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Anomalous transport arising from nonlinear resistive pressure-driven modes

in a plasma
Satoshi Hamaguchi

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

(Received 1 August 1988; accepted 30 March 1989)

Anomalous transport caused by fluctuations of resistive pressure-driven modes is discussed
within the framework of magnetohydrodynamics (MHD). The nonlinear-reduced equations
describing fluctuations localized near a particular magnetic field line are derived for tokamak
and reversed-field-pinch (RFP) plasmas, taking into account nonzero viscosity and heat
conductivity. For an ideally stable but resistively slightly unstable plasma, the anomalous
transport is caused particularly by convective motions. The convection is studied as bifurcation
from the linearly unstable equilibrium and the expression of the anomalous transport in a
tokamak plasma is obtained as a function of the mean pressure gradient near the critical point.
In order to evaluate the effects of the convection on the anomalous transport under various
conditions, the reduced equations are also solved numerically. It is found that Nusselt number,
that is, the ratio of the total heat conductivity including the anomalous heat transport to the
classical collisional heat conductivity, is significantly large under some conditions. This
partially accounts for the large heat losses in controlled thermonuclear fusion devices.

I. INTRODUCTION

In a magnetically confined plasma, various types of fluc-
tuations affect the global behavior of the plasma through
enhancement of the transport of mass, heat, and magnetic
fields. The collisions of ions and electrons always generate
some diffusion in plasmas, which is called the collisional dif-
fusion. However, the transport caused by the fluctuations,
which we call the anomalous transport, has in many cases
similar or even greater effects on the plasma than the colli-
sional diffusion. The anomalous transport, therefore, has
been a subject of much interest in recent years.

In this paper, we will consider “low-level” or “weak”
fluctuations’ or the fluctuations with small amplitude that
vary on faster time scales and smaller spatial scales than the
mean fields in a plasma. The fluctuations commonly ob-
served in well-confined plasmas are always weak, typically
1% of magnetic field fluctuations in tokamaks and 10% in
reversed field pinches (RFP’s). The steady convection or
the saturated islands on a rational magnetic surface and plas-
ma turbulence are examples of the weak fluctuations that we
are particularly interested in.

One of the most intriguing problems that is believed to
be related to the weak fluctuations in a magnetically con-
fined plasma is the spontaneous reversal of the toroidal mag-
netic field in RFP experiments.” Taylor suggested® that a
slightly resistive plasma minimizes its energy through a
magnetic reconnection process, subject to the constraint that
the total magnetic helicity of the plasma be conserved. Al-
though he did not specify any particular dynamical process
of the plasma relaxation, the predicted minimum energy
state agrees well with the experimentally observed equilibri-
um state of an RFP plasma. Recently, it has been demon-
strated*” that the dynamical description of a plasma based
on the nonlinear resistive magnetohydrodynamic (MHD)
equations with the presence of weak fluid fluctuations suc-
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cessfully describes the relaxation of a plasma to a state simi-
lar to the one predicted by Taylor.

Another interesting phenomenon associated with the
weak fluctuations is the anomalous heat transport.® For in-
stance, turbulence in an RFP and steady convection on some
rational magnetic surfaces in a tokamak enhance the heat
conduction across the magnetic flux surfaces and deteriorate
energy confinement of the plasmas. Thus it is important to
know how the anomalous heat transport is related to a given
set of macroscopic profiles of the plasma, such as the pres-
sure profile, in order to determine the energy confinement
properties of the plasma. Determination of the dependence
of the anomalous heat transport on such macroscopic condi-
tions is one of the main goals of this paper.

The class of the weak fluctuations with which we are
particularly concerned here is the one generated by the resis-
tive g mode or, more precisely, the resistive fast interchange
mode,” which is the instability caused by the pressure gradi-
ent acting against the curvature of the magnetic field lines in
a plasma with finite resistivity. These resistive pressure-driv-
en modes are expected to be present in tokamaks and RFP’s.
Recently, Hameiri® discussed the turbulent heat conduction
without specifying any particular modes and derived some
of its general properties. In this paper we will consider the
anomalous heat transport specifically caused by the resistive
g-mode fluctuations and we will determine a more precise
characterization of the transport.

For the resistive g mode, the free energy source is the
mean pressure gradient and the energy sink is the collisional
diffusion. Therefore, when the mean pressure gradient ex-
ceeds a critical value (which we call the linear stability limit
and denote by D; in terms of the parameter D defined in Sec.
III; the precise definition of D, is given in Appendix B),
modes localized on a rational surface begin to grow. If the
mean pressure gradient is, however, not too large compared
to the critical value, and interactions of modes localized on
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different rational surfaces are ignorable, then these modes
eventually saturate with finite amplitude, rather than lead-
ing to fully developed turbulence. These saturated modes or
steady convection cells within a boundary layer are analo-
gous to the Bénard convection cells of fluid dynamics and
enhance the heat transport across the magnetic surface. In
this paper, we will estimate this anomalous heat transport,
using nonlinear bifurcation analysis.® In this method, the set
of the nonlinear equations of the fluctuations is expanded in
terms of a small amplitude and the anomalous heat transport
is calculated to its lowest order. Also presented is the com-
plete algorithm to determine all the higher-order corrections
to the calculated anomalous heat transport. We will also
show the numerical results that determine the dependence of
the anomalous heat transport on the mean quantities under
various conditions.

This paper consists of seven sections. In Sec. II the set of
equations governing the mean quantities obtained by Ha-
meiri® is reviewed and extended. In Sec. III we derive the
nonlinear réduced equations describing the fluctuations due
to the resistive g modes with finite viscosity and heat conduc-
tivity for both an RFP and a tokamak. In Sec. IV the rela-
tionship between the anomalous electric field, which is part-
ly related to the dynamo effect in an RFP, and the
anomalous heat transport is discussed. In Sec. V the depen-
dence of the anomalous transport due to the convection on
the mean pressure gradient is derived analytically near the
critical pressure gradient for a tokamak plasma, and the nu-
merical simulations are presented in Sec. VI. Finally, Sec.
VII contains our conclusions, where the scaling law of the
anomalous heat conductivity is presented.

ll. EQUATIONS OF THE MEAN MOTION

We begin by reviewing the equations describing evolu-
tion of the mean quantities, slightly generalizing the earlier
work® by taking into account the parallel viscosity.® We start
from the following resistive MHD equations:

p(%+v-v)v= —Vp+JIXB—VII, (1a)

95?+Vx(77J—va) =0, (1b)

P L v.pov) =0, (1c)

ot

% +vVp + ypVev= (y — D[ IT + V(xVT) —ILVv],
(1d)

where

M= — 3y, (l;ﬁ—%l)/l—,ulc, (1f)

A =b[(BV)V] — V-, (1g)

In Egs. (1), symbols have their usual meanings: p, p, 7,
and v are the mass density, pressure, temperature, and veloc-
ity, respectively. The magnetic field B satisfies V-B =0,
J = VXB s the current density, y is the ratio of the specific
heats, 7 is the resistivity, and k is the heat conductivity ten-
sor. Here, we only consider the perpendicular component &
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and the parallel component & of the conductivity tensor x so
thatkV =« V| + «,V,, where V| and V, denote derivatives
parallel and perpendicular to the magnetic field B, respec-
tively. Equation (1f) is the deﬁr}ition of the stress tensor II,
where | denotes the unit tensor, b = B/|B|, and o is the rate-
of-strain tensor defined by

3v,- + ov;
g, =—+ =
Y ox;  ox
for the (i,j) component in Cartesian coordinates. Here, 6,
indicates Kronecker’s delta, that is, 5, = 1 if i =j and §;
= 0if i£j. Also V-II = Z,311,/dx, is the divergence of the
tensor I and IL:Vv is the contraction defined as
IL:Vv = 2,3,11,dv,/0x;. 1t follows that

MVv= —3p A2~ (g, /2)tr o,

where tr denotes the trace of the tensor. We assume that the
plasma is confined in either a toroidal or a cylindrical vessel
with minor radius a. For the boundary conditions, the per-
fectly conducting wall is assumed.

We now consider fluctuating solutions of Egs. (1). De-
noting by ( ) either an ensemble average or an average over
the small space and fast time scales of the fluctuations, one
can write every physical quantity as a sum of the mean part,
denoted by subscript 0, and the fluctuating part, denoted by
subscript 1. For example, the magnetic field B=B, + B,,
where B, = (B). Since the following discussion in this sec-
tion does not depend on the particular choice of the averag-
ing operation ( ), the actual form of the averaging is not
specified here. Using the ordering assumptions specified in
Ref. 5 for low-level fluid fluctuations, together with the as-
sumptions that y; = O(1) and u, = O(%), we obtain the
following set of equations of the mean quantities:

— %5UV'V

Vpo = Jo X By, (2a)
7 + VX (77']0 —€— p'oxBo) =0, (2b)
%0 4 V- (pgig) =0, (20)
ot
3
—% + UV, + 1Po( Vo),
= (y— D ndody — €dy + V-(kVT,)

— Ve(polsivi)) +f1, (2d)

where

= —V((p, + BeB))v, — (v/B))B, + %Povz'ﬂ’
€= <V1XB1> — (1/py) <P1V1>XB0,
Uy = Vo + (1/P0)<P1V1)

and the specific entropy s=[1/(y — 1) llog(p/p"). In this
derivation, we used the following relation®:

eJdo + pols:v1)* VT,
= — [{ndd)) + (1/T){VT,"VT,) + 3y, (A%
+ (u /2)te{at) ] +f (3)
We will derive this equation (with f= 0), particularly for
the resistive g-mode fluctuations, in Sec. IV, although Eq.
(3) is derived under more general conditions in Ref. 6. From
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Eqs. (2), it is clear that € and p,(s,v,) are the electric field
and the heat flux caused by the fluctuations, respectively.
We, therefore, call € the anomalous electric field and
Dofs;¥,) the anomalous heat flux.

Equations (2a)-(2d) are the closed set of equations
used to evolve the mean quantities if the anomalous electric
field €, the anomalous heat flux p,(s,v,), and the function f
are given. We note that f vanishes for localized fluctuations,
as will be discussed. We also note that the quantity w, is
determined, as in the Grad-Hogan model'® for diffusion, by
the requirement that all mean quantities evolve through a
sequence of magnetostatic equilibrium states satisfying Eq.
(2a). The dependence of the anomalous electric field € on
the mean profiles was determined by Bhattacharjee and Ha-
meiri"® for the case of tearing-mode-induced turbulence.
One of the goals of this paper is to estimate the anomalous
heat flux p,(s;v,) from the equations of the resistive g-mode
fluctuations.

1. REDUCED EQUATIONS OF THE FLUCTUATIONS

In this section we will derive the equations of fluctuating
quantities arising from the resistive g mode with a finite heat
conductivity. This is an extension of the reduced equations
of Bhattacharjee and Hameiri. Assuming that the modes
are localized along a mean magnetic field line, we apply the
scaling of the resistive fast interchange mode in the linear
stability theory’ to the nonlinear system: If the following
operators are applied to the fluctuating quantities, then V,

= 0(1/8), ByV = O(1), and 8 /3¢t = O(1), where the per-
pendicular derivatives V, =V — b(B,V) and b = B/|B,|>.
Here, § is a small parameter measuring the localizatin of the
mode, taken to be 0(\/5 ). The fluctuating quantities v,, B,,
Py, and T, are assumed to be O(8), whereas all the mean
quantities and their spatial derivatives are taken to be O(1),
except for v, == 0(5?), and their time derivatives are taken to
be O(8?). Here, for simplicity, we take the parallel viscosity
coefficient 44 to be smaller than O(1) so that it does not
enter the equation of the fluctuations. The more complete
version of the mode equations, including the parallel viscos-
ity coefficient y,, is derived in Appendix A. For other diffu-
sion coefficients, we take «,,u, to be O(5%) and K to be
O(1). Following Ref. 5, we obtain the set of equations for the
fluctuations:

2 (VoA XV $)b= 18,4+ BeVs, (4a)
0 %Aug = (B, + B, )*V(A,4)

—2bXV(po + } B})*Vp,

— 2b°V(4B3) (A, 4) + pu, Al (4b)

d
L V1,°Vpo = —@T[Z‘M'V(Po +4B3)

dt ¥Po + Bg
+ (By + By, )*Vv, + 74p,]
(r— DB
N[ Yy + 6 VO T
¥Po + By
(4c)
1418 Phys. Fluids B, Vol. 1, No. 7, July 1989

.‘i._’r] +VU‘VT0—"="(‘Z‘2‘_1_)T'0
dt B} + 7o
+ (By + B, )*Vv, + 74p, ]
2
c=b B “"’2 v
Po  ¥Po+Bg
[V + 6,V )T],

[zvu’v(l’o + EB(Z))

(4d)

d
Po—t"= (Bo+ By, )*Vp, + ByVpo + 11,4, v, (4e)

d
where A4, ¢, and v are defined by

B,=V,AXb—ppb,

V= vléxb - Vb,
the subscript L denotes the component perpendicular to the
mean magnetic field By, and A, = V2. In the derivation of
Eqs. (4), the relation p,/py = p\/po — T/ T is used. Either
Eq. (4¢) or Eq. (4d) may be replaced by the following en-
tropy equation:

By vy Wrso =2V [ (Y, + VO], (4D
dt Po

where s, = yTy/(y — 1) Ty — py/Ps.

We will further simplify these equations by assuming
that the plasma is confined in a cylinder and all the mean
quantities depend only on its radius . It is convenient in this
case to use the following independent variables:

x = |o|"2[(r—ro)/1l,
y= (Bo/roB)|0}'* [z —u(r)8], (5)
9=016, 7= (Bslo}/rolpo)t.

Here, (7,0,z) denote the usual polar coordinates and r, de-
notes a particular radius in the vicinity of which we consider
the motion of the modes. The azimuthal and longitudinal
components of the mean magnetic field B, are denoted by B,
and B, respectively. We note that the 8 direction (with fixed
x and p) is the direction along the equilibrium magnetic field
line By(7) and not the azimuthal direction anymore. The
following definitions are also used in Egs. (5): B = |B,|,
u=rB,/B,, and o = B,u'/B, where the prime denotes d /
dr. In Egs. (5), the mean quantities B, By, p,, and o are
evaluated at r = r,. We also introduce the following param-
eters:
= —2py/B%?, B=2p,/B?

S=4B%/B%?, R =rBy/1mpo

y—1 B%* ° *Bo\po

y—1 K lo|By _y—1 K
Ky=fr——r—y Ki=5re ’
Y  rB%p, Y rBylp,

where every quantity is evaluated at r = r,. The linear stabil-
ity criterion for the ideal modes is given by Suydam’s crite-
rion,'! D <. We assume that this stability condition is al-
ways satisfied so that the plasma is ideally stable and the
instability arises from the firiite diffusivity, The dependent
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variables are defined in the dimensionless form as

A= (1/rB,B)4, = (\po/roB,B)4,
p=(2/B¥o)®)p,, v= (po/B?|0)*"*)v, (N
T= Y 20, ~ 2p,

y—1 8% " T BeP”
where§ = T — . We note that 4 and ¢ are of order 62 and p,
v, T, and § are of order 8.

In terms of these new definitions, Eqgs. (4) become

1

_ﬁ ?z 134 (8a)
”‘Js -iAAJr{AA A}—a + MA$, (8b)
_d_~= 7’/3 s9 yr A ]
% __2;7; (K A, +K,A)T,
(8¢c)
d g %,
- 2+yﬂ[ 9+{A }+—A1p]
) 2 ~ ~
—9—5y‘£+72—_;%(K"A" +K,E)T,
(8d)
5
7:— ae+{A }+D3—+MA11/ (8e)

Either Eqs. (8c) or (8d) may be replaced by the entropy
equation

d
Here, the following definitions have been used:
df dg  df og
=(V,gXV b=-"L2_2 "2
{fg} = (V. gxV.N- 9% dy  dy o
9, =L 92) , YrxBe 2,
ox ay B
£=i+{¢ﬂ’
dr
7+ (%} + 5 a0)
= A — 14
AS= 557 %1+ {,f} +{4,{4,4},
5-(L-28ly+ 2
gx o] Oy 8y2

If we apply the following scale transformations to Eqs.
(8), the coefficients 1/R, M, and K, will be formally re-
placed by 1, M, and K, respectively,
x—»R‘”zx, y_’R—l/2y Z—>R_12, &—*R —la’
ﬁ—'R l/2p AT—>R —_l/ZT’ y—R —1/2:‘-” (9)
5-R V%,
Here, the normalized viscosity M, and the normalized heat
conductivity K are defined as M, = MR = u, /1p, and
Ky =YK, R = (y — 1)x, /mp,. Therefore, the transformed

system depends only on M and X, as well as D, 6, S, 3, and
K, but not on the magnetic Reynolds number R.

1419 Phys. Fluids B, Vol. 1, No. 7, July 1989

The set of equations (8) is suitable to describe the resis-
tive g-mode fluctuations in a screw pinch or an RFP, in
which the azimuthal (or poloidal) field B, and the longitu-
dinal (or toroidal) field B, are of the same order of magni-
tude, and the plasma beta 3, which is defined as the ratio .of
the thermal pressure p, to the magnetic pressure B2/2, is of
order 1. However, if we consider a straight cylindrical plas-
ma with low beta and a strong longitudinal field B,, we may
further simplify the set of equations (8). This further simpli-
fied system is a reasonable model of a tokamak plasma with a
large aspect ratio.

Let €, be the inverse aspect ratio, i.e., €, = a/L, wherea
and L denote the radius and the length of the cylinder, re-
spectively. We assume that €, is a small number,
B~By/B,~€,,and o~ ﬁ: ,namely, low beta, strong lon-
gitudinal field, and low shear. The diffusion coefficients,
such as the resistivity 7, the perpendicular viscosity v, and
the perpendicular heat conductivity «, , are also taken to be
of order €,-8%. Under these assumptions, it follows that
D~O~R~M~K, areoforder 1 and Sisof order ¢,. It also
follows that the safety factor ¢(r), defined by
q(ry=rB,(r)/LB,(r), is of order 1, which is the case in
tokamaks.

In order to focus on the effect of the temperature gradi-
ent, we also assume that the density gradient is small, i.e.,
ropo/po = O(€,). This assumption makes Eqs. (8¢c) and
(8d) identical to eacll other to the lowest order, and we have

=(y—10/y, T=yp/(y—1), and 5=p/(y—1).
Thus the subsidiary expansion of Egs. (8) in €, leads to the
following set of equations:

dd 3¢ 1

=2 2 A 10a

ar a8 TR™ (102)

d ~~ 8 =~ . ;5% 0P 2

L A p=—D8,4+ {4,484} - = + MA%},

d’r 1¢ ae 1 +{ 1 } ay+ L¢
(10b)

4 _p ., ks (10c)

dr a

Here, y = ¥K, and Eq. (8e) of ¥is decoupled from the set of
Egs. (10). Although we ignored the parallel heat conductiv-
ity in the system (10), we can retrieve it simply by replacing
yA, with Xi A" + xA, in Eq. (10c), where y, = ¥K,. We
note that, as in the case of the system (8), the scale transfor-
mations (9) replace the coefficients 1/R, M, and y in Eqgs.
(10) with 1, My, and K », respectively, so that the solutions
of the transformed system depend only on the parameters D,
My, and K.

These two reduced sets of equations, i.e., Egs. (8) and
(10), form the basis of our models of the nonlinear resistive
pressure driven modes. From the next section on, we will
investigate these reduced equations in order to characterize
the anomalous transport caused by these fluctuations.

(V. COUPLING OF THE ANOMALOUS ELECTRIC FIELD
WITH THE HEAT TRANSPORT

In this section, we will derive Eq. (3) directly from the
system (14), which gives a relationship between the anoma-
lous electric field € and the anomalous heat transport
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(s,v,, ). First, we transform'? the independent variables x, y,
and 6 tothe new variables ¥ = x, 7 = y + 0x, andz = 6. This
transformation changes the derivatives in Egs. (8) as fol-
lows: 3/0x =3 /3% +33/3y, d/dy=3/3p, /30=3/
9z + %3 /dp,and A, = 3*/3°% + 3%/37p. Then, it is readily
seen that the well-known linear solution of the resistive fast
interchange mode’ is the z-independent solution of the lin-
earized version of the system of equations (8). With the new
coordinate system (X,9,Z), the boundary conditions of Eqs.
(8) are such that all the fluctuating quantities are periodic in
7 and Z with periods 25, and L,, respectively, and decay
rapidly as |X| - . Here, §, and L, are taken to be quantities
of O(1/4R ) and O(1), respectively. (A more detailed dis-
cussion on the boundary condition is found in Appendix B.)

For such localized fluctuations, it is natural to define the
averaging operation as an average over the small space and
fast time scales of the fluctuations': for a fluctuating quantity
(X p.2,1: rot) satisfying the boundary conditions men-
tioned above, we define

1 o 5y L,

- dfcf d‘J & fF 3,0,
=351 f_w R
_ 1 (T

f= lim ? dr f(X,9,2,1;rp1),

T— 0 0

where A is the typical width of the mode f in the x direction.
J

We also define the averaging { ) as the combination of these
two averagings, i.e., (f)= (f). Although the boundary
conditions and the averaging operation are defined based on
the new coordinate system (X,5,Z), we will use both the coor-
dinate system (x,y,@) and (ic,j),?), using whichever system
makes the equations simpler.

We now derive Eq. (3) directly from the reduced equa-
tions (8). Adding up A, A4 XEq. (8a) and ¢ X Eq. (8b) and
taking the { ) average of the resulting equation yields

O LA+ 9.4

ar 2 i
= —(p2) = g EAD
—M (|5, 4. (11

For the solutions such as saturated modes or stationary tur-

bulence, we can drop the left-hand sides of this equation by

taking the long time average in 7:

1. 99 > 1>z ~ o
)= —-—=(|A4]?) — 2y,

(p22) = — 4 TEA D — MUIP) (12)

Similarly, taking the { ) average of the combination of equa-

tions P [Eq. (8¢)1+¥B/(2 + ¥B) - [Eq. (8¢)]

+2(y — 13/(2 + ¥8) - [Eq. (8f)], we obtain

-o((p ) -2 (%) (s 2)) 2D o [ %)
- ;{%s(ﬁm 2+ MUBLB, ) + - fyﬁ%ﬂ&m

+ __?’ﬁ_ﬂ&f/lz) +2r=1 (Ku PZ‘ - {Z’T}D + KRW‘T[Z))'

2498 2498

It is easy to check that the sum of the first three terms of the
left-hand side is proportional to e-J, and the fourth term is
proportional to (s,v,,), where v;, = v*V». In terms of the
physical variables, Eq. (13) may be written as

ed, +—<~s1vlr)p0T(')
= — {0 — 1. (W) — (1/Tp) (5, {|V, T, |?)
+KLTIVL T\1*), (14)

which corresponds to Eq. (3) with /= 0. Here, w, = VXv,.

In an RFP plasma, it is believed that the dynamo®® or
anomalous electric field € caused by certain kinds of turbu-
lence plays an important role in sustaining the equilibrium
configuration through relaxation processes. It is found' that,
although the tearing mode induced turbulence is necessary
to explain field reversal of RFP plasmas, the resistive g-
mode-induced turbulence is partially responsible for the
RFP configuration. Therefore, the strong coupling of the
anomalous electric field € with the anomalous heat transport
(s,v,, ), given in Eq. (14) for the resistive g modes, suggests
that there always exists an anomalous heat loss in an RFP
plasma.

1420 Phys. Fluids B, Vol. 1, No. 7, July 1989

(13)

Equation (14) is considerably simplified for a tokamak
plasma. Since § = p/(y — 1) for a tokamak case, we have

Polsivy,) = —BeBz‘Tz(ﬁ %ﬂ> [(7’— 1)\/;7—(;]_1,
y

edo = P} By0? <,~, %%} 2P,

to the lowest order of the inverse aspect ratio €, . Therefore,
it is clear that the radial component of the anomalous heat
flux p,(s,v,, ) is of order €2, which is of the same order as the
collisional heat transport &, T, while €*J, is of the order €.
Under this ordering in €,, Eq. (13) becomes

- O TS =
-0 {52}~ T7.5,
Iy
where «, is ignored for simplicity. We may also obtain Eq.
(15) by multiplying Eq. (10¢) by 5 and taking its { ) aver-
age

(15)

1 4 =12y ~_a_¢:5_ _ AL
7;(!1)1)— D<p 8y> x{{V.BI%).

Taking the time average of this equation yields Eq. (15), or

(16)
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in terms of the physical variables,

—poT 4 Gswy,) = (1, /T VL T ). amn
The anomalous electric field € caused by the resistive g
modes is thus found to be small and decoupled from the
anomalous heat transport in tokamak plasmas. This is con-
sistent with tokamak experiments, noting that e caused by
the tearing mode turbulence is known to have a small effect
on an enhancement of the classical resistivity.'* It is also seen
from Eq. (17) that T{{sv,,) <0, or the anomalous heat
flux p,{s,v;, ) across the magnetic surface may be written as

— poXea T o, Where Y. is a non-negative function of such
mean quantities as 7' . Therefore, the anomalous heat trans-
port behaves like the collisional heat conduction in the sense
that they both transport heat in the direction opposite to the
temperature gradient.

V. BIFURCATION ANALYSIS OF A TOKAMAK PLASMA

In this section, we will derive the dependence of the
anomalous heat transport caused by the resistive g modes of
Egs. (10) on the parameter D or the pressure gradient, as-
suming that Egs. (10) have steady saturated solutions. Such
nonlinear behavior of the solutions of Egs. (10) is discussed
in more detail in Appendix B. It is further assumed for sim-
plicity that mode rational surfaces in a plasma are well sepa-
rated from each other and mode-mode interactions between
two different magnetic surfaces are ignorable. This is cer-
tainly not the case for a turbulent plasma, but it is also a
reasonable assumption for a certain region of a relatively
quiescent plasma. We will, therefore, consider nonlinear
modes on a single rational surface, where the modes with the
same helicity interact with each other nonlinearly. These
modes on a single rational surface can be described as the z-
independent solutions of the nonlinear system (10), where
X, , and Z are the coordinates defined in Sec. IV. We will use
this coordinate system (X,§,Z) throughout this section.

The 2-independent normal mode solution of the linear-
ized system of Egs. (10) have the forms

A(x,9) = A(F)exp(imkp),
B(%.5) = $(%)exp(imkp), (18)
B(%.5) = p(X)exp(imky).

Here, m is an integer and k = 7/5, (6, is defined in Sec.
1V). The helicity of these modes is given by the pitch length
u = rB,/Bg, and we have j « (z — 10) to the lowest order,
where 8 and z are the azimuthal angle and the longitudinal
coordinate of the cylindrical plasma, respectively. Since J, is

a quantity of the order of 1/y/R, the modes given in Eqs.
(18) with m of order 1 are modes with short wavelengths.

We now consider steady solutions on a single rational
surface. When the parameter D, which is the free-energy
source of the modes, is slightly larger than the linear stability
limit D, , a perturbation growing from an infinitesimal initial
value is expected to saturate with small amplitude. In this
case, we are able to obtain expressions of the nonlinearly
saturated modes and to estimate the anomalous heat trans-
port by expanding the solutions in terms of the small ampli-
tude.®
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Let € be the energy of the perpendicular flow of such a
solution, i.e.,

e =K[T.4P. (19)

Assuming that € is a small number, we introduce new depen-
dent variables 4, ¢ and p defined by 4 = €A, ¢ = e¢ and
P = €p. Since the steady Z-independent solutions are consid-

ered weset d/dr =0and 3 /9% = 0 (i.e., /30 = %3 /3p).
Therefore, Eqs. (10) become
A _ 3¢ -
e{p A} =x— A (20a)
" 9A, 4
elg,A ¢} =% +e{d,A 4} - % | MA$,
ay 8
(20b)
(3.5 = — g—ﬁw&ﬁ. (20¢)

Our aim in this section is to solve the system (20), together
with Eq. (19), assuming that € is a small quantity.

In the system (20), however, the existence of the nontri-
vial solutions is not guaranteed for all € (with the fixed pa-
rameters D, R, M, and y). In fact, if € = 0, then the system
(20) forms a linear eigenvalue problem and that D = D, is
the condition that the nontrivial solutions exist. Thus, for a
finite €, we choose a proper D = D(€) as a function of € so
that we expect the solutions to exist for any (small) ¢. Here
we assume the analytic dependence of the solutions and D on
€ and expand the solutions and D in power series of € as
follows:

S

i= 3 4, =73 b€ b= bue
n=0 n=0 n=0

and

D=D,+ 3 D,e".

n=1

We now seek formal solutions of this type by substitut-
ing these quantities into Eqgs. (20). Considering the case
where D, >0 (this choice is always possible, as shown in
Appendix B), we obtain the following system as the zeroth-
order system in €

(ﬁo )= (5 30/3% — 3po/ Ty + MEL ¢o) 0
3¢0/(9y (x/D. )Al Do 0
(21

and A0 is determined from the equation A 2!0
= — Rx3¢0/ay The lowest-order term of Eq. (19) deter-
mines the amplitude of do: (¥, do|?) = 2.

We now consider marginally stable solutions having the
following forms: Ay = Agy (%)cos kF, ¢0 = do, (%) sin kF,
and p, = P, (X) cos kp, where k is a given wavenumber. In
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this case, Eq. (21) becomes

Lk (?01)
01
(Rk25:2+M(a§—-k )2 k )
k — (¥/D.)(3% —k?)
(¢01)
\Po1

-0

=)
Here, 4, = 8 /9%, and the functions &01 and py, are taken to
be real-valued functions of X. We think of L, as a linear
operator applied to a pair of real-valued functions (u,,u,)”
of x, where superscript T' denotes the transpose of the vector
and u, and u, are sufficiently smooth square-integrable func-
tions. We define the inner product of such functions (#,u,) "
and (v,,0,)7 as (u,,1,) (v,,0,) 7 = (U0, + uw,). It is clear
that L, is a Hermitian operator with respect to this inner
product.

In Eq. (22), we note that the linear stability limit D, isa
function of k. In order not to generalize the problem too
much, we here choose the wavenumber k such that the
modes with this &k are the only marginal modes; in other
words, all the other modes whose j dependence is given by
either sin /kp or cos /kj (I #1) have negative linear growth
rate when D = D, . In this case, the operator L, , where / is
an integer, is always invertible unless / = 1, so that the linear
equation L, (u,,u,) T = (0,0) 7 only gives the trivial solution
if /1 #1.

With these solutions of the zeroth-order system, the
first-order system in € becomes

(V,4¢9.4,) =0 (23)
L (j] _ ({$0’51$0} - R-i a{&oyjo}/aj;’ - {/}0,51_20})
pr/~ \— ({#0, Po} + D, 3550/85:)/DL ’

(22)

(24)
A4, = — R%3$./35 + RipoAo} . (25)
If we expand the solutions A b ¢1, and p, in Fourier series in j
such as A,=3, A, cos Ikp, ¢, =3, ¢, sinlky, and
P =2, Py, cos Ik, itis clear that we obtain only three sets of
equations for / =0, 1, and 2 from Egs. (23)-(25).
For / = 1, we have

(0= (_rovmortnee)

The necessary and sufficient condition that Eq. (26) have a
nontrivial solution is that the right-hand side is orthogonal
to the null space of the adjoint operator L ' of L,. This
condition determines D,. Since L, =L <, we only have to
require that the inner product of (¢y,,0o,) and the right-
hand side of Eq. (26) be equal to zero

K(D\/D;){ Poy $o1) =0 27

Multiplying the second equation of Eq. (22) by p, and tak-
ing the ( ) average of the resulting equation yields

koot = — (/D)@ bor)* + k2%
30 { Pos ‘301) is nonzero for nonzero p,. Therefore, from Eq.

(26)
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(27), D, =0 and the solution of Eq. (26) becomes
C(¢0,,po,) with some constant C. However, from Eq. (23),
we have (quiol V.. =0,50 C=0. For /=0and 2, we

obtain ($10,P10)” and (@, p1,) " from Eq. (23) by just in-
verting the operators L, and L,, .
The second-order system in € from Egs. (20) is

(B olasmn)
p, ~ (8 + D,3¢¢/9)/D,
and A A, = — R%3¢,/3p + h, where
f= {550’51&1} + {(‘1\51’&1&0} - {20,5121} - {21’5120}

(28)

g§= {(30’ ﬁl} + {651’130} ’

and

h= R({&o»;! T+ {a #"io})

Equations (28) are solved by using the following Fourier
expansion in j: A, =3, A, cos Iky, ¢2 =3, §,, sin Ikp,
Br=2, by coslky, f=2, f; sin lkp, and g = 2, g, cos lkp.
For !/ = 1, we have

L (P)=(_ (a1 todorn)’

the solvability condition of which determines D,, as in the
case of Eq. (26). The necessary and sufficient condition that
Eq. (29) have a solution is, as before, that the inner product
of (@o1,001) and the right-hand side of Eq. (29) be equal to
zero. Therefore, D, is given by

D,= (DL(‘;smfl) - (ﬁongl))/k(ﬁm&m) .

Assuming that this D, is not zero, we are able to relate
the anomalous heat transport {s,v,,), which is proportional
to (p a&s/ay), to the parameter D. Since {p 39/3p)

= €k Po1do;) and D = D, + €D, to thelowest order of ¢,
we have ( p 3¢/3p) = k ( o1 o1} (D — D, )/D,, or

B,B%* . (D-—D,)
_"9—"_'k<p0l¢0l>—5-L
2

(29)

Polsivy,) = —
(¥ — Dipo (30)
near D = D, . Equation (30) gives the dependence of the
anomalous heat flux p,{s,v;, ) on the parameter D, which we
have been after in this section.

We have thus derived the dependence of the anomalous
heat flux on the parameter D. Since this derivation is based
on a small amplitude expansion, the result is reliable when D
is slightly larger than the linear stability limit D, . In this
region, it is found that the anomalous heat flux is linear with
(D — D;). When the parameter D is much larger than the
linear stability limit D, , the nonlinearity of the system is so
strong that we need numerical calculations to estimate the
anomalous heat transport. In Sec. VI, we will show some
results of the numerical simulations and discuss the validity
of the analytical results of Eq. (30).

VI. NUMERICAL CALCULATIONS OF THE REDUCED
EQUATIONS

In this section, the results of numerical calculations of
the reduced equations are presented. Here we only deal with
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the system (10) of tokamak plasma, in which the anomalous
heat transport is decoupled from the anomalous electric
field. It is shown that, in the tokamak plasma, steady convec-
tion within a boundary layer is attained and the anomalous
heat transport arising from this convection weakly depends
on the collisional heat conductivity. Therefore, when the ef-
fect of the collisional heat conduction is small, the total heat
transport is dominated by the anomalous one caused by the
convective cells. It is also shown that the analytical estimate
of the anomalous heat transport given by Eq. (30) agrees
well with the results of the numerical calculations near the
linear stability limit D; . Another important result obtained
in this section is an observation of the secondary bifurcation
in three-dimensional (3-D) calculations of the system,
which occurs when the second higher modes become linear-
ly unstable. For the system (8) of an RFP plasma, the non-
linear solutions have more complicated features. The de-
tailed numerical study of this system will be presented
elsewhere.

The nonlinear initial value code to solve the reduced
equations (10) is developed from the HIB code.'>'® The
equations are solved in the domain of the slab geometry, i.e.,
|%|<8,,|p|<8,, and 0<Z<L,, which corresponds to a
boundary layer in the plasma. For the boundary conditions,
all the physical quantities are assumed to vanish at |X| =6,
and to be periodic in p and Z, as in Sec. IV. The numerical
method used in the code is a finite difference scheme for the
variable X, Fourier component representations for the vari-
ables ) and Z, and the predictor—corrector method for time 7.
For simplicity, as in Sec. V, only the Fourier cosine compo-
nents for t} and p and the Fourier sine components of A are
taken into consideration.

We now take the small scale parameter 6 introduced in

Sec. III to be 1/+/R . In terms of this &, the size of the domain
used for our boundary conditions is taken to be §,/6 = 25
and 6,/6 = mand L,/r, = 2.57. It is confirmed numerically
that the solutions decay rapidly as |X| » &, and, moreover,
these solutions hardly depend on the choice of 8, if §,/6 is
taken to be 25 or larger. Therefore, we choose A = §, for the
definition of the averaging operator ( ); in fact, it is observed
in these numerical computations that the typical mode
width in the X direction A is of the same order of the one in
the j direction §,.

The boundary conditions imposed here depend on the
magnetic Reynolds number R since §, and 8, are taken to be
proportional to § = 1/JR . However, after the scale trans-
formation (9) is applied to this system, this dependence of
the boundary conditions disappears. The solutions of this
transformed system thus depend only on the parameters D,
My, and K, but not on R. In actual numerical calculations,
therefore, we solve this transformed system and leave the
magnetic Reynolds number R as an undetermined param-
eter.

Typically we use the following values of the parameters
in our calculations unless otherwise specified: D = 0.20 and
My, K, = 1~1072 Here, we note that D < 0.25 is the ideal
stability condition by Suydam.'! We also note that
My ~Ky~f W , where 3 is the plasma beta, m; and
m, are the masses of the ion and the electron, respectively, in
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a collisional plasma given in Ref. 9. As before, the parallel
heat conductivity y; is taken to be smaller than O(1) for
simplicity, so that it does not enter the equations. However,
we point out that some preliminary calculations including
x, show that y, has a stabilizing effect, and thus reduces
somewhat the anomalous heat transport across the magnetic
surface. In most runs presented here, 150 mesh points in the
x direction and seven modes (0<m<6) in the y direction and
five modes ( — 2<n<2) in the Z direction are employed,
where m and » are defined by the relations d /dp = mm/8y
and d /32 = 2wn/L,, respectively. It is confirmed by varying
the number of the mesh points and the number of the modes
that this is 4 sufficient numerical resolution to obtain the
correct saturation levels of the convection. The initial condi-
tion given to the calculations is a sufficiently small perturba-
tion of the m = 1 component of §.

We now present the anomalous heat transport obtained
from 2-D numerical calculations, where the Z dependence of
the solutions is ignored (n = 0). The anomalous heat trans-
port across the magnetic surface can be measured by the
Nusselt number

Nu =14 po{sv,, )/ ( =k, T§).

This is the ratio of the actual heat flux, i.e., the sum of the
collisional heat flux — x, T'¢ and the anomalous heat flux
Po{s1v;,) due to the convection, to the collisional heat flux

— k, T4. We note that the Nusselt number Nu is invariant
under the scale transformation (19), so that Nu also de-
pends only on D, M, and K. Figure 1(a) shows the time
evolution of the Nusselt number Nu. It is seen that the
modes grow linearly at the initial stage and reach the steady
convection state after about 1007, , where 7, is the Alfvén

time defined as ry/po/ (Bg|o|) [Egs. (5)]. The contours of
the streamfunction ¢ and the mode structure of 5 at 7 = 300
7, are shown in Figs. 1(b) and 1(c), respectively. The satu-
ration mechanism is a quasilinear stabilization or a flatten-
ing of the mean pressure gradient, which appears as the
dominance of the m = 0 mode of the perturbed pressure p."’
(Although the parameter D is taken to be a constant during
computations, the m = 0 mode of p acts as the time-depen-
dent part of the mean pressure.) Figures 2 show the depend-
ence of the Nusselt number Nu on the parameter D obtained
from the theory [Eq. (30) ] and the numerical simulations.
Here, the theoretical value of Nu is calculated from the fol-
lowing expression:

2 k(P09 (D—D;)
Nu=1-—— ,
vy KD, D,
where we set 1/D =1/D, since |D — D, | <D, was as-
sumed to derive Eq. (30). In order to evaluate the coefficient
of (D — D, ) in Eq. (31), thelinear equations (21) and (24)
are solved numerically. It is seen that these Nusselt numbers
obtained from the bifurcation analysis are in good agreement
with the results of the nonlinear simulations near the critical
point D,. We also note that the Nusselt number Nu is
smaller in the more heat conductive case (b) than in the less
heat conductive case (a).
We now seek the dependence of the Nusselt number Nu
on the normalized diffusion coefficients M, and K for a

(31)
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FIG. 1. Formation of convective cells by the resistive g modes. (a) Time
evolution of the Nusselt number Nu. (b) The contours of the streamfunc-
tion ¢ and (c) the mode structure of pat r = 300 r,, . The solid contour lines
in (b) indicate the positive values of ¢ and the dotted contour lines indicate
its negative values. Here, 12 modes are included, Mj = 1, K, = 5X 1073,
and D =0.2.

fixed D. Figure 3(a) shows that the anomalous heat flux
Dolsv,,) varies weakly with normalized heat conductivity
K. Here, the nondimensional quantity Ja denotes the
anomalous heat flux po(s,v,,) measured by the quantity

—po T, 1e., Ja= — po{s;v,,)/1p, T§. This weak de-
pendence of Ja on K accounts for the almost linear depen-
dence of the Nusselt number Nu on K ;7 . In a realistic pa-
rameter range for fusion experiments such that D = 0.2 and
My, Kz = 1.0~ 1072, it is seen that the Nusselt number Nu
varies from 1 to 10; in other words, the steady convection
enhances the heat transport up to one order of magnitude
over the collisional heat conduction. It is also seen that when
K is less than 1072, the anomalous heat flux or the satura-
tion level of the modes increases as some power of K ;. This
corresponds to the fact that there is no saturated mode nor
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FIG. 2. The Nusselt numbers Nu as functions of D obtained from the theory
{Eq. (30)] and the simulations of system (10). Here, My = 1, K = 1072
for (a) and K, = 10~ for (b).

stationary turbulence when K = 0, which was stated and
proved as Proposition 2 in Appendix B. Figure 3(b) shows
that the anomalous heat flux represented by the Nusselt
number Nu with fixed X also depends weakly on the nor-
malized viscosity M.

We now proceed to 3-D calculations of the system (10),
where the Z dependence of the modes or interactions of
modes localized on different rational surfaces are taken into
account. Since the Z derivatives of the system (10) appear
only as the form X d/3p + d%, which can be written as
i(Xxam/8, + 2an/L,) = i(em/5,)(% + 2nd,/mL,)  for
the linear solutions, the linear (m,n) mode becomes identi-
cal to the linear (m,0) mode by the transformation
X + 2n8,/mL, - X; in other words, the linear (m,n) mode is
localized at x = — 2n8,/mL, and has the same structure
and the growth rate as the linear (m,0) mode. In 3-D calcu-
lations of the plasma where mode rational surfaces are well
separated, if only the m = 1 modes are linearly unstable,
those modes saturate quasilinearly and the 2-D dynamics
accounts for each convection cell [Fig. 4(a)]. For the plas-
ma with the parameter D such that the m = 2 modes are also
linearly unstable, however, the 2-D and 3-D nonlinear anal-
yses of the modes exhibit significantly different results. In
the 2-D case, the m = 2 mode localized at ¥ = O is stabilized
by the flattened pressure gradient (the constant mean pres-
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FIG. 5. The Nusselt numbers Nu as functions of D obtained from (a) the
theory [Eq. (30)], (b) the 2-D simulations of a single rational surface (de-
noted by @), and (c) the 3-D simulations of multirational surfaces (de-
noted by W). Here, M, = 1.0and K, = 6.0X 1072, i.e., a highly diffusive

case, s0 Nu is relatively small but the secondary bifurcation is clearly ob-
served.

sure gradient D + the gradient of the m = 0 component of
), mainly caused by the saturated m = 1 mode, as shown in
Fig. 1(c). On the other hand, in the 3-D case, for example,
the (m = 1, n = 0) and the (m = 1, n = 1) modes create the
(m =2,n = 1) mode, which is localized at X = — y,/2z,or
just between these m = 1 modes [Fig. 4(b)]. In the region
between the dominant /» = 1 modes, the mean pressure is
not sufficiently flattened by the m = 1 modes, and those
m = 2 modes grow until they saturate by their own quasilin-
ear effects. These m = 2 modes have relatively large ampli-
tude so that they enhance the anomalous heat transport
{s,v,,). Figure 5 shows the Nusselt number as functions of
D, comparing the analytical estimate (a), the 2-D nonlinear
simulatjons (b), and the 3-D nonlinear simulations (c),
where the averaging { ) is taken over a single dominant cell.
It is shown that the 2-D calculations of single helicity modes
and the 3-D calculations of multihelicity modes exhibit the
same value of Nu for D, = 0.052<D<0.18, where the well-
separated steady convection cells of the m = 1 modes are
observed in the 3-D calculations [ Fig. 4(a) ]. The 3-D calcu-
lations, however, give rise to a clear secondary bifurcation at
D slightly less than D, , = 0.19, at which the m = 2 mode
becomes linearly unstable while the 2-D calculations show
no drastic change of Nu as D exceeds D, ,. This indicates
that, if D>D, ,, the Z-independent solutions of the system
(10), represented by the curb (b) in Fig. 5, is not stable
anymore three dimensionally and cannot be observed in rea-
lity. No tertiary bifurcation is observed since the plasma
treated in this example is so dissipative that all the modes
with m>3 are stable for D<0.25 or under the ideal stability
condition. For a less diffusive case, however, it is numerical-
ly observed that more high-m modes are destabilized with
smaller values of D, a series of bifurcation increases the Nus-
selt number Nu, and the system approaches fully developed
turbulence. Such fully developed turbulence caused by the
resistive g modes is examined by Carreras et al.'® based on
equations similar to Eqs. (10), and it is shown that the
anomalous heat flux is larger by almost two orders of magni-
tude than the collisional heat transport. [It is easy to check
that the quantity 75 D,, /a’ in Ref. 18 is related to the anom-
alous heat flux Je in Fig. 3(a) in this paper by
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7D, /@ = (y — 1)Ja.] Our numerical calculations also
show such results for less diffusive plasmas: For example, for
M, =10,K; = 1.0X 1072 and D = 0.25, the time average
of the Nusselt number Nu~70. The three-dimensional nu-
merical simulations presented here thus indicate that a series
of such bifurcations, as shown in Fig. 5, leads the system
from coherent convection cells to fully developed turbu-
lence, although the detailed structure of the higher-order
bifurcations (such as the Hopf bifurcation'?) is not clearly
identified in the present work.

VIi. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the anomalous heat
transport caused by the resistive g-mode fluctuations in a
plasma. The two systems of nonlinear equations describing
such fluctuations have been derived, one for an RFP plasma
with a possible high-beta value and the other for a cylindrical
tokamak plasma, under the assumption that the fluctuating
quantities have much smaller scales in space and time than
the corresponding mean quantities. In these equations, the
effects of all the collisional diffusion coefficients, i.e., resis-
tivity, viscosity, and heat conductivity, have been taken into
account.

The inclusion of all the collisional diffusion coefficients
in the reduced equations allows us to derive relations
between different types of anomalous transport. It is shown
based on these reduced equations that the anomalous heat
transport (s,v,) is related to the anomalous electric field € in
an RFP plasma through Eq. (14). Since € caused by the
resistive g modes is considered to play a partial role in dyna-
mo activity of an RFP,"* it is expected that there is a large
anomalous heat loss when there is a strong dynamo activity
in an RFP. On the other hand, it is also shown that, in a
tokamak, the anomalous electric field is smaller than the
anomalous heat transport by an order of the inverse aspect
ratio. In this case, the anomalous heat flux p,(s;v;,) can be
written as — py.s T4 with a non-negative function y 4.

As observed in the numerical simulations presented in
Sec. VI, the small perturbations that grow linearly in the
beginning saturate with finite amplitude and form steady
convection cells on the rational surface. By regarding this
steady convection as a bifurcation from the null solutions of
the reduced equations, we have applied the nonlinear bifur-
cation analysis to the system (10) in order to derive the
dependence of the anomalous heat transport on the mean
pressure gradient or the parameter D. In this method, the
reduced equations are expanded in terms of the small ampli-
tude, and the complete algorithm to determine all the high-
er-order terms is obtained. It is shown by this method that, to
the lowest order, the anomalous heat transport is propor-
tional to the difference of the parameter D and its linear
stability limit D, , that is, (D — D, ).

The validity of the analysis mentioned above is con-
firmed by using the numerical calculations. These numerical
calculations also determine the dependence of the anoma-
lous heat transport on various parameters in the equations.
It is found numerically that: (1) the anomalous heat flux
obtained from the bifurcation analysis in Sec. V is in good
agreement with the one obtained from the numerical simula-
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tions near the linear stability limit D, ; (2) the anomalous
heat flux varies weakly with the normalized diffusion coeffi-
cients K and M ; and (3) the Nusselt number Nu, which is
the ratio of the total heat flux to the collisional heat flux,
therefore becomes significantly large when the collisional
heat conduction is small. In a realistic parameter range of
fusion  experiments such that D=02 and
Mg, Ky, =1.0~107% the Nusselt number Nu obtained
from the 2-D calculations varies from 1 to 10. In other
words, the steady convection on each rational surface en-
hances the heat transport up to one order of the magnitude
over the collisional heat conduction. In the 3-D calculations,
we obtain evidence that a series of higher-order bifurcations
leads to fully developed turbulence and the associated anom-
alous heat transport increases up to almost two orders of
magnitude over the collisional heat transport or Nu < 107,
which is consistent with the result of Ref. 18.

From the analyses in Secs. IV-VI, we are able to derive a
scaling law of the anomalous heat conductivity arising from
resistive g modes. From Eq. (31), the Nusselt number Nu is
given by Nu — 1 = ay (D — D, ), with some constant a  if
D>D,; and Nu = 1if D<D, . Defining the effective heat con-
ductivity Yer bY Polsi0;,) = — poXer To as before, we can
write Yo = ayKgn(D — Dy )/(y — 1). From the numeri-
cal calculations in Sec. V], it is found that the anomalous
heat flux weakly depends on the diffusion coefficients K
and My, and so the numerically obtained value of
ayKy ~0.2~0.4 in a wide range of parameters. Therefore,
defining the critical pressure gradient p. by
D, = —2rp./B?*d*, we have

Yer =1 — aps —p.)/rB2(q'/9)*],

where @ =2a,Kz/(y — 1) =0.4~08 if —py> —p.. We
note that this scaling of y .4 is similar to the energy transport
coefficient D, of low-beta RFP plasmas obtained for the re-
sistive g-mode turbulence by Bhattacharjee and Hameiri,'*
except for the dependence on the critical pressure gradient p;
in Eq. (32). We also note that Eq. (32) is similar to the
leading scaling of the anomalous heat conductivity D, ob-
tained by Carreras et al.,'® again except for p., noting the
correspondence between B 5 2dQ/drin Ref. 18and 1/rB 2 in
our notation. As the normalized diffusion coefficients Mg
and K become small, however, the plasma becomes more
linearly unstable and the critical value of — p, decreases. In
this limit, where the final saturated state is more likely to be
turbulence than steady convection, the scaling of y.¢ of Eq.
(32) agrees with D, of Ref. 12 and the leading scaling of D,
of Ref. 18.

In this paper, up to Sec. IV, we develop a theory that is
applicable to both fully developed turbulence and some co-
herent motion, such as steady convection. However, in Secs.
V and VI, where we actually estimate the anomalous heat
transport, we only treat the steady convection on each ra-
tional surface. This coherent structure of the modes consid-
erably simplifies the physical model and allows a mathemat-
ically rigorous treatment of the system. The scaling of y .« of
Eq. (32) is also derived under this condition so that it is
expected to give a good estimate of the anomalous heat trans-
port in a relatively quiescent plasma where the steady con-

(32)
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vection persists rather than developing into turbulence. It is
interesting, however, that y.; obtained under this condition
still agrees with at least the leading scaling of the anomalous
transport'>'® caused by fully developed turbulence.
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APPENDIX A: REDUCED EQUATIONS WITH PARALLEL
VISCOSITY

Taking into account the effect of the parallel viscosity
#, we will derive the nonlinear reduced equations of the
resistive g-mode fluctuations. In addition to the assumptions
madein Sec. ITI, we assume that 4, = O(1). Wealso assume
that V,-v, = O(8), as in Sec. III, so that

A= (1/B3)By[ (By + By, ):Vv,] — 1V v,
and
— (V-II), = 3u Bo(B, + B, )-V(4,/B})

— VA +p Ay,

Therefore, the perpendicular component of the momentum
equation becomes V, (p, + By'B, — 3y 4,) =0 to O(1),
which leads to b) = — By'B, = p, — 3u, 4,. Equations (4b)
and (4e) are also modified, respectively, to

Po % Ad=(By+ B, )V(A A4) —2bXV(p, + iBf, )*Vb,
— 2b'V(%B§)(VlA) — 3 (Jo°By) (B, + By)
V(A/BY) +pu, Alé (A1)
and

d
POE v =ByVp, + B,,°Vb, + B,"Vp, — 31, B3 (B, + B,,)

V(4,/B3) + ) BeVA, +p, Ay,
where A, is given by

(A2)

Ay= —% [(Bo + B ) Vv + v V(p + 5B(2’)]
0

— 4V, v,
The equation for A4 is given by Eq. (4a) and the equation for

b), which may be derived from the parallel component of Eq.
(1b), becomes

% by — (Bo+ By ) Vv —vy, *V(p, + Bj) — B3 (V.+v))

Together with the equations for p, and p,, which may be
derived from Eq. (1c) and Eq. (1d),"” respectively, Egs.
(A1)-(A3) and (4a) form the reduced equations of the re-
sistive g-mode fluctuations. In addition to the scaled vari-
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ables and parameters introduced in Sec. III, we use

5 2r\/p_ . 2 = 2
/{ ovVFo pz__.._pl, b=———b”,
Bl P ool FEPRE
. 2 — TP
a= ro\//_;;n (V,*v)), N= :ZO ’
By|ol Po
24¢
H= —2ro(p20+B) . M, = Ky ,
B0’ roBo\/-P_o
3u, B, o
M, =ﬂ__"_|,_|, J=_’Q‘_’1_/2 (JsBy).
roB*\po 2By|o|

Here wenote that H =S — Dand D= (y — 1)O/y + BN/
2. Rewriting the mode equations in terms of these scaled
variables, we obtain the following set of equations of the
resistive g-mode fluctuations with the parallel viscosity:

dd 3¢ S ~
L=""4_V 4,
ar B TR
d g3 0 s~ % Ob
—Vd="oVA+{4484} - =
dr 4 m +{4.4, dy
A 5
+JM, a—+{A/1} + M, A% ¢,
d . b .
—p=—-—N—L_g,
ar ’ 3y
d ¢ 1~ -
—b=H"L A —
e a+ao+{ VY +a+ RAb
d . _ 3 _ yBa X
;p_ _DE_T'F(V_I)(KHA"
+ K, AT,
dv dA 2 9
heddt A5} +DZZ 4+ M,
dr ao+{ b+ 6y+ "(3 38

+—3‘{Z,Z}) +MLZL‘~’,
where
(B/2p=p—r— /T,
= OV ~ S 3¢
A=-x+1{4, -0 4+ —
80+{ v}+2 6y+3
These equations are the extension of Egs. (8) in Sec. II1.

APPENDIX B: NONLINEAR STABILITY ANALYSIS OF A
TOKAMAK PLASMA

In this Appendix, we will discuss some fundamental
properties, particularly nonlinear stability, of the solutions
of Egs. (10) mathematically in order to see some similarity
between the resistive g modes and the Bénard convection in
fluid dynamics. We note that, unlike the analysis in Secs. V
and VI, we will consider three-dimensional problems, i.e., A,
é, and p in Egs. (10) depending on (%,,2) as well as 7.
Therefore, the conclusions drawn here apply not only to the
steady convection solutions on a single rational surface, but
also to the fully developed turbulence of mulitple helicity
modes. The stability of the system (10) is defined® as the
stability of the null solutions 4 = ¢ = p=0, which repre-
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sents the equilibrium state of the plasma, in the following
way: Let & (7) be the energy norm of the system defined as

Z(r) =KV P+ [V.9)” + 5.

The null solution of the system (10) is called asymptotically
stable (in the sense of Lyapunov) if there is a positive num-
ber 8, such that, for any initial condition the energy norm of
that is less than §,, i.e., for & (0) <§,, the energy norm ap-
proaches zero for large 7, i.e., € (1) -0 as 7— . In particu-
lar, if &, is finite, it is called conditionally stable, and if
8, = w0, then it is called globally stable. The globally stable
null solution is also called monotonically stable if d% (7)/
dr<0forall 7>0.

The stabilities defined above are based on the nonlinear-
ity of the system. For a perturbation with infinitesimal am-
plitude, however, we have the spectral problem of the linear-
ized system of Egs. (10). Assuming that the solutions of the

linearized system depend exponentially on 7as e”, where gis

acomplex number, we replace 3 /drby g. Provided that there
exist such numbers g for which the linearized system has
nontrivial solutions, the numbers g are called the eigenvalues
of the system. The linear stability of the null solution is then
defined in connection with the eigenvalues g as follows: The
null solution is called linearly stable if there are no eigenval-
ues such that Re ¢ > 0; marginally stable if there is at least
one eigenvalue with Re g = 0 and all the other eigenvalues
have Re ¢g<0; and unstable if at least one eigenvalue has
Reg>0.

Before examining the stability properties, we specify the
boundary conditions of Egs. (10) more precisely. In the co-
ordinate system (X,j,2), since X = 0 is taken to be a rational
surface, the particular mean field line we consider on this
surface comes back to its original position after a finite
length Z = L,. Thus we impose the following boundary con-
ditions:

D ¢,8,6,4,p,%T=0 at|x|=35,,

(1) @,4A,6,4,p,v, and T and their j derivatives
are periodic with period 28, in j,

and

(II1) A, ¢,4,p,v,and T

are periodic with period L, in Z.

Here, 8,, 8,, and L, are the prescribed positive values such
that §¢6, €a,8,=~6,and L,/a>0(1), where & is the small
scale parameter introduced in Sec. III and a is the plasma
minor radius. In the linear theory in Ref. 7, 8, /8 is taken to
be 0, in which case the asymptotic behavior of the linear
solution at large |X| (i.e., || > &) takes an exponentially de-
caying form. We presume from this linear asymptotic analy-
sis that the solutions of the nonlinear system (10) are essen-
tially independent of the choice of 8, and decay rapidly as|X|
becomes large, as long as §,78 is taken to be large enough.
(As pointed out in Sec. VI, this is found to be the case.) The
finiteness of 8, , however, makes the mathematical treatment
of the system easier. For a mathematical discussion of these
boundary conditions, the readers are referred to Appendix B
of Ref. 17.
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In Sec. V, we discuss the case where the null solution of
the system (10) is linearly unstable. The following proposi-
tion asserts that D<O is a sufficient condition for linear sta-
bility. In other words, the system may be linearly unstable
only when D> 0.

Proposition 1: Suppose R, M, and y are all positive con-
stants. If DO, then Re ¢ <0.

Proof: The linearized equations of the system (10) are

~ 34 _

q =—£+R 'A A4, (Bla)
-~ . O0AA4 ap ~

A =—— — £ 4 MA2P, Blb
gA, ¢ 90 @ + 1o ( )
gp= —DZE 4 yAp (Blc)

Here, we allow A,¢,p,and g to take complex values. Adding
up A A XEq. (Bla)* and ¢”XEq (B1b), and taking the
( ) average of the resulting equation, we obtain

*<IVA|>+q<|vl¢|>—( ‘9¢) R-EAD
— M (&3P (B2)

Here, * denotes the complex conjugate. Similarly, by multi-
plying Eq. (Blc)* by p and taking the { ) average, we have

*{ |52} — =5 3«3* v 52
¢*{|p|*Y = —Dp P —x{IV.B").
If D = 0, then the real part of Eq. (B3) becomes
(Re@){[pI*) = — x|V
If (|V,p|?) #0, then Re g < 0. If (|V  p|?) = 0, then pis equal
to 0 almost everywhere because of the boundary conditions
and the real part of Eq. (B2) becomes

(Req) ({|V.A4 ) + (IV.4I"))
= —R —-1<|le |2)
— M (8,91
Therefore, Re g is negative for any nontrivial solutions. If
D <0, then eliminating the term (pd¢*/dy) from Egs. (B2)

and (B3) and taking the real part of the resulting equation
yields

— (Re @) [{|[V,4 >y + (|V,8|>) — (1/D){|B|?) ]

=R (R AP+ M{A PP — (/DY 5.
(B4)

(B3)

Therefore, for the nontrivial solutions of the system (B1),
we have Re ¢ <0.

(QED.)

We now turn to the nonlinear modes. In Sec. IV, we
discuss some properties of the solutions that satisfy the con-
dition that the time averages of d{(|V,4|%)/dr,
d(|V,$|>)/dr, and d{|p|*)/dr vanish. The saturated
modes and stationary turbulence are “nontrivial” examples
of such solutions: {|V, 4 |2), (|V,4|?), and (|5|?) are bound-
ed in time (so that d# (7)/dr = 0), but none of them van-
ishat 7— + oo. However, this kind of solution may not exist
for a certain range of parameters of R, M, y, and D. In fact,
the following proposition asserts that if the heat conductivity
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y is taken to be O, then there is no such saturated mode nor
stationary turbulence; the solutions of the system (10) with
x = O either keep growing or decay to a trivial state.

Proposition 2: Suppose R and M are positive constants,
v=0, and D #0. If £(7) is bounded in time 7, then
(V.4 >, {|V,4[?),and (pdd/dyy »0as 7> + 0. In other
words, the condition that y >0 is essential in order for
Egs.(10) to have nontrivial saturated modes or stationary
turbulence solutions.

Proof: Before proving this proposition, we recall that
{pA¢/dy) is proportional to the anomalous heat flux. There-
fore, this proposition asserts that if y =0 and & (7) is
bounded, then the time average of the anomalous heat flux is
zero and the functions 4 and t} decay to zero almost every-
where. We also point out that it is possible to construct a
solution p approaching a nonzero (almost arbitrary) func-
tion as 7— «, which indicates that the assumption that
x = 0 violates the uniqueness'’ of the solutions of this sys-
tem. Therefore, the condition that y > 0 is essential in order
for Egs. (10) to be a valid model of a physical system.

From now on, we again consider real-valued solutions
4, ¢, and p of the system (10). From the assumption, the
time averages of d {|V, 4 {2)/dr, d (|V,8|*)/dr, and d (|p|/
dr vanish, and, therefore, we have Egs. (12) and (15). If

=0, then we obtain zp&;i/ay) ={4,4») =14,
#|*) = 0.Since (|A A |2) and (|A, 8|?) are positive functions
of 7, therefore, (|A 4 |2), (|A, ¢|2)—»O as7— + .

In order to prove that {|V, 4 |?) and (|V,$|2) -0, we
will use the Poincare inequality®: For any real-valued func-
tion f (with a proper differentiability condition) satisfying
the boundary conditions (1), (II), and (III), there exists a
positive constant C such that

(V. f1H<CLA f1P).
Here we note that the constant Cis finite since the domain of
fis finite. Applying the Poincare inequality to A and ¢ and
using the fact that (|A 4 |*) and (|A,d|*y>0as 7— o0, We
obtain (|V, 4 |?) and (|V,$|?) -0as 7— + «.Toprovethat
(pdé/3dy) -0 as - + o, we use Schwartz’s inequality

(o 2)] <o (| 22 )< oy @i

Since (|p|*) is assumed to be bounded in time 7, (pod/
8y) —»0as7— + .

(B5)

(QE.D.)

From Propositions 1 and 2, it is found that positive val-
ues of R, M, y, and D are necessary to obtain saturated
modes or stationary turbulence solutions. In the following
theorem, we will show that, if the plasma is sufficiently vis-
cous or heat conductive, the null solution is still stable even
for some positive D.

Theorem 1: Suppose R, M, and y are all positive con-
stants. If either M or y is large enough, there is a positive
critical value D, of D such that for any D < D,, the null
solution is monotonically stable.

Proof Let H be the set of all real valued functions (with
sufficient smoothness'”) of %, , and 3 satisfying the bound-
ary conditions (I), (II), and (III). The solutions 4, &S, and p
of the system (10) are obviously some elements of H. For
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any element fin H, we have the following Poincare inequal-
ities as before: There exists a constant C such that

(fHKCV S and (V. fP<C B, [P

(B6)
By adding Eqgs. (11) and (16), we obtain
4 = —(1+D)( ""’) F(),
dr
where
F () = (BAP) + M (K3 + x(BiP).
Therefore,
d a (P3¢/r9y))
— & — 7 1 14D .
< 5(n) = m( + (14 0) L2
Let us define D, as
(_@‘7‘;‘/‘9”)5 L. (B7)
AdoeH F (1) 1+ D,

Since |{(p d¢/dy)/.F| is bounded from above, we have
D, > — 1. In fact, this boundedness is shown as follows. We
have

_(BIp/p) _
F(7) (M(|A1¢12> +X(|v11~7|2))2
From Schwartz’s inequality (B5) and Poincare’s inequal-
ities (B6) for p and V, ¢, the right-hand side of inequality
(B8) is less than
2 <WLI~’|2)(|81‘3|2) C?
(M (A %) + x|V, 2xM

It follows that the supreme value given by Eq. (B7) can be
less than 1 by taking either y or M tobe large enough. There-

fore, with such a choice of y and M, we obtain D, > 0.
Continuing our proof, we obtain from Eq. (B7)

—,37(7)(1— 1+D).
14D,

Let A =min(1 /R M,)() then, by using Poincare’s inequal-
ities (B6) for V A, v ¢ and p, we have

F()=A (ﬁ (BAP + M (B8 +X <mp|2>)

SACIR A + (A, 817 + (V.51

(B8)

di Z(1)< (B9)

>2AC - (7). (B10)
From inequalities (B9) and (B10), we obtain
4 gin< —%f(f)(l— 1+D),
dr C 1+ D,

or, by integrating, we obtain
# (1<% (0)exp{ — 2A/C)[1 — (1 + D)/(1 + D,)]7}.
Hence, if D < D, then the perturbation decays exponentially
with a decay constant proportional to the smallest dissipa-
tion constant A = min(1/R,M,y). (Q.E.D.)
Since |{ p 9¢/dy)/F | is bounded from above, there ex-
ists the least upper bound of |{ p 3¢/dy)/F|. Suppose Ay,
b0, and P, take the maximum value of — ( OB/ Ay F .
(We note that 4,, d,, and p, may not have enough smooth-
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ness but they can be approximated by functions in H as
“closely” as possible.'”) By choosing 4,, ¢, and p, as an
initial condition, we have, from Eq. (B7),

4 %0)= -7 (1~ 1+D).
dr 14+ D,

It follows that d% (0)/dr>0if D> D,. Therefore, the follow-
ing corollary holds.

Corollary: Under the condition of Theorem 1, define D,
by Eq. (B7). Then, D <D, is the necessary and sufficient
condition for monotonic stability.

We call this critical value D, the energy stability limit.
We also define the linear stability limit D, as the value that
makes the null solution of the system linearly marginally
stable. The following theorem gives the relationship between
the energy stability limit D, and the linear stability limit D, .

Theorem 2: Suppose R, M, and y are all positive con-
stants. Then D, <D, .

Proof: Adding up Eqs. (B2) and (B3) and taking the
real part of the resulting equation, we obtain

iy s
0=(1 +DL)Re<ﬁég;T> +R YA AP

+ M|, 8% + x <31,
where we used the condition that Reg=0 if D=D,.
Therefore, we have

1 — (b, 08,/ + B, 36,/3y)
1+D, RYAAP)+M (AP +x(V.5»
(B11)

Here, the subscripts 7 and i denote the real and imaginary
parts_of the quantity, respectively. Writing (|A iR
=(|A4,]) + (1AL ¢:1%) and (V81" =L(IV.5, 1%
+ (|V,5,|*) and applying to Eq. (B11) the inequality

2

314 a;
-2—'—< max|—1|,
2j=1bj 1<i, j<2 bj

where b; are positive, we obtain

L cqp_ =P Ip/y)
14D et M(|A,017) + x(|V.5I%)
- _ B 3/%)
AdpeH F (1)
=1/(14+D,).
It follows that D _<D; . (Q.E.D.)

To conclude this appendix, it is found that we need posi-
tive parameters of D as well as R, y, M in the system (10) in

1430 Phys. Fluids B, Vol. 1, No. 7, July 1989

order to find the solutions that grow from small initial values
and eventually saturate with finite amplitude or lead to sta-
tionary turbulence. It is also found that, with a proper choice
of the viscosity M and the heat conductivity y, there exists a
positive energy stability limit D,, which is smaller than or
equal to the linear stability limit D, . This shows that, if the
plasma is sufficiently viscous or heat conductive, the null
solution is stable (to any perturbation)‘even for some posi-
tive D. Since D is the only free energy source of the system, if
D < D,, then all the energy fed to the modes by the mean
pressure gradient dissipates through the collisional diffu-
sion, and not through convection. When D> D, , then even
an infinitesimal perturbation given to the null solution starts
to grow and the free energy produced from the mean pres-
sure gradient is transferred by convective motion as well as
the collisional diffusion. We thus see some similarity
between the resistive g modes of the system (10) and the
Bénard convection in fluid dynamics. Here we note that the
parameter D corresponds to the Rayleigh number of the
Bénard convection.

'A. Bhattacharjee and E. Hameiri, Phys. Rev. Lett. 57, 206 (1986).

?J. B. Taylor, Rev. Mod. Phys. 58, 741 (1986).

3). B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).

“H. R. Strauss, Phys. Fluids 27, 2580 (1984).

SE. Hameiri and A. Bhattacharjee, Phys. Fluids 30, 1743 (1987).

SE. Hameiri, in Current Trends in Turbulence Research, edited by H. Bran-
over, M. Mond, and Y. Unger, Progress in Astronautics and Aeronautics
Series (AIAA, Washington, DC, 1988), Vol. 112, p. 176.

"B. Coppi, J. M. Green, and J. L. Johnson, Nucl. Fusion 6, 101 (1966).

*D. D. Joseph, Stability of Fluid Motion (Springer, New York, 1976), Vols.
Iand II.

°S. 1. Braginskii, in Review of Plasma Physics, edited by M. A. Leontovich
(Consultants Bureau, New York, 1965), Vol. 1, p. 205.

'°H. Grad and J. Hogan, Phys. Rev. Lett. 24, 1377 (1970).

"B. R. Suydam, in Proceedings of the Second International Conference on
Peaceful Uses of Atomic Energy (United Nations, Geneva, 1985), Vol. 31,
p- 157.

12A. Bhattacharjee and E. Hameiri, Phys. Fluids 31, 1153 (1988).

BH. K. Moffatt, Magnetic Field Generation in Electrically Conducting
Fluids (Cambridge U. P., London, 1978).

1A, Bhattacharjee, C. K. Chu, Y. C. Kwok, E. Hameiri, H. R. Strauss, and
A. H. Boozer, in Plasma Physics and Controlled Nuclear Fusion Research
1986, Proceedings of the 11th International Conference, Kyoto (IAEA,
Vienna, 1987), Vol. 2, p. 711.

SW. Park, D. A. Monticello, R. B. White, and A. M. M. Todd, Bull. Am.
Phys. Soc. 23, 779 (1978).

I5H. R. Strauss, W. Park, D. A. Monticello, R. B.White, S. C. Jardin, M. S.
Chance, A. M. M. Todd, and A. H. Glasser, Nucl. Fusion 20, 628 (1980).

'7S. Hamaguchi, Ph.D. thesis, New York University, 1988.

8B, A. Carreras, L. Garcia, and P. H. Diamond, Phys. Fluids 30, 1388
(1987).

YFor example, see D. Ruelle, Bull. Am. Math. Soc. 5, 29 (1981).

°F, John, Partial Differential Equations (Springer, New York, 1981},
4th ed.

Satoshi Hamaguchi 1430



