure gradient and
the gradient of the m = n = 0 mode of the perturbed pres-
sure) cannot be maintained as a constant during the time
evolution.
The anomalous ion heat conductivity y; is defined by

<ﬁiﬁir) ps (CTe) < 3¢> —1
‘.=—= — — K - 70
Y= e T L\ ) ¥y 70

Here the time average g(¢) of a time-dependent function
g(1) is defined by

IN)

20

o
-20

FIG. 9. The contours of constant ¢ at saturation with larger shear s = 0.5
obtained from the single-helicity calculation. The other parameters are the
same as those used in Figs. 7 and 8, except for L, = 20. The nonlinearly
saturated modes are more strongly localized to the mode rational surface at
x/p; =0.
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FIG. 10. Fourier cosine components of the perturbed pressure p; at 7 = 500
of the same caiculation as Fig. 8. The dominant m = 0 (or k, = 0) mode
locally cancels the background constant ion pressure gradient X.

and the space average { ), which is somewhat different from
Eq. (10), is defined by

1 L, L, L,
- d5 f dy f az,
0 ALysz—Lx o ‘ o

where A denotes the mode width in the x direction. In prac-
tice, the time average is taken over a reasonably long time
period of T after the saturation is attained. The size of the
mode width A is used as a normalization factor of Eq. (71)
so that averaged values calculated from Eq. (70) do not
depend on choice of L, when the modes are localized. In our
simulations, the definition of A is given as follows: for a func-
tion f(%) representing a physical quantity averaged over
and z, we define

1, if [f(X)|>fna/10,
0, if [f(X)]| <fma/10,

(71)

I(x) =[

where f,,., is the maximum value of |f(%)| on |X|<L, . Then
the mode width A is defined by

LX

A= I(x)dx,

-L,
which gives a reasonable estimate of the “support” of the
localized mode. The fluctuation level of the space-averaged
anomalous ion heat conductivity y; (¢) = (p;5,,)/( — pj)
is then given by

A ={ . ® =x: T} (72)

which is shown by error bars in the following figures for y;.

The anomalous ion heat conductivity y; calculated
from Eq. (70) is shown in Fig. 11 as a function of shear. As
expected from the linear analysis of Sec. I1I, the strong shear
stabilization of the mode is observed for s2 0.2, where y;
decreases approximately as y,; s~ 2. On the other hand, y;
seems to become an independent function of s as s ap-
proaches zero, which agrees with the conjecture based on the
mixing length theory discussed in Sec. III. In the intermedi-
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FIG. 11. The anomalous ion heat conductivity y; as a function of s, obtained
from the single-helicity simulations. The parameters used in the simulations
are K=30,T=2,p =y =10, and u, = y, = 0.01. The domain is
L, =40 for A, L, =20 for ®, and L, = 107 for both. The solid curve
indicates the scaling of y; = y,exp( —as) with y,=534x10"2
X (ps/L,)(cT,/eB) and a = 7.2. The error bars represent the fluctuation
level defined by Eq. (72).

ate range 0.05 S5 50.2, which is of practical importance for
current tokamak experiments, y; is a weakly decreasing
function of s given by y; «s~# with JSB852. The shear
dependence of y; is found to be well parametrized by y;,
= Yo exp( — as) with y, = 5.34X 1073 (p,/L, ) (cT./eB)
and a = 7.2 for the entire range of s.

Figure 12 shows the anomalous ion heat conductivity y;,
as a function of K—K, = (9, —n,.)T,/T,, where
K, =0.4. As K- K, or the system approaches the marginal-
ly stable state, the dependence of y; on K is given by
¥: < (K —K_), which verifies the result of the nonlinear
analysis given in Eq. (69). For larger X, y; shows a slight
deviation from the linear dependence on K — K. In Figs. 11
and 12 the magnitude of the numerically obtained
x:/(cT,/eB)(p/L,) is, however, significantly small (order
of 10 ) and would have a weak effect on the global transport
of confined plasmas. This small magnitude y, is due to the
quasilinear saturation mechanism which saturates the
modes with small amplitude. In confinement experiments,
howeyver, the mean ion pressure gradient is maintained con-
stant for a significant period of time in each discharge since
the plasma is continuously heated from some external heat
sources and cooled at the edge. This situation, which leads to
turbulent saturation rather than quasilinear saturation, is
simulated in the 3-D calculations presented in the rest of this
section. We, however, emphasize the importance of the re-
sults of 2-D nonlinear simulations presented above despite
their small saturation amplitudes for the following two rea-
sons. First, the results presented here are nonlinear solutions
of the system (5)—(7) (together with the boundary condi-
tions given in Sec. II), which is widely used as a simple fluid
model of the 7, mode in the literature. We note that this
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FIG. 12. The anomalous ion heat conductivity y, as a function of K — K,
obtained from the single-helicity simulations. The parameters used in the
simulations are s=0.1, I'=2, gy =y, =10, u, =y, =01, and
K, = 0.4. The domain is given by L, =20 and L, = 10#. The solid line is
the curve proportional to (K — K, ).

system intrinsically saturates the mode quasilinearly. Sec-
ond, and more important, 2-D solutions of many nonlinear
fluid problems often show a qualitative resemblance to their
corresponding 3-D (turbulent) solutions. We particularly
expect the dependence of y; onsand K — K shown in Figs.
11 and 12, respectively, to be similar to that of the 3-D turbu-
lent system.

We now proceed to the 3-D simulations. The size of the
domain used throughout the following calculations is given
by L, =20, L, = 107, and L, = 7.5, so that the smallest
finite wave numbers are k,p, = 0.2 and k,L, = 0.267 and
the distance between the two rational surfaces of the
m = 1/n = 0modeand the m = 1/n = 1 mode in the case of
shear s = 0.1 is about 13 p,. The equally spaced 150 mesh
points are used for discretization of the interval

— L, <x<L, and 58-130 modes are chosen for the Fourier
representation that cover at least all the unstable modes with

— 3<n<3. In all the 3-D simulations presented in this sec-
tion, we use the perpendicular diffusion parameters
#; =), = 0.1, which are larger than those used in the 2-D
simulations presented above. These diffusion coefficients
significantly reduce numerical instabilities without requir-
ing higher resolution. It is checked numerically that depend-
ence of saturation levels of turbulence on the diffusion coeffi-
cients 4, and y, is weak as long as iy, S0.1.

To model the confinement experiments without local
quasilinear saturation, we add the following auxiliary heat
q = q(x,7) to Eq. (7), which induce turbulent saturation
(or the saturation of modes due to the balance between the
free-energy source and high-k diffusion) rather than the
quasilinear saturation. Equation (7) then becomes

a
Lo k2 v e+ Vi vip,
or dy

(73)
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where

1 (b L, o}
dy f dz{¢,p}.
LyL,J; Y o i

It now follows that the m=n=0 component
Poo = {P) m = n—o Of p satisfies the diffusion equation
Ppoo

7 =XJ.V%P00’

which leads to py, =0 in the steady state. The physical
meaning of g(x) is the additional heat which prevents the
flattening of the mean ion pressure gradient (i.e., the sum of
the constant background ion pressure gradient X and the
m = n = 0 component of the perturbed pressure p) by car-
rying the thermal energy from the region % < 0 to the region
X > 0. Our simulations show that, without the heat g(x,7),
the flattening of the mean ion pressure gradient occurs even
in the multihelicity calculations. We note that the energy
equation (13) still holds for the system (5), (6), and (73)
since

@) = (Poq) =0.

Introducing ¢ in the pressure equation, therefore, does not
introduce any additional free-energy source or sink to the
system but simply readjusts the plasma in such a way that
the mean ion pressure gradient remains as constant X in the
evolution of time. The artificial heat g thus models both the
heating mechanism of the core plasma and the cooling mech-
anism of the edge plasma which maintain a finite mean ion
pressure gradient for a significant period of time in a con-
fined plasma. Numerically, adding ¢ to the pressure equa-
tion is equivalent to setting py, = 0 at each time step.

The turbulent saturation of the total energy E is shown
in Fig. 13 for K = 3 and s = 0.1. In this 3-D simulation, 130
modes (0<m<9 and — 6<n<6) are included. Figure 14
shows the time evolution of the perpendicular kinetic energy
E,,, , of afew sampled (m,n) modes under the same condi-
tions. Here £ ,,,, = (|V,8,,, (£,5.2,7)|*) with

=S neo =

T L
10 /_"—’/

10 :
ET 9

10"

102

103}

0 ‘ 50 100

tes/Ly

FIG. 13. Time evolution of the total energy £, obtained from the 3-D calcu-
lation with 130 modes (0<m<9 and — 6<n<6). The parameters used here
areK=3.0,5=01,T =2,4, =y, = 1.0,andp; = y, = 0.1. The turbu-
lent saturation is observed at r = t¢, /L, ~50.
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FIG. 14. Time evolutions of the perpendicular kinetic energy E, ,,,, of four
sampled (m,n) modes are plotted under the same conditions as in Fig. 13.
In this case, the m = 4 modes are linearly most unstable. However, after
saturation, the modes with m<3 reach energy levels similar to those of the
m = 4 modes.

B (ToJ2,7) = &5, (X,7)CO8 ¥,y + B (R,7)siN Y,
and ‘
Vo = 2m(my/L, — nz/L,).

In this case, the m = 4 modes are the linearly most unstable.
However, after saturation, the other modes with m<4 also
reach the energy levels similar to that of the m = 4 modes.
Integrating the perpendicular kinetic energy in Z or
E,, =3,E,,., weshow in Fig. 15 the perpendicular kinetic
energy spectrum obtained by time averaging 2, E,, ,, over
60<tc,/L,<100. It is shown that the m =3 mode
(k,p; = 0.6) has the peak and the other modes with m<4
also have relatively high energy levels. The modes with m>5
or k,p, >1.0 decay significantly.
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FIG. 15. The perpendicular kinetic energy spectrum E,,, obtained from the
time averageof 2, E,,,, over 60<tc, /L, <100 under the same conditions as
in Fig. 13. The modes with m<4 have relatively high energy levels with the

peak at m = 3 (or k,p, = 0.6) while the modes with m5 are significantly
weaker.
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The potential contours at saturation are shown in Figs.
16(a) and 16(b). There are three rational surfaces for the
m =1 modes (and more rational surfaces for higher m
modes) in the domain of Fig. 16(a), where s = 0.1, with one
being at x/p; =0 and each being separated by distance
about 13 p, . Some convection cells are, however, widespread
from the rational surfaces, indicating that strong nonlinear
interaction is taking place. For comparison, the potential
contours of zero shear are shown in Fig. 16(b).

The dependence of the anomalous ion heat conductivity
X: on the shear s obtained from the 3-D simulations is shown
inFig. 17 for K = 3.0, where y, scalesas y; = y, exp( — as)
with y, = 1.58(p, /L, ) (cT,/eB) and a = 3.7. The peak of
x: as a function of s is obtained at s = 0 as expected from the
mixing length estimates (Sec. III) and from the 2-D simula-
tions. In the 3-D simulations, however, the magnitude of y;
is significantly larger than that of the quasilinearly saturated
single helicity modes shown in Fig. 11. Figure 18 shows the
dependence of y; on K — K, = (9; — 5.)T,/T,, obtained
from the 3-D simulations fors = 0.1 and K, = 1.3. Asin the
case of Fig. 12, y, is almost linear in (K — K ) although the
Y. deviates from the linear dependence when K — K, is
small. This is due to transition or successive bifurcation?!
from the coherent nonlinear modes near the marginally sta-
ble state (K~K_) to turbulence (K — K. >K ).

20

y/Ps

30

20

¥/Ps

(o} S / ..
-20 -10 0 10 20
x/py

FIG. 16. The contours of constant ¢ at saturation. (a) The case of s = 0.1,
obtained from the simulation shown in Fig. 13 at 7 = 100. (b) The case of
s = 0, where all the other parameters are the same as those used in the simu-
lation of Fig. 13.
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FIG. 17. The anomalous ion heat conductivity y, as a function of s, obtained
from the 3-D simulations. The parameters used in the simulations are
K=30 T'=2 p, =y, =10, and g, =y, =01 The domain is
L, =20,L, = 107, and L, = 7.57. The solid curve indicates the scaling of
Xi = Xoexp( — as) with y, = 1.58(p,/L,)(cT,/eB) and @ = 3.7.

In the 2-D simulations with finite magnetic shear, all the
modes are localized at the single rational surface X = 0 and
fall significantly within the boundaries. Therefore, the
boundary conditions do not affect saturation levels of the
modes in the 2-D simulations. However, in the 3-D simula-
tions on a finite-size domain, the boundary conditions may
affect saturation levels of turbulence by reflecting drift
waves at the boundaries |X| = L, since some of the rational
surfaces of strongly excited modes may be close to the boun-
daries. In the 3-D simulations presented in this work, how-
ever, we did not make any particular effort to avoid the
boundary effects on saturation levels of turbulence. Instead,
when we survey parameters, we vary only one parameter and
fix all the other parameters including the size of the domain.
In other words, we regard the problem as the one to be solved
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FIG. 18. The anomalous ion heat conductivity y; as a function of K — K,
obtained from the 3-D simulations. The parameters used in the simulations
ares=0.1,T =24, =y, =10,4, =y, =01, and X, = 1.3. The do-
main is the same as in Fig. 17. The solid line is the curve proportional to
(K—K,)..
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on a fixed finite domain with the given boundary conditions,
assuming that the size of the domain is large enough so that
this slab model represents some of the important features of
toroidalily confined plasmas.

In this point of view, throughout the 3-D simulations
presented here, we fix both the box size
2L, XL, XL, = 40X 107X 7.57 and the number of the ra-
tional surfaces for the m = 1 modes included in the calcula-
tions, i.e, — 3<n<3. Therefore, when shear is large
(s20.2), all the strongly excited modes fall within boundar-
ies and the boundary effect is ignorable, whereas, when shear
is weak (0<s%0.1), some of the rational surfaces of the
strongly excited modes lie outside the domain. We therefore
examined the boundary effects in the cases of weak shear by
varying L, in numerical calculations.

The study of varying L, at small shear showed that al-
though the modes near the boundaries tends to be enhanced
by reflection, the magnitude of enhancement of the anoma-
lous heat transport y; is not significant, as long as the param-
eter space we examined in this work is concerned. For exam-
ple, as shown in Fig. 17, v, ~1.2(p,/L,)(cT,/eB) when
s=0.1,K=3.0,and L, = 20. If we increase L, toL, = 50
with all the other parameters unchanged, reflection of the
modes at the boundaries is eliminated and the anomalous
heat transport decreases to y; =0.9(p,/L,)(cT,/eB) or
about 25% decrease from the value at L, = 20.

Summarizing the analyses in Secs. III and IV and the
numerical results in this section, we obtain the scaling of the
anomalous ion heat transport given by

Xi =gp‘ (‘ST—e)(K—Kc)eXP( —as)
L,\ eB
ps [T,
=gL—(e—B)(7li — 1, )exp( — as). (74)

n

As suggested by the mixing length formula [Eq. (50)], the
numerical simulations shown in Figs. 11 and 17, and the
numerical results in Ref. 7, y; seems to scale as y,; s~ 2
near s = 0.1. Taking this into account, we obtain a ~ 5 since
e~ =~0.25~ /2 near s = 0.1 although numerically obtained
a varies as 3 = @ = 7. From the magnitudes of y; presented in
Figs. 17 [where K — K_ ~1.7 and K, = 1.3 is a weak func-
tion of shear as shown in Eq. (41)] and 18, the constant g is
of order unity when turbulent saturation occurs. Equation
(74) with g=1 and a~>5 thus gives the scaling of y; in a
practically useful range of the parameter space for fusion-
plasma confinement studies.

VIi. DISCUSSION AND CONCLUSIONS

We have analyzed the nonlinear ion temperature gradi-
ent driven mode, or ; mode, of the sheared slab model based
on rigorous analyses and numerical simulations of the re-
duced fluid Egs. (5)-(7). A new formula for the anomalous
ion heat conductivity due to the 7;-mode turbulence is de-
rived, which differs significantly from some of the previously
reported results.®'° It is found from the linear analysis that
the finite magnetic shear s has the stabilizing effect reducing
the growth rate of the fastest growing linear 7, mode. Conse-
quently, the fluctuation levels and the associated anomalous
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ion heat conductivity y; are decreasing functions of the
shear s.

It is also shown with the use of the amplitude expansion
method?! that y, depends on (7, — 7;.) linearly near the
marginally stable state. This dependence of y; on
(9; — 1. ) is also obtained numerically in fully developed
turbulent states. Numerical simulations demonstrate the
turbulent saturation of the 7, mode, as well as the quasilin-
ear saturation under certain conditions. A good parametri-
zation summarizing the analytic and numerical results for
the anomalous ion heat conductivity y, (s,7;) is given by

— (ps )(cTi)( _ o Yexp( — as)
Xi =8§ L, J\eB N — Nic )EXP s

where a =5 and g~ 1. For typical plasma parameters of the
TFTR supershot at the half-minor radius, the formula (75)
gives y; = 5.1 m?/sec, where T; =10 keV, B=4.6 T,
p,=12%x10">m, L, =052 m, 5, =27, 5, =1, and
s = 0.1 are used. This gives a comparable magnitude of the
ion heat conductivity measured in the experiments.?

The parameter a used in Eq. (75) is generally a function
of K= (1+%,)T,/T,. Since we are concerned with a pa-
rameter range of 77, <7; < 3, it is practically accurate to use
a constant value a(K = K_) =5 for a. However, we note
that the 7, dependence of @ becomes important when K> 1.
In particular, when K — oo, the scaling of y; is given by

25l -7%)
;. =g —\—lexp| —B—],
Xi=§& L \¢B pl{ — B X
where B~4 and s/K— (T,/T;) (L;/L,). In other words,
a(K)—pB /K as K— «. Derivation of this y; scaling and the
dependence of & on general K will be discussed in the future.
Horton, Estes, and Biskamp obtained’

P (CT,)(I +7’i)1/2+e

172
L,

(75)

Y=g ) (76)

eB s

basically from numerical simulations of the system (5)—(7)
giving g~0.3 and |e| £0.5. The numerical code used in Ref.
7 employs a finite difference method in x,y, and z with up-
wind derivatives in the E X B convection, which is a different
algorithm from the one used in the present work. Consider-
ing the fact that e ~ > ~0.2s~ '/? numerically near s = 0.1
and taking € = 0.5, the y; scaling of Eq. (76) is somewhat
similar to Eq. (75). However, the scaling of Eq. (75) ob-
tained in the present work represents y; under a much wider
range of the shear parameter s. We also note that the y;,
scaling of Eq. (75) has an explicit dependence on the critical
ion temperature gradient 7, that is missed by the incom-
pressible theory formulas varying as (1 + 7,)%.

Some of the previously reported scalings of the anoma-
lous ion heat conductivity®'® y; significantly differ from Eq.
(75), although they are reported to be based on the same
system of Egs. (5)—(7). The main difference between these
previously reported scaling and Eq. (75) is the shear depen-
denceof y;: In Refs. 8 and 9, y; is asserted to be an increasing
function of the shear s and y; vanishes as s—0. Also the
scalings of y; derived in those references have a different
dependenceon K = (1 + ;) T;/T,. In order to clarify what
leads to this contradiction between the previously reported
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results and the newly obtained result, we present here brief
critiques of Refs. 8-10.

A. Critiques of earlier theories

The difference between the results of Refs. 8-10, and
from Eq. (75) essentially originates from the inconsistent
treatment of the linear properties of the 5, mode in Refs. 8-
10, not from the nonlinear analyses. The problem arises ei-
ther from oversimplification of the nonlinear system that
leads to a system having qualitatively different linear proper-
ties or from the ad hoc choice of “typical” linear properties
on which the nonlinear analyses of the mode is based. To
make this point clearer, we here repeat three important lin-
ear properties of the 7, mode in Egs. (5)-(7), which seem
not to be given sufficient attention in the previous works.

(i) The fastest growing linear mode occurs when the
wave number is chosen in such a way that the drift wave
source term (1 + KV?) in the right-hand side of Eq. (5) [or
the second term in the left-hand side of Eq. (14)] becomes
small,i.e., k,p, ~K~'/?.Sincethe case where X = (1 + ;)
X T;/T, = O(1) is of most interest, it is important to realize
that as long as the system (5)—(7) is concerned, the modes
with k,p, = O(1) play an important role in the nonlinear
system. In reality, the dynamics of such modes may be modi-
fied by kinetic effects®?>?® to some extent, but this is another
question.

(ii) The largest growth rate y of the %, spectrum is a
decreasing function of the magnetic shear s and ¥ approaches
its maximum value as s— 0, although the shear dependence
of v is weak when s € 1. This shear dependence is because the
radial eigenmode number / that gives the largest growth rate
increases as s decreases, so as to keep § = (2/ + 1)sapproxi-
mately constant. It may, therefore, be misleading to state
that the shear dependence of the growth rate Im () is given
by ImQo«(2/ +1)sK when k2plK<1 and by
Im Q«/(2/ + 1)sK -when k2plK~1. We must under-
stand that the radial mode number / giving the largest
growth rate is also a function of the shear s.

(iii) There is a shear stabilization effect reducing the
linear growth rate for larger shear s 2 0.1. This stabilization
effect is due to the compression of the parallel velocity field
and to parallel diffusion.

Keeping these linear properties of the 7; mode in mind,
we proceed to critiques of the previous works.

1. The work of Connor (Ref. 8)

Connor derived the formula of the anomalous heat con-
ductivity

x: =8(p,/L,) (cT./eB)K*s 7

in the limit of sSK €1 [Eq. (44) in Ref. 8], where g is a con-
stant. In deriving Eq. (77), the following terms are dropped
from the system (5)—(7) as ignorable: the parallel compres-
sion I", Vv, the inertia of the vorticity (1 — V?)d¢/dr and
the parallel electric field — V| ¢. No diffusion terms are in-
cluded either, which we do not question, however, at this
point since it is generally considered that turbulence has a
weak dependence on the diffusion coefficients. Inclusion of

S. Hamaguchi and W. Horton 1849



the nonlinearity due to the finite Larmor radius effect or
{p,V2¢} + {0p/3x,0¢/x} + {3p/y,04/3y} in the vorti-
city equation [Eq. (35) of Ref. 8] does not change the argu-
ment presented here. Dropping the parallel compression
T, V,v, the inertia of the vorticity due to the polarization
drift —V,d¢/0r and the parallel electric field — V¢
causes, in fact, less significant problems.

After ignoring these three linear terms from the system
(5)—(7), the linear eigenvalue is now given by the following
quadratic equation

02—~ (1 —k2K)Q + iKs =0, (78)

where § = (2/ + 1)s. We note that Im Q obtained from this
equation becomes oo as5 = (2/ + 1)s— o, unlikethecaseof
Eq. (20). This suggests that the fastest growing mode of this
simplified system has the infinite linear growth rate with
! = o and the initial boundary-value problem of this system
is mathematically ill-posed. We, however, do not worry
about this point here either, assuming that such high-radial
eigenmodes be damped in reality by some perpendicular dif-
fusion that is not explicitly included in the system of Ref. 8.
In addition to these assumptions, however, Connor assumed
that the inertia d¢/d7 of Eq. (5) be dropped, which is crucial
to obtain the explicit form of y; given by Eq. (77). This
assumption is equivalent to ignoring the first term of Eq.
(78) and the linear growth rate is now given by

Q= 35K/(1 — k2K). (79

It is clear that as k2 =k 2p2—1/K, the linear growth rate
approaches o while the coefficient of the second term of Eq.
(78) approaches 0. It follows that dropping the first term of
Eq. (78) or dropping the inertia d¢/dr from Eq. (5) may
not be justified when k2~1/K. In fact, eliminating the first
term 9 of Eq. (78) prevents the thermal mode from being
excited, which is the main mechanism of the 7; mode, as
discussed in Sec. III. Although nonlinearly saturated states
may not be fully explained by these linear properties, we
believe that the assumption made in Ref. 8 leads to oversim-
plification of the original nonlinear system, since this simpli-
fied system no longer possesses the qualitatively correct lin-
ear properties of the 7, mode. The correct linear properties
near the maximum growth rate may be essential in maintain-
ing correct form of the turbulence against the dissipation.
We also note that our nonlinear numerical simulations sug-
gest that the time derivatives of ¢, p, and v are of the same
order.

2 The work of Lee and Diamond (Ref. 9)

In Ref. 9, Lee and Diamond derive from the system
(3)-(7)
Xi=g(ps/Ln)(CTe/eB)Kzs(kyps)rms’ (80)

where (k,0, ) ms =0.4 and g is a weak function of 77,. The
essence of this work is well represented in subsection A,
“Heuristic description,” of Sec. III of Ref. 9. In this subsec-
tion, based on the so-called one-point renormalized equa-
tion, they derived the following two relations [ Egs. (36) and
(38) in Ref. 9]:
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D, ~K"k A},
Ay~ (D, /k )"

by balancing certain key terms of the system. Here D, is the
k-dependent anomalous diffusion coefficient arising from
the nonlinearity {¢,p}, or the EXB convection of the pres-
sure fluctuation, A, is the k-dependent radial correlation
length, and k | = k,/L,. These relations lead to the decorre-
lation rate Aw, ( = D, /A%) associated with E X B turbulent
convection and the radial correlation length A, given by

Aw, «sK, (81)
A, =K, (82)

which basically corresponds to the choice made to derive Eq.
(47) in Sec. III. This balancing of certain linear terms of the
system is essentially equivalent to the approximation that
Connor made in Ref. 8, leading to the linear growth rate of
Eq. (79) with the extra assumption kK <l,ie,

Thus, it is not just a coincidence that the shear dependence of
x: given in Refs. 8 and 9 are the same. Since the one-point
renormalized equations, in which all the nonlinear convec-
tion terms are simply replaced by linear diffusion terms with
diffusion coefficients to be determined, give a linear system,
one must use the linear properties of the system one way or
another at some point if he wishes to evaluate fluctuation
levels and anomalous transport coefficients from the one-
point renormalized equations. In this sense, it is not clarified
nor justified in Ref. 9 why these authors choose the particu-
lar way of balancing the terms that lead to the linear growth
rate of Eq. (83) [which was subsequently used as the decor-
relation rate Aw, of Eq. (81)] and rule out the possibility of
balancing different terms in such a way that a larger growth

rate Im Q < sK with &k 2p? ~ 1/K isobtained. Althoughitis
observed in numerical simulations that the modes with
smaller k,p, have larger amplitude in the turbulent state,
these modes are produced by nonlinear interactions of high-
er-k, primary modes and not by the strong linear instability.
In fact, these nonlinearly excited low-k, modes have differ-
ent mode properties from the linearly excited low-k, modes.
Therefore, detailed justification is needed if one attempts to
associate the properties given in Egs. (81) and (82) of the
long-wavelength linear eigenmodes (k ?’K € 1) with the non-
linearly excited low-k, modes. We also note that Lee and
Diamond relate the pressure fluctuation p, to the electro-
static potential fluctuation ¢, as

Pr=iKo,,./Ao, (84)

[Eq. (35) of Ref. 9] by balancing the anomalous diffusion
term to the ion temperature gradient driven term in their
one-point renormalized equations. Using the relation, Eq.
(84), is, in fact, crucial to obtain an explicit form of the
anomalous diffusion coefficients from their two-point renor-
malization technique presented in subsection B of Sec. III of
Ref. 9. Despite their elaboration of the two-point renormal-
ization technique, therefore, the final results derived therein
[such as Eq. (85) and Eq. (92) of Ref. 9] heavily depend on
the choice of the unjustified linearlike relation Eq. (84) tak-
en from the one-point equations. This approximation makes
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obscure the accuracy of the conclusions of the two-point
renormalization technique in Ref. 9.

3. The work of Terry et al. (Ref. 10)

Terry et al. derive the anomalous diffusion coefficient
given by

D, =0, pi(2] + 1)K (85)

[Eq. (10) of Ref. 10] to the lowest order of s, from the
system (35)—(7), using the mixing length estimate and the
one-point renormalization technique. It is claimed that the
larger radial eigenmode number /( 1</ S 10) significantly in-
creases D, over the D, obtained by Lee and Diamond in Ref.
9 as the higher-order radial eigenmodes are more strongly
excited and bear a broader mode structure. Since the method
used to obtain the scaling of Eq. (85) is similar to that of Ref.
9, the critique of Ref. 9 presented above also applies to Ref.
10. In addition, it seems inconsistent that the authors of Ref.
10 attempt to maximize the growth rate by varying only the
radial mode number / while keeping k, (or the poloidal
mode number m) small, i.e., k202K €1.

These critiques and the fact that none of these previous
works® '® provide nonlinear simulations supporting their re-
sults indicate that these previously reported y, scalings are
not justified. Given the more rigorous analyses and direct
numerical simulations of the system (5)-(7) presented in
the present work, therefore, we conclude that in the param-
eter range sK S 1 of interest, the y; scalings reported in Refs.
8-10 are erroneous and that the correct scaling of y; due to
the 7;-mode turbulence in a sheared slab geometry is given
by Eq. (75). Other properties of the 5, mode in tokamaks
due to toroidicity and kinetic effects are, of course, beyond
the scope of the present work.
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