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lon temperature gradient driven turbulence in the weak density

gradient limit
Satoshi Hamaguchi® and Wendell Horton

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 16 April 1990; accepted 22 August 1990)

The anomalous heat transport arising from the ion temperature gradient driven mode or
nmode turbulence is extended to the range of the weak density gradient limit (n,= L,/
Ly— « ), which is appropriate for H-mode dishcarges. It is shown that the anomalous ion
heat conductivity y; with L,— o scales as y; = g(p/L7) (cT/eB) exp( — Bo) with

o= (T/T;) (Ly/L,), B~4, and g~1. This y;, scaling is the natural extension for high %, of
the scaling of y, for K = (T/T,) (1 + n,;) $4 obtained [Phys. Fluids B 2, 1833 (1990)]

from analytical and numerical studies.

I. INTRODUCTION

Anomalously large transport caused by plasma turbu-
lence has recently been a subject of much interest with
regard to the confinement properties of various types of
magnetic fusion devices. One of the most important prob-
lems concerning this subject is to identify the physical
mechanism responsible for the anomalous transport and to
predict the confinement properties of present and future
devices. Recent experimental studies'™ in tokamaks have
provided supporting evidence that the ion temperature gra-
dient driven mode or the %; mode is an important constit-
uent of the turbulence contributing to the anomalous en-
ergy loss. Even in the case of the improved energy
confinement observed in the so-called H-mode dis-
charges,®’ the ion temperature gradient driven mode could
still play an important role for the observed anomalous
heat transport.

The ion temperature gradient driven mode (without
the presence of the bad magnetic field curvature) is a drift
wave microinstability coupled with the ion acoustic waves
that is destabilized by the local ion temperature gradient.
When the effect of magnetic shear is stronger than the
effect of magnetic field curvature, this slab type of ion tem-
perature gradient driven instability is predicted to be ex-
cited and to enhance energy transport.*® This drift-ion
acoustic mode is known to be described by a simple fluid
model®® based on the two fluid equations with the polar-
ization drift velocity and adiabatic electrons.

Recently this fluid model of the 7; mode is reinvesti-
gated’ analytically and numerically in detail and the scal-
ing of the anomalous ion heat conductivity y; is obtained as

xi=8(ps/L,)(cT/eB)(n; — n;c)exp( — as), (1)

where 9, = L,/Lis the ratio of the density gradient scale
length to the ion temperature gradient scale length, 7, is
its critical value, s = L,/L, is the shear parameter, g~1,
and a~35. The condition under which Eq. (1) is derived is
that ; is near n;, (7,,<7;53). It should be noted in Eq.
(1) that stronger magnetic shear reduces the anomalous

ion heat conductivity. The same type of shear reduction
was observed in early numerical simulations by Horton,
Estes, and Biskamp.®

In H-mode discharges, it is experimentally observed
that the (electron) density profile is flat in a significantly
large domain of the bulk plasmas. In such cases, the den-
sity gradient scale length L, is much larger than a typical
macroscopic scale length and 7, «. Therefore it is nec-
essary to modify the y; scaling given by Eq. (1) in order to
calculate the anomalous heat transport in H-mode plas-
mas. In particular, we need to determine the dependence of
a of Eq. (1) on 7,. The goal of the present work is to derive
the scaling of the local anomalous heat conductivity y; in
the flat density profile regime appropriate in explaining the
confinement properties in H-mode plasmas.

The conclusion of the present work is summarized in
the following y; scaling in the weak density gradient limit:

x:=8(py/L7)(cT/eB)exp( — Bo) (2)

with a numerically obtained parameter S~4 and a new
shear parameter o = (T,/T;) (L;/L,). The shear scaling of
Eq. (2) is obtained from parametrization of numerical
data. More elaborate fitting functions of shear f{o) could
be used but the choice of the simple exponential decrease
appears sufficient. This is the natural limit of Eq. (1) in the
case where 1);,— o whereupon a(n;)->B(T/T;)/n; We
note that shear stabilization resulting from parallel com-
pressibility leads to the existence of critical shear o, in the
weak density gradient limit.

In the next section the fluid model of the 7; mode is
reviewed briefly with the use of normalization appropriate
for the weak density gradient limit. In Sec. III the linear
properties of the 77; mode in the limit of L,— « and the
critical magnetic shear o, are discussed. The scaling of
the anomalous ion heat conductivity y; obtained from
three-dimensional nonlinear numerical simulations is pre-
sented in Sec. IV. Section V contains the conclusions.

*)Present address: IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598,
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ii. DYNAMICAL EQUATIONS

The nonlinear evolution equations’ of the electrostatic
ion temperature gradient driven mode are obtained from
the two-fluid equationsw under the assumptions of charge
neutrality (n; = n, = n), constant electron temperature T,
zero resistivity, and zero electron inertia. The sheared slab
configuration of the magnetic field B = B[z
+ (x— xo)?/Ls] is assumed here, which represents a
neighborhood of a rational surface given by x = x,. Here
L, denotes the shear scale length, X, ¥, and Z denote the
unit vectors of the usual orthogonal coordinate system
(x,5,2). We split each physical quantity into two parts such
as n = ny(x) + 7; the unperturbed quantity denoted by
subscript 0, which is assumed to be a function of only x,
and the perturbed quantity denoted by subscript 1. It is
easy to show from the parallel electron momentum balance
equation that electrons satisfy a Boltzmann distribution
A /ny=ed/T,

The appropriate space-time variables of the ion tem-
perature gradient driven mode are

X — X y z ~ tCS

= y 7 = t =

=" z s T
Ps y Ps Ly Ly

where p,=c/0,; = c(m;T,)""*/eB, c,= (T./m))"? is the
sound speed, w,; is the ion cyclotron frequency, m; is the
ion mass, and 7 = T,/T; Assuming that the mean velocity
and potential are zero, we obtain the nonlinear evolution
equations of the fluctuating quantities,

3 2
(1-v: 3T 35~ "W

+ {$.Vid} —p. Vid, (3)

—(D+ K V3

=—Vy(¢+p) — {0} +py Viv + . Viv,  (4)

QD
e 3¢

d
= - KT;?‘T';' — IV —{¢,p}

ST

t

+x3 Vip + X1 Vip. (5)
Here the nondimensional parameters are given by
D=1Ly/L,, Ky=Ly/L,+1,
=y/r,
and the dependent variable are defined by
e® 7Ly piLy
TT.p VT e p T pops

where vy and p; denote the parallel velocity and the ion
pressure, respectively. All the mean quantities used above
are evaluated at x = x,. The Poisson bracket and the per-
pendicular and parallel gradients are given by

~ af dg of og
{.f’g}— z vj_fxvlg-—'a—x-a—j;—-._b?gg,

o=7Ly/L,,

v Il TLT

a _ 4

v =37 +oXx :9? .

In deriving Egs. (3)-(5), we only retain the EXB convec-
tive nonlinearity for simplicity.

The domain on which Eqs. (3)—(5) are solved is given
by the cubic box |X|<L,, 0<y< L, and 0<Z<L, L and L,
being constants of order untiy. The size of the box in the x
direction L, is taken to be large enough, so that when there
is magnetic shear (0#0), single helicity modes localized at
X =0 decay sufficiently as |¥| —L,. The boundary condi
tions of Eqgs. (3)—(5) are that all the dependent variables
vanish at |X| = L, and are periodic in the J and Z direc-
tions.

The set of equations (3)—(5) is equivalent to the set of
equations used in the earlier work [Egs. (5)-(7) in Ref. 9].
However, in the present work, where 7> 1, it is necessary
to use a different normalization. For L,>L; we need to
take 7L to be a typical macroscopic length scale, instead
of L,. Then the time scale must be taken as 7Lz/c;. The
constants p, ; and y, in Egs. (3)—(5) are appropriately
chosen dissipation rates. The perpendicular diffusion coef-
ficients p, and y, may be taken from the classical colli-
sional transport theory.'” Using the classical viscosity
v, ~nT/w}r; and the classical heat conductivity x, ~ T/m;
w7, the normalized perpendicular diffusion coefficients p1;
and y, of Egs. (3)—(5) are given by

w,=v,7Ly/ m,ncpf ~Ly/cgr;
and
xL=x,7Ly/ ncpf ~Ly/cgy

where 7; denotes the ion collision time. For the high tem-
perature tokamak plasmas of interest the appropriate
choice of w; and y/ is to model the strength of collisionless
ion Landau effect in the linear dispersion relation. We use
B = x; =1 as the approximate collisionless limit for the
parallel dissipation rate. We note that these dissipation
rates 41, | and y,  are also normalized with the use of mac-
roscopic scale length 7L, instead of L,, in contrast to the
py, and x| used in Ref. 9.

The cross-field anomalous ion heat conductivity y; is
given by

(BT ps(cT\ |8\
=P () (B

Here { ) denotes a space-time average over fluctuations,
which will be defined more precisely later. In the limit of
the flat density gradient or L,— o, we have

D-0 and K;-—1

and the fluctuations only become functions of o and T.
Since the variation of T = yT/T, is limited in most toka-
mak experiments (0.557/7,<2) and the effect of I' is
appreciable only in the case of strong magnetic shear,” we
do not develop the dependence of y; on I" here. Therefore,
within these limits the anomalous ion heat conductivity y;
takes the form

S. Hamaguchi and W. Horton 3041



CT,'
x=6/L0(55) £ @,

where f (o) is a nondimensional function. The goal of this
work is to determine the functional form of £ (o).

lil. LINEAR ANALYSIS

We now consider the linear properties of the system of
Egs. (3)-(5), in the case of the zero density gradient or
D=0 and K;=1. Assuming that the 7 and ¢ dependence
of the linear solutions of this system is given by exp
Xi(ky — @t), and writing =4 (X)exp i(kKF — &F), we ob-
tain the following eigenvalue problem from the linearized
equations of Egs. (3)-(5):

& 2 Q
2?“(* BCES
B+1 2x? 0 ¢
+Q+1AB—02%2F)$_ (6)
where

A=Q + ipko® X2,
B=Q + IX"kO'z-.f 2,

and Q = &/k = w/(cT/eB) (k,/Ly). Here the perpendic-
ular diffusion coefficients p, and y, are set to be zero for
simplicity, @ = ¢&/7L is the complex frequency of the
mode with physical dimension, and k = kp; is the real
wave number in the 7 direction. The Z dependence of the
solutions is ignored since, in the case of finite shear, the Z
dependence of the linear solutions only shifts the position
of their mode rational surfaces in the x direction. In this
section, we only consider an ideal sheared slab or L, = .
As discussed in Sec. II, t}_lerefore, the boundary condition
of Eq. (6) is such that |¢(x)| -0 as |X| - c.

It is easy to show that, if yj =y, =TI =0, then Eq.
(6) gives the following eigenvalue  and the eigenfunction

¢ (x):
Q={17201+ B {[ - B —io(2l + 1)]

£ [ +io(21+ 1)]* = 4io(21 + 1) (1 + k)}
(7
and
& 1(x) =exp( — X2/202) H((% /A,), (8)

where 1(/>0) is the radial mode number associated with
the /th eigenvalue of the Weber equation, A; 2= io/Q,
and H\(z) is the /th-order Hermitian function of the com-
plex variable z. The maximum growth rate Vimax (measured
in ¢/7Ly) is obtained by varying k and / of Eq. (7) so as
to maximize ¥ = k Im €. It should be noted that Q of Eq.
(7) is a function of the combination of shear and radial
mode numbers given by o (2/ + 1) rather than the shear o
itself. Numerical evaluation of Q from Eq. (7) shows that
for the limit of I' = x, | = ;) = O the maximum growth

rate is Ypmax = 0.20 with o(2/+ 1) = G, = 2.4 and
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k = kyax = 1.3. If the shear o is sufficiently small, there-
fore, the radial mode number / for maximum growth takes
a value satisfying o(2/+ 1) =G,,, and the maximum
growth rate ¥, is still independent of shear ¢. For finite
values of I, By X B and y,, the radial mode number /
and the wave number k = kp; that give the fastest growing
mode take much smaller values than /i, = (Gpax/
o — 1)/2 and ky,, calculated from Eq. (7). These para-
metric dependences of y(k,/,0) are discussed in detail in
Ref. 9.

For a fixed radial mode number /, if the magnetic shear
o is small enough such that the condition
kK®S|0(21+ 1)| <1 holds, the eigenvalue Q of Eq. (7)
may be further simplified as

Q=i — (27 + ) +i(27 — &) + £(F¥D)], (9)

where & = o(2/ + 1). We note that Im £ is independent of
k up to £ (&) in this case.

Following linear perturbation theory,’ we now calcu-
late the stabilizing effects of the compressibility of the par-
allel flow (i.e., I'#0) and the parallel diffusion (i.e., By
X #0). Assuming that o’T, |,u"k02|, and | )(”kazl are
small, we expand the last term of the left-hand side of Eq.
(6) as a Taylor series in X. Here we also assume that the
mode is localized near X =0, or more precisely, we solve
Eq. (6) on a finite domain of X¥(|X|<L,) with the bound-
ary conditions thatglzl =0 at |X| = L,. Therefore, by
taking the values of o°T, |y"ka2 |, and | X"koZl to be small
enough, the Taylor expansion is uniformly convergent. The
size of the domain L,, however, is taken to be large
enough, so that the lowest-order solution of Eq. (6) is well
approximated by Eq. (8) with the eigenvalue Eq. (7).

Writing () as the sum of the lowest-order growth rate
Q, given by the right-hand side of Eq. (7) and the remain-
der 2, where |Q,/Q,] is also assumed to be small (order
of '/?), we expand Eq. (6) in terms of these small param-
eters. Retaining up to the term of %, we obtain

&4 - o

FEL [Eo+ E)— Vo(X) =V (X)] ¢ =0,

where
Ey=— K —Qy/(Q + 1),
Ej= —0,/(Q+ 1)?
Vo= —* X/},

Vi=[(20,/Q)0?* X2 - Fo* 341/,

and
F=T/0Q% — iy + x))k/Qo + ixyk/ (o + 1).

The lowest-order solution ¢, of the eigenfunction
é =¢o+ ¢ + - is given by Eq. (8), which we write as
4 &P, indicating the /th radial eigenmode. The correspond-
ing Ith eigenvalue Q, = Qf" is given by Eq. (7). The next-
order eigenvalue , = Q4" is obtained from the following
relation:

S. Hamaguchi and W. Horton 3042



o -1
E= " wosax( [T #max) L o

where the integral is taken over the total domain (i.e.,
|%| <L, in the case of the finite domain). With the use of
#$P of Eq. (8), Eq. (10) leads to the following result:

QP = — PFA[1/(Qo+ 1)2 — iz /3] 7}, (11)

where A4;= 3(22 + 21+ 1)/4. In the case of small
& =o(21+ 1), Q" may be simplified with the use of Eq.
(9). In this case, Q(()I)z= — 5+ (%) and we have
F=il/5 + & (5~ "?), namely, the effect of parallel dif-
fusion w) and y is smaller than that of the parallel com-
pressibility if T'~py + X1~ & (1). Therefore we obtain

Q= — [3Q2P + 21+ 1)/8Q21+ 1)]ig T + £(5%).

The growth rate ¥ =Im @ = k Im Q'? is then estimated
from

Im QP =Im 0§ + Im {"

QI+ 1o (1 3(212+21+1)F
=\ "(§+ 820 + 1) )

XoQI+ 1) + £ (F%?). (12)

Formula (12) shows that the parallel compressibility (or
nonzero I') reduces the growth rate. )

We now extrapolate the growth rate given by Eq. (12)
to larger magnetic shear and estimate the threshold value
of 0. Although Eq. (12) is obtained under the assumption
that the second term in the right-hand side is sufficiently
smaller than the first term, we estimate the condition for
the marginal stability or Im () = 0 by balancing the first
term and the second term. The shear parameter o, ob-
tained by this balancing is an estimate of the critical mag-

32F + 21+ 1)

netic shear and given by
2 -2
Terit =121 1) ( 420+ 1)? F) ‘
where the /th eigenmode becomes unstable if o < 0,,. Thus
higher / modes are the first to be stabilized. The most

critical shear parameter o, is then given by the /=0
mode:

O.iw=2(1+43T) "2 (13)

In terms of critical value (Ly/Lt).» We have
L, 1 . 3 (TN\1*/T, 1
@) alowE) o

where v is the ratio of the specific heats. If I' = Ty/T,
=3, we obtain 0.;=~0.40 and (L/Ly) i (T/T.)~2.5
from Egs. (13) and (14). For other values of T, the crit-
ical shear values calculated from Eq. (13) are given by
Ot =0.32 and 0.19 for ' =2 and 3, respectively. The
choice I" = 3 may be the appropriate representation of the
one-dimensional (1-D) parallel ion dynamics in the colli-
sionless system near the absorption layer w~kyv;. For the
parameters used for the 3-D numerical simulations pre-
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sented in Sec. IV (i.e., T =2, pyp=x=1.0,
gy =x1=0.1, and k;p;>0.2), the critical magnetic shear
becomes o, = 0.54, which is calculated by means of the
initial value code. The critical magnetic shear obtained
from the fluid model (with I $2) gives a larger value than
the formula obtained by Hahm and Tang"! for the gyroki-
netic model:

(L/Lp)¥P° =3n/2(1 4+ T4/T,) (21 + 1)

or 0.y = 0.27 when T; = T,and /=0. Since the fluid model
used in the present work does not necessarily address the
physically correct threshold value of magnetic shear, the
discrepancy between the fluid model and the gyrokinetic
model is expected to exist.

In the next section, we will consider nonlinear satura-
tion of the mode with shear sufficiently smaller than its
critical value o.;. In this case, the linear modes are
strongly excited and the fluid model of Eqgs. (3)-(5) is
considered to give a reasonably accurate description of the
mode. The scaling of the anomalous ion heat conductivity
x; arising from the 7; mode in the flat density profile is
presented there and shown to be a decreasing function of
the shear o.

IV. NUMERICAL SIMULATIONS

In this section, results of numerical simulations of the
7, mode in the flat density profile are presented. The initial
value code used to solve the nonlinear partial differential
equations (3)-(5) is a modification of the code used in
Ref. 9, which was modified from the original version of the
HIB code.'>" In the initial value code, Fourier representa-
tion for the J and Z variables and a finite difference scheme
for the X variable are employed. At each time step the
dependent variables are advanced by means of the
predictor—corrector method. The boundary condition is
that all the physical variables are periodic in 7 and Z with
periods L, and L,, respectively, and they vanish at |X|
= L,, as discussed in Sec. I1. We refer to the (m,n) mode
of the Fourier representation as the mode whose ¥ and Z
dependence is given by the phase 27(my/L,
~ nZ/L;). The wave numbers k ,and k , are thus given
by k ,= 2am/L,and k , = 2wn/L,. The rational surface of
the (m,n) mode is located at X= nL,/molL, since

Vo< (mox/L,— n/L,)=(mo/L,)(X — nL,/moL,)

for the (m,n) mode. As the initial conditions, small per-
turbations are given to each (m,n) mode at 7 = 0.

The size of the domain used throughout the following
calculations is given by L,=20, L,=10m, and
L,=17.5m, so that the smallest finite wave numbers are
k,p;= 0.2 and k,7L1 = 0.267 and the distance between the
two rational surfaces of the m = 1/n =0 mode and the
m=1/n=1 mode in the case of shear ¢ = 0.1 is about
13p;. The equally spaced 150 mesh points are used for
descretization of the interval — L, < ¥ < L, and 58 modes
are chosen for the Fourier representation that cover at least
all the unstable modes with — 3<n<3. The diffusion pa-
rameters used in the simulations are p =y, = 1.0 and

S. Hamaguchi and W. Horton 3043



=) =0.1. As noted in Sec. II, the parallel diffusion
parameters p = ) = 1.0 are chosen so as to model the
collisionless ion Landau effect for high temperature plas-
mas. In order to obtain turbulent saturation, rather than
local quasilinear saturation, the background ion pressure
gradient is kept constant.’

The anomalous ion heat conductivity y; is defined by

<ﬁi-ﬁr) Ps CTi a¢ —1
S5~ @) bal o

Xi= (15)

Here the time average g(¢) of a time-dependent function
g(t) is defined by

—_— 1 7T
g(1)=lim — f g(t)dt
T— r 0

and the space average ( ) is defined by

! “oax (Pay (Faz (16)
= x Z,
) AL, L, f_l,x fo yfo

where A denotes the mode width in the ¥ direction. In
practice, the time average is taken over a reasonably long
time period of T after the saturation is attained. The size of
the mode width in the X direction A is used as a normal-
ization factor of Eq. (16) so that averaged values calcu-
lated from Eqgs. (15) do not depend on choice of L, when
the modes are localized. In our simulations, the definition
of A is given as follows; for a function f(X¥) representing a
physical quantity averaged over 7 and Z, we define

L 0 | F(E) |5 frnae/10,
0, if | S(%)| < Fnar/10,

where f,, is the maximum value of | f(¥)| on | X |
< L,. Then the mode width A is defined by

I(x)=

LX
A=f I(X)dx,
—L,

which gives a reasonable estimate of the “support” of the
localized mode. The fluctuation level of the space-averaged

anomalous ion heat conductivity y;(t) = {(p;7 )/
( — pj) is then given by
Axi={x1) — ¥} (17)

which is shown by error bars in Fig. 1.

The anomalous ion heat conductivity y; of Eq. (15)
obtained from the 3-D simulations is shown in Fig. 1 as a
function of 0/Ky = s/K= (T/T;)/L(L;' + L; ). The
line denoted by 7; = « in Fig. 1 indicates the shear depen-
dence of y; in the case of the flat density profile, where
Kr=1 and s/K=o0. It is shown that magnetic shear re-
duces the anomalous heat conductivity y; approximately as
xi<exp( — Bo) with B~4, similar to the y; with finite
density gradient reported by Hamaguchi and Horton.” In
other words, the scaling of the anomalous ion heat conduc-
tivity y; with the zero density gradient is given by

xi=8(p/Ly)(cT/eB)exp( — Bo), (18)
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FIG. 1. The anomalous ion heat conductivity y; obtained from the 3-D
simulations. The parameters used for the simulations are D=0, K, =1
for the 1, = o plot (where s/K=0) and D = 0.25 and K7 = 1.25 for the
7; = 4 plot (where s/K= 0/K = 0.80). The other parameters are I = 2,
y=x =10 and y, =y, =0.1

where =4, g~1, and o= (T./T;)(L7/L,). We note here
that this expression of y; gives a practically negligibly small
value of y; at o = 0.

As a comparison, we also show the s/K= o/K depen-
dence of y; under the conditions that D =0.25 and
K1 =1.25, or equivalently ;= 4.0 and T/T, = 1. In this
case, y; scales as

Ps T, i = &

v ()= - P %)
with B~4.5, which is slightly larger than B~4. In view of
the previously obtained y; scaling [Eq. (1)] for smaller
N:{(N;. < ;S 3), this scaling with 7; = 4 suggests that the
parameter a = a(K), which determines strength of shear
dependence of y, approximately varies as a(K)=~B/K
when K (or 7,) is sufficiently large. Here B = B(K) also
has a weak dependence on K given by B(K)~4.5-4 as
K=5- . Thus taking account of the limit (7;
— 1)/L,~1/Ly when 0€0,; and L,— «, we see that
there is a smooth connection between the y; scaling of Eq.
(1) for smaller 7; and the y; scaling of Egs. (18) and (19)
for large 7,

V. CONCLUSIONS

In this work, we extend the previous calculations of the
ion temperature gradient driven turbulence to the case of
weak density gradients. The new formula of the anomalous
ion heat conductivity y; resulting from the ion temperature
gradient driven turbulence in the limit of zero density gra-
dient is the natural extension of the previously obtained
formula® of x The new formula connects continuously
with the previous formula when L, — « with a minor ad-
justment with the numerical coefficient given in Sec. IV.
The weak density gradient limit (L, » L) is important for

(19)
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the H-mode discharges of tokamak plasmas, where the
density profile is known to be flat in the bulk plasma.®” In
the case of improved energy confinement of H mode dis-
charges, microinstabilities such as the 7; mode are consid-
ered to be particularly important to account for the ob-
served anomalous heat transport.!"!4-16

Considering the region where the magnetic shear effect
is stronger than the toroidal curvature eﬁ'ect,”‘22 we
present the set of equations of the ion temperature gradient
driven mode with a dimensionless scaling of both the in-
dependent and dependent variables appropriate for the
weak density gradient limit. From the scaled set of equa-
tions, it is easily shown that the ion temperature gradient
driven mode with L, = oo depends only on one parameter
o= (T/T;)(Ls/L;) and the anomalous ion heat conduc-
tivity y; has a form y; = (p/Ly)(cT/eB)f(0), where
Sf(o) is a function of the magnetic shear o. The present
work determines the functional form f{o), as given in Eq.
(18).

When magnetic shear is relatively large, the linear
analysis for a fixed radial mode number ! [Eq. (12)] shows
that the linear growth rate decreases with magnetic shear
o, as in the case of the 7; mode with finite L,.° This is
principally due to the parallel compressibility, which leads
to the existence of the critical magnetic shear 0.5 An
approximate formula for o is given by Eq. (13), which
gives 0.y =040 for =3 and o0 =0.32 for T =2.
These numerical values of critical shear g, obtained from
the fluid model differ some from the o, obtained from the
gyrokinetic model,!’ with the comparison given in Sec. III.
When the magnetic shear ¢ is sufficiently smaller than its
critical value 0., on the other hand, the modes with high
radial mode numbers / are strongly excited and the linear
growth rate is shown to be independent of shear.

Three-dimensional nonlinear simulations are used to
determine the function of f(o) or shear dependence of
Xi- It is shown that y; is a decreasing function of shear,
weakly dependent on o when o is small and strongly re-
duced by o when o is large. This dependence on shear is
parametrized with the exponential fit

Xi=8(ps/Lr)(cT/eB)exp( — Bo), (20)

where g~1 and S~4. Although this exponential depen-
dence of y; on o is one of several possible parametrizations,
it expresses with a single parameter 8 both the weak and
strong dependence on o. The exponential decrease of y;
with increasing shear provides a sufficiently small value of
xi(0) at 0=~0; to be useful without an explicit cutoff at o
= 0. Recent gyrokinetic simulations?® (with finite ;)
also show a similar tendency in the shear dependence of
x; for small values of 0(c<0.05).

The scaling y; of Eq. (20) is the natural extension of
the previously obtained y; scaling

Xi=8(ps/L,)(cT/eB)(n; — n,.)exp[ — a(K)s], o

withs = L, /L, K = (T/T,}(1 + %,), and a(K) =5
when (T/T,)(1 + 7,;.) < KS4. In fact, if 0€0, then
(9; — Myc)/L,~1/Ly and the coefficients of the exponen-
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tial functions of Eqs. (20) and (21) become equal. We find
that a(KX) scales as a(K) ~B/K when K is large.

Formulas (20) and (21) thus connect smoothly when
one takes Eq. (19) or

Ps 4 Ti ~ §

=g (E)CXP( -B I_()’
with B=4-5 as the x;: scaling for the large m; region
(55K < w). Equations (20)-(22) give the scaling of the
local anomalous heat conductivity that should explain the
anomalous ion heat flux in experiments where the toroidic-
ity is less important than magnetic shear. In H-mode dis-
charges, if the dominant heat transfer is due to the (slab)
ion temperature gradient driven turbulence, the anomalous
heat conductivity y; in the bulk plasma is given by Eqgs.
(20) and (22), which is of the order of the gyro-reduced
Bohm diffusivity [~ (p,/L7) (cT;/eB)]. The improved glo-
bal energy confinement of H-mode discharges, therefore,
would seem to result from an improved local confinement
at the edge region where values of 7; are relatively small.
Also, we find that the sheared EXB flow vg(x) in the
transition boundary layer reduces the growth rate of the
11, mode for finite values of Lyz/c..

(22)
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