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Summary

Random gene trapping is the application of insertional mutagenesis techniques that

are conventionally used to inactivate protein-coding genes in mouse embryonic stem

(ES) cells. Transcriptionally silent genes are not effectively targeted by conventional

random gene trapping techniques, thus we herein developed an unbiased poly

(A) trap (UPATrap) method using a Tol2 transposon, which preferentially integrated

into active genes rather than silent genes in ES cells. To achieve efficient trapping at

transcriptionally silent genes using random insertional mutagenesis in ES cells, we

generated a new diphtheria toxin (DT)-mediated trapping vector, DTrap that removed

cells, through the expression of DT that was induced by the promoter activity of the

trapped genes, and selected trapped clones using the neomycin-resistance gene of

the vector. We found that a double-DT, the dDT vector, dominantly induced the dis-

ruption of silent genes, but not active genes, and showed more stable integration in

ES cells than the UPATrap vector. The dDT vector disrupted differentiated cell line-

age genes, which were silent in ES cells, and labeled trapped clone cells by the

expression of EGFP upon differentiation. Thus, the dDT vector provides a systematic

approach to disrupt silent genes and examine the cellular functions of trapped genes

in the differentiation of target cells and development.
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1 | INTRODUCTION

Mutagenesis in cells or animals is one of the genetic methodologies

employed to elucidate the molecular functions of genes regulating bio-

logical processes. Random gene trapping is the application of insertional

mutagenesis techniques that are conventionally used to inactivate

protein-coding genes in mouse embryonic stem (ES) cells (Stanford,

Cohn, & Cordes, 2001). Gene trapping was utilized in the knockout

mouse project (KOMP) because it was easier and cheaper than classical

gene knockout when the number of target genes was large (Austin

et al., 2004). The aim of random gene trapping is to disrupt target genes

by two major methods, promoter trapping and poly (A) trapping. While

a promoter-trapping vector harboring a promoter-less selection cas-

sette generally disrupts transcriptionally active genes, but does not

typically capture silent genes in target cells (Gossler, Joyner, Rossant, &

Skarnes, 1989), a poly (A)-trapping vector drives and stabilizes

selection-cassette mRNA by adding a poly (A) signal driven from the

region of the trapped gene, regardless of the transcription status of

the trapped gene in cells (Ishida & Leder, 1999; Niwa et al., 1993). We

generated an original poly (A)-trapping retrovirus vector of UPATrap,

which suppressed the inappropriate activation of the nonsense-

mediated mRNA decay (NMD) pathway and targeted both transcrip-

tionally active and silent genes in the unbiased integration of the virus

vector in genomes (Shigeoka, Kawaichi, & Ishida, 2005). To improve the

stability and integrity of the integrated vector in cells, we utilized a cut

and paste-type DNA transposon, Tol2 in the backbone of the vector

(Kawakami, Shima, & Kawakami, 2000; Koga, Suzuki, Inagaki, Bessho, &

Hori, 1996; Urasaki, Morvan, & Kawakami, 2006), and successfully

achieved the conditional disruption of the gene in cells via this unbiased

poly (A)-trapping vector (Mayasari et al., 2012).

Moloney murine leukemia virus (MMLV) vectors were previously

shown to preferentially integrate into transcriptionally active genes

(Scherdin, Rhodes, & Breindl, 1990; Wu, Li, Crise, & Burgess, 2003),

and we also demonstrated that the UPATrap retrovirus vector fre-

quently integrated into active genes, but only approximately 10% of

all trapped genes, which were transcriptionally silent in murine ES

cells (Mayasari et al., 2012). By using the Tol2-driven UPATrap vector,

we achieved a higher trapping frequency in silent genes of approxi-

mately 25% of all trapped genes, which was markedly smaller than

the expected trapping frequency of 45% in silent genes in ES cells

(Mayasari et al., 2012), indicating the preferential integration of the

vector in active genes.

To efficiently target silent genes in cells and examine the cellular

functions of disrupted genes upon differentiation using the Tol2-driven

UPATrap vector, we herein adopted a negative selection strategy, by

which diphtheria toxin (DT) produced in Corynebacterium diphtheria

conferred strong cytotoxicity by inactivating the eukaryotic polypeptide

elongation factor, resulting in the inhibition of protein synthesis (Kohno

et al., 1986; Kohno & Uchida, 1987). We generated a new DT-mediated

Tol2-driven trapping vector, DTrap, and found that a derivative DTrap

vector of double DT containing the dDT vector dominantly induced the

disruption of silent genes, but not active genes, and showed more sta-

ble integration in ES cells than the original UPATrap vector. We also

demonstrated that the dDT vector disrupted differentiated cell line-

age genes, which were silent in ES cells, and labeled the trapped

clone by the expression of EGFP upon differentiation.

2 | MATERIALS AND METHODS

2.1 | Gene trapping vectors

A wild-type DT-A cassette was cloned into the ClaI-BamHI site of

a Tol2 transposon CTP2F vector to create a DTrap-CTP2F vector.

A gene-terminator cassette containing a promoter-less EGFP was

inverted into the DTrap-CTP2F vector to generate a sDT vector con-

taining a single DT cassette. An inverted second DT cassette was

inserted downstream of the NEO cassette to create a double DT-

containing dDT vector. A weaker toxin DT176 vector, the point muta-

tion of which substituted Gly to Asp at residue 128 of the DT protein,

was cloned by replacing the 0.3-kbp BstZ17I-BlpI fragment of the DT

vector with the corresponding fragment of the pCRM176 vector

(Uchida, Pappenheimer Jr., & Greany, 1973). These DTrap vectors con-

tained inverted pairs of the FRT and F3 sequences for FLPo-mediated

recombination and an identification cassette containing either of fifteen

different tag sequences (#01 to #15). The sequences of the sDT, dDT,

sDT176, and dDT176 vectors harboring the #01 tag were deposited

under the GenBank/EMBL/DDBJ accession numbers LC085658,

LC085659, LC085660, and LC085661.

2.2 | Vector plasmid transfection

A total of 2.5 × 105 ES cells were transfected with 1.25 μg of pCAGGS-

TP, which codes the Tol2 transposase (Kawakami et al., 2000), and

0.125 μg of each mixture of differentially-tagged sDT, dDT, sDT176, or

dDT176 using the TransFast reagent (Promega). After the treatment

with 200 μg/ml of G418 (Nacalai) for 10–13 days (Matsuda et al., 2004;

Shigeoka et al., 2005), neomycin-resistant colonies were isolated and

expanded in an in vitro culture. Genomic DNA and total RNA were

extracted from the expanded clones.

2.3 | ES cell culture and generation of
chimeric mice

V6.4 and KY1.1 ES cells were cultured on mitomycin C-treated SNL-

STO cells, which were infected using a retrovirus vector stably
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expressing murine leukemia inhibitory factor (LIF) and the neomycin-

resistance gene product (McMahon & Bradley, 1990). A blastocyst

microinjection was used to produce chimeric mice. All experiments

using these mice were performed in accordance with institutional

guidelines for the use of laboratory animals and approved by the

Review Board for Animal Experiments of Nara Institute of Science

and Technology University.

2.4 | In vitro differentiation of ES cells

To induce the differentiation of adipocytes, ES cells were cultivated in

aggregates termed embryo bodies (EBs) and hanging drops containing

1,000 ES cells in 20 μl of cultivation medium were maintained for

2 days on the lids of bacteriological dishes. EBs were maintained for

3 days in medium supplemented with 1 μM all-trans retinoic acid

(Sigma) and then treated in differentiation medium with 100 nM

insulin (Sigma), 2 nM triiodothyronine (Sigma), 0.1 mM 3-Iaobutyl-

1-methylxanthine (Sigma), and 10 nM dexamethasone (Wako) (Dani

et al., 1997; Rubin, Hirsch, Fung, & Rosen, 1978).

2.5 | FLPo-mediated recombination in ES cells

ES cell clones were transfected with a pCAGGS-FLPo-IRES-Puro

resistant-poly (A) vector, and treated with 1 μg/ml puromycin for 48 hr

for selection. Single colonies were isolated using a limiting dilution

method and expanded for a 6–8-day culture on a layer of mitomycin

C-treated SNL-STO cells. A total of 24–36 FLPo-generated daughter

sub-clones were selected to confirm the efficacy of FLPo-mediated

recombination by genomic PCR. We amplified between the intra-vector

and intragenic regions using the primer sequences shown in Table S1.

2.6 | Assessment of the number and direction of
vector integration and integrated vector integrity

Genomic DNA was extracted from ES cell clones and amplified by

PCR using Phusion Hot Start High-Fidelity DNA polymerase (Thermo

Scientific). Primers for PCR and sequencing were shown in Table S1.

Genome-integrated vector integrity was examined by PCR using

KOD-FX (TOYOBO) polymerase. Five regions of the vectors were

amplified using five distinct primer sets (Table S1).

2.7 | Splinkerette genome PCR

To identify the integration sites of the transposon, genomic DNA iso-

lated from ES cell clones was digested with HaeIII, TaqI, or MspI (New

England BioLabs). After the inactivation of restriction enzymes, digested

DNA was ligated with compatible splinkerette-type linkers for HaeIII-

digested DNA or TaqI- and MspI-digested DNA using T4 DNA ligase

(Takara). Two rounds of PCR using KOD-FX polymerase (TOYOBO) and

distinct primer sets were performed on ligated DNA and direct sequenc-

ing was then conducted to detect the vector-integrated region. The

sequences of the linkers and primers are shown in Table S1.

2.8 | Gene expression dataset analysis

The expression levels of genes in ES cells were assessed using NCBI

dbEST libraries (#1882, #2512, #10023, #14556, #15703, #17907,

and #21037) (Mayasari et al., 2012) and RNA-sequencing data in

V6.5 ES cells (GSM521650) (Guttman et al., 2010). Sequence reads

were mapped to the mouse Refseq gene using the Burrows-Wheeler

Alignment tool (BWA) with default settings (Li & Durbin, 2009)

and Reads Per Kilobase of exon per million (RPKM) values were

calculated using Artemis (Carver, Harris, Berriman, Parkhill, &

McQuillan, 2012).

2.9 | Quantitative RT-PCR

Total RNA was isolated using the RNeasy Plus Mini kit (Qiagen) and

cDNA was generated by oligo dT or random hexamers using the

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen).

Quantitative RT-PCR (qRT-PCR) was performed using gene-specific

primers and the Thunderbird qPCR Mix (TOYOBO) in a LightCycler

96 System (Roche). Primer sequences are shown in Table S1.

2.10 | Oil red O staining

Cells were washed with PBS and fixed with 10% paraformaldehyde at

room temperature for 10 min, and then washed twice with PBS

followed by washing with 60% isopropyl-alcohol for 1 min. Fixed cells

were stained with 60% Oil Red O solution from a stock of 150 mg Oil

Red O (Sigma) in 50 ml isopropyl-alcohol for 20 min.

3 | RESULTS

3.1 | Generation of DTrap vectors targeting
transcriptionally silent genes

To disrupt genes that are transcriptionally silent in ES cells, we initially

generated new DTrap vectors designated for poly (A) trapping and

subsequent negative selection (e.g., sDT, dDT, sDT176, and dDT176

vectors) (Figure 1a,b). In these vectors, the DT cassette consists of an

efficient splice-acceptor sequence (Ishida & Leder, 1999), and an

IRES-driven DT coding region for wild-type DT (sDT) or attenuated

DT176 (sDT176), followed by poly (A)-addition signals (Figure 1a). We

also generated the double DT cassette-containing vectors, dDT and

dDT176, which disrupt target genes regardless of the trapping orien-

tation of vectors (Figure 1b). The attenuated DT-A gene (tox 176)

contains a G-to-A transition at nucleotide 383 that results in the
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replacement of glycine at position 128 by aspartic acid (Maxwell,

Maxwell, & Glode, 1987). The enzymatic activity of attenuated DT-A

was 30- to 100-fold smaller than that of wild-type DT-A, as assessed

in human 293 cells (Maxwell et al., 1987; Yamaizumi, Mekada,

Uchida, & Okada, 1978). The second portion of the gene-terminator

cassette consists of an efficient splice acceptor sequence, IRES-driven

enhanced green fluorescent protein (EGFP) cDNA, and four copies of

the poly (A)-addition signals. To completely terminate pre-mRNA

F IGURE 1 Generation of the DT-mediated UPATrap vector. (a) A single DT (sDT) vector harboring wild-type DT or an attenuated tox-176
(DT176) cassette (gray box) with 15 differential tag sequences (blue box). (b) A double DT (dDT) vector harboring two wild-type DT or two
attenuated tox-176 (DT176) cassettes (gray boxes) with 15 differential tag sequences (blue box). (c) DT vectors containing the diphtheria toxin that
induced the death of cells integrated at an active gene in the forward orientation. (d) DT vectors selecting cells in which the vector is integrated at a
silent gene by lacking the induction of toxins, but expressing the neomycin-resistant gene (red box). (e) Induction of FLPo-mediated homologous
recombination at the DT vector-integrated region through the Flp recombinase-target signals of FRT (blue teardrops) and F3 (opened teardrops).
Orange triangles and arrows show the PCR primers used to confirm recombination. (a–e) Tn, SA, SD, and SPL stand for the terminal essential
sequences (L200 and R175) of the Tol2 transposon, splice-acceptor sequence of the intron 2-modified exon 3 of the human BCL-2 gene, splice
donor sequence of the modified exon 8-intron 8 of the murine Hprt gene, and synthetic nucleotide sequence amplified by splinkerette genome PCR,
respectively. Black closed boxes and lines represent the exons of a trapped gene and the exon and intron portions of pre-mRNA
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transcription, the gene-terminator cassette was constructed in an

inverted configuration in these vectors (Figure 1a,b). The third portion

is a constitutively active promotor-driven Neomycin-resistant gene

(NEO) followed by a poly (A)-trapping cassette, which abrogates the

activation of nonsense-mediated mRNA decay (Figure 1c) (Mayasari

et al., 2012; Shigeoka et al., 2005). When these vectors were inte-

grated inside an active gene in the correct orientation, the endoge-

nous promoter activity of the trapped gene drove the expression of

DT (or DT176), which resulted in the death of the targeted cell

(Figure 1c). In contrast, the vectors integrated in a transcriptionally

silent gene did not initiate the expression of DT (or DT176), but acti-

vated the expression of NEO, which led to the selection of silent

gene-trapping cells (Figure 1d). Furthermore, single 50-oriented DT

cassette vectors, such as sDT and sDT176, were integrated in an

active gene in the inverted orientation, resulting in the failed selection

of targeted cells, whereas double DT cassette-vectors selected the

targeted cells via the trapping gene regardless of the orientation of

the vector upon integration (Figure S1).

To trace the disruption of genes in cells after the selection

of individual clones, we introduced the target signals of Flp rec-

ombinase (FRT and F3) at four sites in the vectors (Figure 1a,b).

When the transient expression of Flp recombinase induced FlEx-

type recombination within a genome-integrated vector region in the

cell, the 50 DT cassette, Neo-poly (A)-trapping cassette, and second

DT cassette were removed from the genome in the cell, resulting

in the inverted recombination of the gene-terminator cassette

(Figure 1e). Thus, we successfully generated new DTrap vectors,

which were designated to efficiently trap silent genes and select

trapped clones.

3.2 | Weaker toxin DT176 vectors efficiently
trapped at a single gene-coding region in ES cells

To assess the trapping efficacy and integrating accuracy of DTrap vec-

tors, we initially transduced a mixture of differentially-tagged vectors,

which harbor 15 unique sequences in the last 30 region (Figure 1a,b),

into ES cells. We did not observe any ES cell clone containing more

than three transposons in PCR and direct sequencing experiments,

while the dDT176 vector showed larger single-trapping clones than

the sDT176 vector (80.8% versus 67.4%) (Figure 2a). Among the

15 differentially tagged vectors in sDT176- and dDT176-transfected

ES cells, we found a weak bias in a few subsets of the sDT176 vector,

whereas all of the other vectors were similarly transduced in ES cells

after the selection of clones (Figure 2b). To evaluate the efficacy of

the selection of clones of DTrap vectors, we performed gene trapping

F IGURE 2 Weaker toxin DT176 vectors efficiently trapped at a single region in stem cells. (a) Number of ES cell clones harboring one to three
integration site(s) of the DT176 vector. (b) Similar integration frequency of DT176 vectors among 15 differentially-tagged clones. (c) Numbers of ES
cell colonies obtained by transfecting an equal amount of 10 ng DNA of the vector plasmid and a non-DT TMat vector, the structure of which was
shown at the bottom. (d,e) Frequencies of the integration regions of (d) and integration orientations of (e) the vectors assessed by performing
splinkerette genome PCR at the SPL region shown in Figure 1a,b. (f) Distribution of DT176 vector integration regions between the first intron,
50 half exons and introns, 30 half exons and introns, and the last intron in trapped genes showing a forward-integration orientation
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in ES cells using the DTrap vector and UPATrap vector, which does

not contain the DT domain (Figure 2c) (Mayasari et al., 2012). After

the selection of G418-resistant ES cell colonies, we found that the

number of colonies transduced with the sDT or dDT vector was 20-

to 50-fold smaller than that with the UPATrap vector lacking DT

(Figure 2c). The weaker toxin vectors of sDT176 and dDT176 pro-

duced a larger number of ES cell colonies than the wild-type DT

counterpart vectors (Figure 2c), indicating that the weaker toxin,

DT176 helped to trap genes and select clones, while wild-type DT

was too toxic for ES cells to select clones.

Since the number of ES cell clones produced using DT vectors

was very small, we selected the sDT176 and dDT176 vectors

and performed further gene-trapping experiments. We obtained

357, 682, and 396 ES cell clones for trapping using the sDT176,

dDT176, and non-DT UPATrap vectors, respectively, and found that

the coding region had been trapped in 59.1, 65.1, and 72.9% of these

clones with the sDT176, dDT176, and non-DT vectors, respectively

(Figure 2d). The list of genes trapped by the DT, DT176, and

UPATrap vectors was shown in Tables S2–S6. The other clones

showed the integration of vectors at non-coding regions. Further-

more, the frequencies of integration into the sense (forward) strand

at the coding region were higher in the dDT176 and non-DT vectors,

while it was smaller for the sDT176 vector (Figure 2e), presumably

due to the inappropriate selection of ES cells, the coding region

of which was reversely trapped by the sDT176 vector, which cannot

activate the expression of toxin proteins in inverse integration

(Figure S1). While a removable exon trap (RET) vector showed a

strong integration site bias toward the last intron of genes (Shigeoka

et al., 2005), we found that UPATrap-derivative DT176 vectors

showed similar integration in the regions of trapped genes between

the first intron, gene body, and last intron (Figure 2f). This result pro-

vides support for the second portion of the gene-terminator cassette

functioning in the termination of pre-mRNA transcription to suppress

the inappropriate activation of the NMD pathway, resulting in similar

integration within a gene.

3.3 | The double weaker toxin DT176 vector
dominantly trapped silent genes in ES cells

To clarify whether the DT176 vector trapped transcriptionally silent

genes in undifferentiated ES cells, we assessed the expression levels

of trapped genes using the NCBI data sets of mRNA-driven EST librar-

ies isolated from multiple murine ES cell datasets and an RNA-

sequencing dataset from v6.5 murine ES cells (Guttman et al., 2010).

We defined a transcriptionally silent gene by the absence of the

corresponding EST and having smaller than 3 Reads Per Kilobase of

exon per million (RPKM), which were defined in these murine ES cells,

and found that the dDT176 vector trapped more genes showing silent

and/or weak expression in ES cells than the non-DT UPATrap vector

(69.6% versus 37.9% of trapped genes integrated in their forward ori-

entation) (Figure 3a,b). In addition, dDT176-trapped ES cells showed

significantly smaller RPKM of trapped genes than UPATrap-trapped

ES cells (4.482 versus 11.040, p=0.0006) (Figure 3c). We then con-

firmed the expression levels of these silent genes in dDT176- and

UPATrap-trapped ES cells (e.g., v6.4 and KY1.1 cell lines) by per-

forming qRT-PCR on the representative genes (34 genes in UPATrap

and 44 genes in DT176). In the silent genes examined, a correlation

was observed between RPKM and qRT-PCR values in both vector-

trapped cells (Figure 3d). dDT176-trapped cells showed significantly

smaller qRT-PCR values for these genes than UPATrap-trapped cells

(Figure 3e), indicating that the dDT176 vector dominantly trapped

silent genes in ES cells. While five dDT176 trapped clones showed

higher RPKM of the gene in gene expression dataset analysis

(Figure 3c), among these clones, we confirmed the intra-vector dele-

tions around the first DT cassette in 3 out of 5 clones by genomic

PCR (Table S7). To elucidate the biological functions of trapped genes

in ES cells, we performed a gene ontology (GO) analysis and found

that dDT176 vector-trapped cells showed the enrichment of genes

regulating non-ES and tissue-specific functions (e.g., neurons, blood

cells, and muscle), which were not positively enriched in non-DT

vector-trapped cells (Figure 3f), thereby supporting the ability of the

DT176 vector to disrupt silent genes in ES cells, which are activated

in the differentiation of ES cells and development.

3.4 | The DT176 vector deleted a gene in the
differentiated cell lineage and labeled mutated cells

Due to the efficient trapping of the DT176 vector at silent genes in ES

cells, we examined intra-vector integrity in genomes by performing

genomic PCR on five regions of the vector prior to the induction of

FLPo recombination (Figure 4a). The results obtained showed that

21 out of 24 dDT176-trapped clones exhibited intra-vector integrity,

while 7 out of 8 dDT-trapped clones markedly lost most of the vector

regions in cells, with only one out of 8 dDT-trapped clones showing

integrity (Figure 4b and Table S7). Based on the high stability of the

integrated DT176-vector region in these clones, we performed FLPo-

mediated recombination on 13 DT-trapped ES clones, and found that

they exhibited higher efficacies of recombination and the subsequent

deletion of the vector region (average 73.2% from 22 to 100%)

(Table S7). In order to perform targeted cell lineage gene ablation and

labeling, we selected two DTrap vector-trapped clones (e.g., TM26-004

and TM28-026) and assessed the cellular functions of differentiated

cells after gene deletion. The TM26-004 clone showed the integration

of the DT vector in the gamma-crystallin E (Cryge) gene located at

Chromosome 1 harboring the gamma-crystallin gene cluster region

(Figure 4c), while the TM 28-026 clone showed the integration of the

DT176 vector in the Perilipin-1 gene. Gamma crystallins are predomi-

nant proteins in the eye lens (Vendra, Khan, Chandani, Muniyandi, &

Balasubramanian, 2016; Wistow, 2012), and genetic mutations in CRYG

have been shown to induce cataracts in patients (Klopp, Loster, &

Graw, 2001; Nag et al., 2007). We generated chimeric mice using the

TM26-004-driven FLPo-treated clone, and bred mice to produce F1

mice showing EGFP-labeled lens (Figure 4e). In these mice, we did not

find an impaired phenotype in lens that lacked the Cryg gene
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F IGURE 3 The double weaker toxin DT176 vector dominantly trapped silent genes in ES cells. (a,b) Expression levels of trapped genes
defined by NCBI EST datasets and RNA-sequencing data in v6.5 ES cells showing silent genes occupied in 37.9% of trapped genes in the non-DT
vector (a) and in 69.6% in the dDT176 vector (b). (c) Expression levels of vector-trapped genes defined by the RNA-sequencing dataset in v6.5 ES
cells. Bars show the mean ± SEM and p-values analyzed by the Student's t test. (d) Correlation in the expression levels of selected genes trapped
by the vectors between those in the RNA-sequencing dataset and those examined by quantitative RT-PCR in ES cells. (e) Expression levels of
selected silent genes, which were defined by the published datasets, examined by quantitative RT-PCR in dDT176 vector- and non-DT vector-
integrated ES cells. Bars show the mean ± SEM and p-values analyzed by the Student's t test. (f) Gene ontology (GO) analysis for trapped genes
by the DT176 vector or non-DT vector
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F IGURE 4 The DT176 vector deleted a gene in the differentiated cell lineage and labeled mutated cells. (a) Regions for evaluating integrated
vector integrity in cells examined by genomic PCR. (b) Amplified PCR bands isolated from ES cell clones trapped with vectors showing the efficient
and stable integration of the dDT176 vector. (c) Diagram of the Gamma-crystallin cluster in mouse chromosome 1. (d) Diagram of dDT vector
integration in and FLPo recombination of Gamma-crystallin E (Cryge) in the TM26-004 clone. Tag sequence boxes were omitted in (d,g).
(e) Representative picture of a F1 mouse generated from the TM26-004-driven FLPo-treated clone showing EGFP-expressing green eye. (f) Lens
sections of a wild-type mouse and F1 mouse from the TM26-004 clone with FLPo-induced recombination. (g) Diagram of dDT176 vector
integration in and FLPo recombination of Perilipin-1 in the TM28-026 clone. (h) Representative pictures of adipocytes examined by Oil red O
staining induced from the TM28-026 clone with or without FLPo-induced recombination and control ES cells upon in vitro adipocyte differentiation
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accompanied with the expression of EGFP (Figure 4f), presumably due

to the compensatory function of the other crystallin family genes in

lens. Perilipins function to coat the surface of lipid droplets in adipo-

cytes and regulate lipolysis (Sztalryd & Brasaemle, 2017). Perilipin

knockout mice showed reduced amounts of adipose tissue and acti-

vated lipolysis in their adipocytes (Arimura, Horiba, Imagawa, Shimizu, &

Sato, 2004). We induced the adipocyte differentiation of the

TM28-026 and FLPo-induced EGFP clones under in vitro conditions

(Figure 4g). The TM28-026 ES clone did not produce adipocytes due to

the induction of the expression of toxins upon the activation of perilipin

expression in differentiation (Figure 4h). FLPo-induced EGFP clones lac-

king the DT176 toxin showed the weaker differentiation of adipocytes,

as examined by Oil Red staining, accompanied by EGFP expression

than control cells, which showed the abundant accumulation of adipo-

cytes under this experimental setting (Figure 4h), indicating the success-

ful deletion of the perilipin gene in the adipocyte lineage labeled

by EGFP.

4 | DISCUSSION

Although advances have been achieved in mutagenesis-based gene

trapping methodologies, many transcriptionally silent genes have

yet to be targeted because of the difficulties associated with

targeting silent genes and selecting properly trapped clones (Mayasari

et al., 2012). In the last 5 years, the CRISPR-Cas9 system has been uti-

lized for mutagenesis and has become more popular than conven-

tional gene trapping because of the convenience of deleting and/or

editing genomic regions including genes and the higher efficiency

of targeting (Horvath & Barrangou, 2010; Terns & Terns, 2011;

Wiedenheft, Sternberg, & Doudna, 2012). However, CRISPR-Cas9

frequently induces off-target mutagenesis regardless of the distance

from the target region (Fu et al., 2013), and does not effectively

detect off-target mutations due to the editing of CRISPR-Cas9 unless

the whole-genome sequencing of a cell is performed. In the present

study, we developed a novel Tol2 transposon-based DTrap vector that

dominantly integrated into a single genetic region in the genome,

while maintaining the high integrity of the integrated region, but also

efficiently selected the silent gene-trapped clone due to weaker and

double-oriented DT cassettes. In addition, DTrap vector integrated into

the unidentified non-coding regions with relatively high frequency, which

may include long noncoding RNA. Since we also successfully traced the

cell lineage upon the deletion of genes in development for eye lens, adi-

pocytes and other lineages (data not shown) under in vitro and in vivo

settings, the dDT176 vector provides a pure forward genetic approach in

mammalian stem cells, which will provide a more detailed understanding

of the physiological roles of coding- and non-coding genetic regions

under in vitro and in vivo conditions in a high throughput and genome-

wide screening manner.

Induced pluripotent stem (iPS) cells have been utilized to create

human cancer models that provide opportunities for basic and transla-

tional cancer research (Papapetrou, 2016). Since patient-derived

iPS cells capture genetic and epigenetic alterations in cancer cells

(Ohnishi et al., 2014), DTrap may be applied to the identification of

cooperative genetic regions/mutations via genome-wide molecular

analyses and genotype–phenotype studies upon the differentiation of

iPS cells into cancer cells harboring the dDT176 integration that will

be monitored by the presence of EGFP. The DTrap vector may also

empower translational research through identification of therapeutic

targets and biomarkers. Furthermore, the DTrap vector may empower

future translational research, such as the identification of therapeutic

targets and biomarkers in cancer cells; however, further studies are

needed to assess the feasibility of DTrap in cancer models for transla-

tional cancer research under in vivo settings.

In this study, we demonstrate that dDTrap provides a systematic

forward genetic approach by targeting transcriptionally silent genes in

ES cells, which will provide novel insights into the molecular mecha-

nisms of genes that play crucial roles in development under in vitro

and in vivo settings. Based on that the DT176 vector deleted a gene

and successfully labeled mutated cells upon the differentiation such

as adipocytes, we believe that the dDTrap vector will improve feasibil-

ity of developmental genetics via performing a precisely targeting and

high throughput screening of genes, of which differential expression

create different cell types from identical ES cells.
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