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Wave-particle power transfer in a steady-state driven system

H. L. Berk, B. N. Breizman,® and S. Hamaguchi

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 22 March 1990; accepted 3 August 1990)

The general expression of the power transfer from a high-energy ion beam to a background
electrostatic plasma wave is obtained for arbitrary wave amplitude. It is verified that phase
space gradients produced by a finite amplitude wave enhance the power transfer significantly.

In an earlier work,’ the expression for the power trans-
fer from an ion beam (injected at high energy and undergo-
ing particle annihilation) to an electrostatic plasma wave,
was derived in the limits of small and large amplitudes. It
was not possible to completely describe the power transfer
rate in the transition region of the linear to nonlinear theory.
Here, we construct a solution to this problem that holds for
intermediate amplitudes and we demonstrate an enhanced
maximum of the power transfer at finite amplitude. This
demonstrates that the response of a nonlinear wave”* can
differ dramatically from simple Landau damping predic-
tions, as was also discussed in Ref. 1. Thus, the saturation
level of the nonlinear wave may be much larger than the
expectation of simple dimensional arguments. This arises
here because the source of particles establishing the steady
state cannot feed particles in the trapping region, which pro-
duces a discontinuity at the separatrix of passing and
trapped particles, which causes the enhancement of the pow-
er transfer. Similar enhancements were observed in a drift
wave calculation even without a particle annihilation mech-
anism present.*

We assume a high-energy ion beam is injected into a
background plasma where a single mode of an electrostatic
wave is present. The injected ions slow down and annihilate
as a result of classical drag and charge exchange to form a
weakly destabilizing distribution function. We also assume
that the distribution of the initial velocity v, of the injected
ions is given by I, (v,) = OS;(v,), with the normalization
5= . S;(vy)dv, = 1. We write the distribution function of
the fast ions as F(tx,v) = f* _fS;(v,)dv, where f

= f(1,x,v;0,) satisfies:

af ¥, af q$ if
at 6x m dv

o L+ 050~ uo).

(D

Here each fast ion with the mass m and the charge ¢ is as-
sumed to slow down with a drag coefficient @ and to annihi-
late at a rate v,. The electrostatic electric field € is &
= — dp /dx, with ¢ = @, cos(kx — wt), where g, is con-
stant under the assumption that the growth rate of the wave
is small. Transforming the independent variables to ¢ = kx
—wt (k >0) and E =@?/2 + ®cos ¢y + ay, where ®
=gpo/m,a =a/k,and # =v — w/k, we rewrite Eq. (1)

v,,f+a

as
lfij; ¥+ gQ (E D cosyp — atﬁ———u—o-),
u les k 2
(2)
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where u($,E) = |it]| =y2(E — P cos ¢ — ay), v=v,/k,

u0=v0_w/k)
_ {1, if #>0, and f= {5*(¢E), if 450
“lo, if a<0, ($,E), if #<O.

We note that E is a constant of motion of a slowing down
particle and the particle is reflected by the effective potential
D () =P cosy + ay at the turning point ¢,, which is
defined as the minimum value of ¥, that satisfies #(¥,,E)
= 0; other roots ¢, of u(¢,,E) = Oareinaccessible to parti-
cles born to the left of the turning points (Fig. 1). The
boundary conditions of Eq. (2) are, forafixed E, f* —»0as
¥ - — w and f* = at the turning point ¢ = ¢,. There
are a finite number [N(E)] of “birth” points {¢{"} [1 <i
KN(E)],thatsatisfy E = u2/2 + ® cos ¥ + ay{”. Then
the solution to Eq. (2) is

frun=3 —2
B =2 ku|du/dy), _ o
!l’l ! d’
Xexp(—- ﬂivj- ﬂ) (3)
v u . U

The wave to particle power transfer P, ,,; is

te
E=fui+dcosy+ay E=®cosy+ay
\p;s) (a) (b)
m 2
¥, ¥, 1
W\

FIG. 1. (a) The birth-point curve E = iug + ® cos ¥+ ay and (b) the
effective potential curve E = ®_, = P cos ¥ + a. For a given E, the birth
points ¥” (i=1,2,3) and the turning point ¢, are also shown. Here
¥,2 = ¢,0 + 2. We note that O indicates inaccessible points ¥ that satisfy
u(¢,E) = 0. The total length of the integral region I(u3 ) is, in general, 27,
which is easily seen in the special case of this figure by moving the section @
toa'.
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2w/k 0
Pou =24 f dx J' dv GvF
217' 0 - o

- f " du, P(uo)S,(uo+%), 4)
where
Plug) = 2420 f" dy F dgSnY_
0 ® cos ¥+ ay u(Y,E)
X(fr+f- )[1+ﬁ(’:’:)] (5)

We assume that S, (v,) is a peaked function about v, = ¥,
with a relatively narrow width AV, where AV satisfies (P
+a)/U, €AV €U, =V, —w/k. It is assumed that the
contribution to P is from a narrow region in velocity space
where the speed of particles is near zero in the wave frame, so
that & (ku/w) are ignorable. Since f*+ satisfies f* (¢
+ 2m,E + 27a) =f* (Y,E), wetransform E— E — 27na,
y— 1 — 2rn (where n are positive integer values) and then
we invert the order of integration of Eq. (5)

297 o E, + 2na Y (E)
f dy dE-+- = dEf dy--,

(] D cos ¢ + ay E,
(6)

where E, is a local maximum of E=®Xcos ¢ + ay at
¥ = ¢, (as shown in Fig. 1). Using the relation

Y2 2 Y2 o3
@l @ (g,
»no a Jy, u

p4] u a
we readily obtain from Eq. (3), if wW®/a<]1,
fr+fm =Y 20 eXP(—ﬂ)

¥, 3
x(l—ﬂ' Md,/,), %))
a Jy> U

With the use of Eqs. (5)-(7), P(u,) is

P(uy) = %fg exp( - % [ ay,

I(ud)
[ EGd9 ] .
Xf sm:/z v
— u[$.E(u5.9,) ]
v®
-— ay,
H(u3)

[ ECud ) ] sin ¢ )2]
X —r d , (8)
U_ . uEGe] Y

where we used E(u3,¢,) = u3/2 + ® cos ¢, + ay,,

J-E. +27a JE N(E) 1 d'/,
E, igl uolau/a¢|¢= o B 1) ’

and I(u3) is the domain of ¢ on which the energy E(u3,¥)
=u3/2 + ® cos ¢ + ay; it lies between E, and E, + 27a
for a given u,. As explained in Fig. 1, the total length of
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I(k2) is 2m. We have used the relations dE
= (a — @ sin ¢ )dy}? at each birth point ¢” for a fixed
uy and u Ju(E,Y)/0¢y =Psiny — a for a fixed E. The
lower limit ¢§” in Eq. (7) is replaced by — « in Eq. (8) as
U, >q>l/2

In Eq. (8) Z(u})=P(uy)exp(vuy/a) is a periodic
function of 43 with period 47a. Thus the power transfer is

P =lf°° ﬂe—wﬁ/a@(z)sl(‘/;.*_fﬂ)
2 Jo k;

-y B R

k/\z,

dz 7 (2), 9

1 z, + Az
Az J,,

where z=u2, z, = n Az (n>0), and Az = 47a. We used

that exp( — wz/a) and S, (Vz + @/k)/z are slowly vary-
ing functions of z. The average P of &7 (2) is independent of
z,. Then as

1 & Az «
72,5V +?)ﬁ=fo {10+ o =1

(10)
z, + Az
Py = —_exp( ;;;Uo/a) f dz 7 (z)
0gQ exp( —vUya) ("%,
= uO
wk 47 2,
X | dy, g[EGa.¥) ], (11)
1(:3)
where

¥,
g[E.4,)] =f

— oo

- 2(]" b

(12)
Now u2 is transformed to E = E(u3,¥,) to give
1 z, + Az
L ai |  dy, = f f dE dy,
2 J., 162) o
E, + 2ra

= 217’-[ dE, (13)

E,

where the domain () of the integration is transformed to a
rectangular region, as illustrated in Fig. 2.

We consider the contribution to P,,,, from the first term
of the right-hand side of Eq. (12). Averaging Eq. (11) over
u} with the use of Eq. (13) leads us to consider

E|+2‘”'a ¥,(E)
Gi=_2 sin ¢ d
z f f_w u($,E) V.

We define #,, as the coordinate satisfying E, =® cos ¢,,
+ ah,o =Pcosy,; + ay,, asin Fig. 1. Note that we take
¢t0 <¢tl <¢t2 + 27 (seeFlg 1) and 'ﬁn = 'ﬁm onlyifa/d)
> 1. We split the integration over ¥ in Eq. (14) into the two

(14)
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FIG. 2. The integral regions of Eq. (13). The hatched region of (a) indi-
cates {}, which may be transformed to the hatched region of (b) by trans-
forming a—a’, b—b’, and c—~¢' in (a).

domains ( — o,¥,,) and [¥,,,%,(E)] and exchange the
order of the integrations over E and . Changing the variable
from E to u = u(¢,E) yields

¢ Y1 u, ()
G;= ——U dy du sin ¢
a\J- u (P '

Y2 u, ()
+ d¢f du sin 1/1),
'/’1 1 o

where u,(¢¥)=u(y,E,) and u,(¢)=u(¥,E, + 2ma). Per-
forming the integration over # in Eq. (15) and using the
relations u, (¢ — 27) = u,(y)) we obtain

(15)

¢l|
G; = dyu,(¥).

¢1 (1]

Clearly G5 =0 if ®<a (when ¥,, = ¢/,; ). Therefore the
total power transfer is given by

()] w L]
Paw = [6(5) + 8w &5 |7

where 8 =ak /v,0 =0 (1), and

o)1 4 (. g

(16)

(17)
i) 2 a3/2 ,
&)= 5 O
=£(_a_)‘
” \®
¥ i) 172
xf dw(;z—(cow,l — cos ) + ¥y, —¢) :
10 (18)
P, =P, ($P-0)
_ _mmeQ 4,V _V_«( _2)]
5 Qazexp[ p Vo <) | (19)

Note that G,(y—0) = 1, G, (y— « ) - 64/, G,(y) =0 if
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FIG. 3. Plots of the functions G,(y) and G,(y). For larger y,
G,(5.0) =020, G,(5.0)=0.096; G,(10.0) =0.14, G,(10.0) = 0.041;
and G,(25.0) = 0.068, G,(25.0) = 0.012. For y = 25 the asymptotic form
is about 10% larger than the numerical value for G, and 20% for G,.

y<1,and G,(y— o ) = 16/7*/*/2. The contribution to P,,,,
from G, agrees with Ref. 1 for all y while the contribution
from G, agrees with Ref. 1 in the asymptotic limit ®/a> 1.
The result for ®/a =1 is a new result. The numerical struc-
ture of G, (y) and G,(y) is given in Fig. 3.

Linear theory applies if ®/a €1 and the power transfer
changes scale when ®/a > 1. For ®/a <1, G, =0, and the
power transfer rate G, P, is comparable to the predicted
linear rate. If the G, term were not present the power transfer
rate, resulting from the nonlinearity of ® in the G, term,
would gradually change for finite ®/a and for large ®/« it
would be reduced by a factor 64a/7®. If in addition to the
destabilizing drive a linear dissipative power transfer of the
wave to the background plasma was present at a rate G, P,
(note G; <1 if linear instability is to occur), the level of
saturation is determined by the zero power transfer condi-
tion (G, — G, )P, =0 (ifG,; <1 thesaturation levelis ®/a

= 64/mG,). However, particle annihilation forces the

presence of the G, term, which completely changes the scale
of the saturation level. We note that the power transfer is
amplified by a large factor w/ka'/?. The critical point, ®/a
= 1, just occurs when a separatrix arises and the particles
slowing down from the source are unable to penetrate the
trapping region. Saturation then occurs when ®/a > 1.
Then neglecting G, the zero power transfer condition,
(BwG,/ka'’? — G,)P, =0, predicts that saturation oc-
curs when ® = (16wBa/mkG,)?/?, roughly a factor
(?/k*a)'’? larger than would be inferred from examining
parameters arising in linear theory.
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