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Abstract

Flagella and cilia are evolutionarily conserved cellular organelles. Abnormal formation or

motility of these organelles in humans causes several syndromic diseases termed ciliopa-

thies. The central component of flagella and cilia is the axoneme that is composed of the ‘9

+2’ microtubule arrangement, dynein arms, radial spokes, and the Nexin-Dynein Regulatory

Complex (N-DRC). The N-DRC is localized between doublet microtubules and has been

extensively studied in the unicellular flagellate Chlamydomonas. Recently, it has been

reported that TCTE1 (DRC5), a component of the N-DRC, is essential for proper sperm

motility and male fertility in mice. Further, TCTE1 has been shown to interact with FBXL13

(DRC6) and DRC7; however, functional roles of FBXL13 and DRC7 in mammals have not

been elucidated. Here we show that Fbxl13 and Drc7 expression are testes-enriched in

mice. Although Fbxl13 knockout (KO) mice did not show any obvious phenotypes, Drc7 KO

male mice were infertile due to their short immotile spermatozoa. In Drc7 KO spermatids,

the axoneme is disorganized and the ‘9+2’ microtubule arrangement was difficult to detect.

Further, other N-DRC components fail to incorporate into the flagellum without DRC7.

These results indicate that Drc7, but not Fbxl13, is essential for the correct assembly of the

N-DRC and flagella.

Author summary

In recent years, almost one in six couples face infertility, and nearly 50% of cases are

attributed to male factors. It has been shown that approximately 15% of male infertility is
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caused by genetic factors. The conditions of male infertility mainly include spermatozoa

with abnormal morphology (teratozoospermia), reduced sperm motility (asthenozoosper-

mia), and no or low sperm count (azoospermia). Multiple morphological abnormalities of

the sperm flagella (MMAF) are characterized as asthenoteratozoospermia, which is a con-

dition with abnormal sperm tail morphology, including absent, coiled, bent, or short tails.

Sperm tails are formed during spermiogenesis; however, the mechanism that govern tail

formation remains unclear. Here we mutated Fbxl13 and Drc7, two genes with strong

expression in mouse testis and which have been shown to be important for flagellum for-

mation and regulation in other systems. Deletion of Drc7 leads to aberrant tail formation

in mouse spermatozoa that phenocopies patients with MMAF, while deletion of Fbxl13
has no observable effect on sperm function. Our results identified DRC7 as an important

factor for sperm flagellum formation.

Introduction

Cilia and flagella are evolutionarily-conserved microtubule-based organelles extending from

the surface of many cell types and are used for sensing and motility [1–3]. Defects in the for-

mation or motility of these organelles are associated with human diseases such as impaired

mucociliary clearance and recurrent respiratory infections, which is called primary ciliary dys-

kinesia (PCD) [4]. The central component of motile cilia and flagella is the axoneme, the ‘9+2’

microtubule arrangement that consists of a central pair (CP) of two singlet microtubules sur-

rounded by nine outer microtubule doublets (Fig 1A) [5,6]. Each doublet microtubule is com-

posed of an A-tubule and a B-tubule. In addition to the microtubule arrangement, the

axoneme contains several accessory structures such as inner dynein arms (IDAs), outer dynein

arms (ODAs), radial spokes (RSs), and the Nexin-Dynein Regulatory Complex (N-DRC). The

IDAs and ODAs are motor complexes attached to the A-tubule and drive axoneme beating by

sliding the neighboring doublet microtubules in an ATP dependent manner [7,8]. The RSs

extend from the doublet microtubules towards the CP and mediate signal transduction

between the CP and the dynein arms [9].

The N-DRC is a large complex that links the A-tubule of one doublet to the B-tubule of the

adjacent doublet [10–12]. In the unicellular flagellate Chlamydomonas reinhardtii, 11 distinct

subunits that compose the N-DRC have been identified [10,13,14]. Further studies using Chla-
mydomonas mutants revealed that the N-DRC plays critical roles in regulating flagellar motil-

ity [15–17]. Involvement of N-DRC in regulating flagellar motility has also been clarified in

the flagellate protozoa Trypaosoma brucei [18–20]. The N-DRC components are conserved

evolutionarily from Chlamydomonas and Trypanosoma to humans and several studies have

shown a link between DRC disruptions and ciliary motility defects in vertebrates. For example,

gas8 (drc4) knockdown leads to impaired cilia motility in zebrafish embryos [21]. Further,

mutations in CCDC164 (DRC1), CCDC65 (DRC2), and GAS8 have been found in PCD

patients [22–24]. In mouse models, mutations in Gas8 and Lrrc48 (Drc3) phenocopy PCD

patients [25,26].

In addition to ciliary motility defects, PCD patients can exhibit infertility due to abnormal

flagellar movement of the spermatozoa. Although detailed morphology and motility of the

spermatozoa were not described, an asthenozoospermia patient with a mutation in GAS8 was

reported [27]. In mice, it was reported that Lrrc48 mutant males were infertile in addition to

displaying abnormal ciliary motility [26]. Further, Iqcg (Drc9) KO male mice were infertile due

to severe defects in flagellar formation and immotility of spermatozoa [28]. Recently, we

DRC7 is essential for male fertility
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reported that Tcte1 (Drc5) KO male mice were infertile due to defective sperm motility [29].

We showed that TCTE1 interacts with DRC3, FBXL13 (DRC6), and DRC7 in cultured cell

[29], but functional roles of FBXL13 and DRC7 in mammals have not been elucidated. In Dro-
sophila melanogaster, it has been reported that insertional mutations of CG34110 (ortholog of

mouse Drc7) affect sperm movement into the female storage receptacle, suggesting that DRC7

may regulate flagellar motility [30]. In this report, we knocked out Fbxl13 and Drc7 and ana-

lyzed their function in mouse fertility.

Results

Fbxl13 and Drc7 are evolutionarily conserved and testis-enriched genes

Fbxl13 and Drc7 are evolutionarily conserved genes in many eukaryotes, including Chlamydo-
monas, Trypanosoma, mouse, and human (S1 and S2 Figs, S1 Table). Localization of each

N-DRC component has been analyzed with biochemical and cryo-electron tomography analy-

ses of Chlamydomonas wild-type and mutant axonemes (Fig 1A) [13,14]. To investigate spatial

expression of Fbxl13 and Drc7 in mice, we conducted multi-tissue RT-PCR using cDNA

obtained from adult mice. Fbxl13 is expressed strongly in testis with weaker signals detected in

lung, ovary, and uterus. Drc7 is also expressed abundantly in testis with weak expression in

brain, thymus, lung and ovary (Fig 1B), suggesting that Fbxl13 and Drc7 may have some roles

in spermatogenesis. In mice, the first wave of spermatogenesis occurs within the first 35 days

Fig 1. Fbxl13 and Drc7 are evolutionarily conserved and testis-enriched genes. (A) Model of DRC localization, based on Chlamydomonas [13,14]. The numbers

shown in the N-DRC correspond to each DRC component. FBXL13 (DRC6) and DRC7 are located next to TCTE1 (DRC5). (B) The expression of mouse Fbxl13 and

Drc7 was examined by RT-PCR using RNA isolated from various organs. Both Fbxl13 and Drc7 are testis-enriched with weak expression detected in other tissues.

Actb was used as a loading control. (C) The expression of Fbxl13 and Drc7 was examined by RT-PCR using RNA isolated from testis at various postnatal days. Actb
was used as a loading control.

https://doi.org/10.1371/journal.pgen.1008585.g001
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of postnatal development. [31]. To determine which stage of spermatogenesis Fbxl13 and Drc7
start to express, we conducted RT-PCR using cDNA obtained from postnatal testis. Both genes

were strongly expressed from three weeks around when spermiogenesis occurs (Fig 1C). These

results suggest that Fbxl13 and Drc7 function during spermiogenesis when flagellum elonga-

tion and head morphogenesis occur. FBXL13 or DRC7 localization in the mouse testis and

spermatozoa was not analyzed due to the unavailability of effective antibodies against FBXL13

and DRC7. However, in a previous study, DRC7 was detected in the tail fraction of human

spermatozoa using proteomic analysis [32]. Further, in Drosophila, DRC7 is localized in the

entire flagellum of the spermatozoa [30].

Generation of Fbxl13 or Drc7 knockout mice

To uncover the function of Fbxl13 and Drc7 in vivo, we generated Fbxl13 and Drc7 single

knockout (KO) mice. To generate Fbxl13 KO mice we mutated the gene in ES cells using the

CRISPR/Cas9 system [33] (S3A Fig). Because exon 10–12 overlapped with Lrrc17, we designed

guide RNAs (gRNA) targeting exon 1 and exon 7. These gRNA sequences were inserted into

pX459 plasmids that express humanized CAS9 [33]. The plasmids were co-transfected into

EGR-G01 ES cells [34] to excise the region flanked by the two gRNA target sequences. We

obtained 5 mutant clones with biallelic large deletions out of 48 clones examined with three

clones used for injecting into 8-cell embryos. The chimeric mice obtained with biallelic dele-

tions were mated with wild-type females, and heterozygous mice with a 30983 bp deletion

were obtained, suggesting that this gene might not be involved in male fertility. To confirm the

function of this gene, homozygous KO mice were obtained by subsequent mating (S3B Fig).

We confirmed that mRNA was not detected in the Fbxl13-/- testis with RT-PCR using primers

designed within exon 1 and 20 (S3C Fig). No overt abnormalities were observed in Fbxl13-/-

mice.

For Drc7 KO mice, we established mutant ES clones (EGR-G101) [34] using the targeting

vector obtained from Knockout Mouse Project (KOMP). Ten clones out of 48 clones were tar-

geted correctly and three clones were injected into 8-cell embryos. Chimeric mice were mated

with wild-type females. The mutant mice obtained were mated with CAG-Cre transgenic mice

to delete the region flanked by loxP sites (tm1b allele) (S3D Fig). Homozygous KO mice were

obtained by subsequently mating of tm1b heterozygous mice (S3E Fig). We confirmed that

mRNA was not detected in the Drc7-/- testis with RT-PCR using primers designed within Exon

15 and 18 (S3F Fig). No overt abnormalities were observed in Drc7-/- mice.

Fbxl13 is not required for male fertility

In order to analyze the fertility of Fbxl13-/- male mice, individual wild-type or homozygous

males were caged with wild-type females for two months. Homozygous males sired a compara-

ble number of pups to the wild-type males (S4A Fig). To investigate if there were any subtle

abnormalities not affecting male fertility, we examined spermatogenesis with periodic acid-

Schiff (PAS) staining of testis sections, however, no abnormalities were observed in spermato-

genesis of Fbxl13 KO testis (S4B Fig). The morphology of KO spermatozoa obtained from the

cauda epididymis was also normal (S4C Fig). Further, we examined sperm motility using a

Computer Assisted Sperm Analyzer (CASA). No significant differences were found in both

motility rates and progressive motility rates (S4D Fig). In addition, velocity parameters such as

average path velocity (VAP), straight line velocity (VSL), and curvilinear velocity (VCL) [35]

were normal in Fbxl13 KO mice (S4D Fig). Taken together, these results indicate that Fbxl13 is

not essential for male fertility, sperm formation, or sperm motility.

DRC7 is essential for male fertility
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Fbxl13 is not required for ciliogenesis in the trachea

Although no overt abnormalities were observed in Fbxl13-/- mice, Fbxl13 expression was

detected in tissues other than testis. To examine the role of FBXL13 in other ciliated tissue,

multicilia of tracheal epithelia were analyzed as Fbxl13 expression was detected in the lungs

(Fig 1B). No morphological abnormality was observed by scanning electron microscopy (S5A

Fig) and the ‘9+2’ arrangement of microtubules was observed in the Fbxl13-/- mice (S5B Fig).

These data indicate that motile cilia can form in the Fbxl13-/- trachea.

Drc7 is required for male fertility, head morphogenesis, and sperm

flagellum formation

To analyze the fertility of Drc7-/- male mice, individual heterozygous or homozygous males

were caged with wild-type females for two months. Although the formation of plugs was

observed, homozygous males failed to sire any pups (Fig 2A). To investigate the causes of

infertility in Drc7-/- male mice, we observed testis morphology and found that Drc7-/- testes

were slightly smaller than those of Drc7+/- (Fig 2B and 2C). In testis sections with PAS staining,

spermatogonia, spermatocytes, and round spermatids were observed in homozygous mice;

however, elongated spermatids were hardly detected (Fig 2D, Stage VII-VIII). Further, elon-

gated spermatids were not released and abnormally retained in stage IX seminiferous tubules

of Drc7-/- mice (Fig 2D). In addition, abnormal head shapes were observed in stage XI (step

11) of Drc7-/- testis (Fig 2D).

PAS staining of cauda epididymis sections indicated that the control tubules were filled

with mature spermatozoa, but spermatozoa were hardly observed in the Drc7-/- epididymis

(Fig 2D, Cauda). When we observed the spermatozoa obtained from the Drc7-/- cauda epididy-

mis, they exhibited significantly shorter tails and abnormal head shapes (Fig 2E and 2F), and

were immotile (number of motile spermatozoa = 0 out of 101 spermatozoa observed, number

of males = 4) (S1 and S2 Movies). Further, aberrant localization or loss of mitochondria were

observed with Mitotracker staining (Fig 2E). These results indicate that Drc7 is necessary for

spermiogenesis, especially for flagellum formation and head morphogenesis.

Other N-DRC components in Drc7 KO spermatozoa

We investigated the interaction of N-DRC components. We focused on DRC3, GAS8, and

TCTE1 because these DRCs were shown to be localized adjacent to DRC7 in Chlamydomonas
flagella (Fig 1A) [13–15]. We co-expressed FLAG-tagged mouse DRC7 and PA-tagged mouse

DRC3, GAS8, or TCTE1 in HEK293T cells and confirmed that mouse DRC7 interacts with

mouse DRC3 and TCTE1 but not RSPH4A, a radial spoke protein, using immunoprecipitation

analysis (Fig 3A). Because PA-tagged GAS8 bound non-specifically to a mouse monoclonal

anti-FLAG antibody (Fig 3A), we utilized a rabbit polyclonal antibody for FLAG for immuno-

precipitation and the results showed that DRC7 can also interact with GAS8 (Fig 3B)

Next, we confirmed if the localization of other N-DRC components were disrupted in the

short flagellum of Drc7 KO spermatozoa. Because we could not obtain an effective TCTE1

antibody, we crossed Drc7 mutant mice with a mouse line that has a FLAG sequence knocked

into the 3’ end of the Tcte1 locus [29]. With Western blot analysis using FLAG antibody, we

found that the amount of TCTE1-FLAG decreased in the Drc7 KO spermatozoa (Fig 4A). In

addition, the amount of DRC3 and GAS8 decreased as well; however, the decreased levels

could be due to the short tails of Drc7 KO spermatozoa. To normalize the amount of loaded

protein we utilize acetylated tubulin signal from Western blot analysis. Ten times the volume

of protein lysate was loaded and the results showed that the amount of TCTE1, DRC3 and

DRC7 is essential for male fertility
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GAS8 decreased in Drc7 KO spermatozoa. In contrast, the signal of RSPH6A and RSPH9, pro-

teins localized in the radial spokes, was comparable to control. We also performed immunoflu-

orescence analysis to further detect the localization of DRC3 and GAS8. Both DRC3 and GAS8

were localized in the sperm flagellum and their fluorescence intensities were significantly

Fig 2. Drc7 is required for male fertility, head morphogenesis, and sperm flagellum formation. (A) Drc7+/- or Drc7-/- males were mated with wild-type females and

the number of pups born per plug is reported. Although 17 plugs were observed,Drc7-/- male mice did not sire offspring. Error bars represent S.D. ���p< 0.001

(unpaired Student’s t-test). (B) Testis morphology and (C) testis/body weight of Drc7+/- and Drc7-/- adult mice. Error bars represent S.D. �p< 0.05 (unpaired Student’s

t-test). Scale bar, 5 mm. (D) PAS staining of seminiferous tubules and cauda epididymis of adult mice. In stage VII-VIII, normal spermatocytes (red arrowhead) and

round spermatids (white arrowhead) were observed in both Drc7+/- and Drc7-/- testis; however, elongated spermatids (black arrowhead) were hardly detected in Drc7-/-.
In stage IX, elongated spermatids were released in Drc7+/- but they were retained in Drc7-/- (red arrow). Stage XI step 11 spermatids of Drc7+/- mice had normal, hook

shaped heads (black arrow) whereasDrc7 KO step 11 spermatids have abnormal “club-shaped” heads (white arrow). In cauda epididymis, spermatozoa were hardly

seen in Drc7-/- mice. Scale bar, 50 μm. (E) Observation of spermatozoa extracted from cauda epididymis. Sperm mitochondria (midpiece) is stained with Mitotracker

(red). Spermatozoa fromDrc7-/- mice have abnormal head shapes, short tails, disrupted midpieces, and are immotile. Hoechst (white), nucleus. Scale bar, 10 μm. (F)

The measurement of sperm tail length. Drc7 KO spermatozoa exhibit shorter tails. ���p< 0.001 (unpaired Student’s t-test).

https://doi.org/10.1371/journal.pgen.1008585.g002

Fig 3. Analysis of DRC7 interaction with other N-DRC. (A) Analysis of DRC7 interaction with other N-DRC components using HEK293T cells. DRC7 can bind to

DRC3 and TCTE1 in HEK293T cells. α-Tubulin was used as a loading control. (B) DRC7 can bind to GAS8 in HEK293T cells. α-Tubulin was used as a loading control.

https://doi.org/10.1371/journal.pgen.1008585.g003

DRC7 is essential for male fertility
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Fig 4. The structure of N-DRC is disrupted in Drc7 KO spermatozoa. (A) Presence of other N-DRC components in spermatozoa.

Drc7 KO spermatozoa had decreased levels of DRC3, GAS8 and TCTE1. In contrast, the signal of RSPH6A and RSPH9 were detected

DRC7 is essential for male fertility
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lower in Drc7 KO spermatozoa (Fig 4B and 4C). These results suggest that the structure of the

N-DRC is disrupted because of the absence of DRC7.

Axoneme formation and manchette removal is impaired in Drc7-/- testis

To further analyze the causes of abnormal sperm morphology in Drc7-/- mice, we observed

microtubule structures that play important roles in tail elongation and head morphogenesis

during spermiogenesis (Fig 5). At the early steps of spermiogenesis, the axoneme composed of

microtubules elongates and a transient microtubule structure called the manchette is assem-

bled [36]. The manchette is involved in sperm head elongation, and abnormal head morphol-

ogy is often related to defects in the formation, function, and movement of the manchette [37–

40]. To observe the axoneme and manchette, we performed immunofluorescence using an

anti-α-tubulin antibody on spermatogenic cells obtained from seminiferous tubules. From

control mice, the elongating axoneme was observed in all steps. In contrast, we could not find

the axoneme in Drc7-/- spermatids, suggesting that axoneme formation is severely impaired in

Drc7 KO spermatids. The formation of the manchette was comparable between the control

and Drc7 KO spermatids in the early step of spermiogenesis, but in later steps, the movement

of the manchette was aberrant in Drc7 KO mice. In the control, the manchette tightened

around the nucleus correctly as it moves caudally. On the other hand, in the Drc7 KO mice,

the caudal movement of the manchette was delayed, which leads to the contraction of the

at comparable levels. (B) Immunostaining of DRC3 (left) and GAS8 (right) in spermatozoa. Enlarged pictures of Drc7 KO

spermatozoa are shown in right panel. Hoechst (blue), nucleus; acetylated-tubulin (green); DRC3 or GAS8 (red). Scale bar in upper,

50 μm, below, 10 μm. (C) Signal intensity ratio of DRC3/acetylated tubulin (upper) and GAS8/acetylated tubulin (lower) shown in

(B). The signal of DRC3 and GAS8 were significantly weaker in Drc7 KO spermatozoa. Error bars represent S.D. ���p< 0.001

(unpaired Student’s t-test).

https://doi.org/10.1371/journal.pgen.1008585.g004

Fig 5. Axoneme formation and manchette removal is impaired in Drc7-/- testis. Immunofluorescence analysis of spermatids from Drc7+/-

and Drc7-/- mice. α-tubulin (green) stains both manchette and axoneme. Elongating spermatids are shown progressively from left to right.

Arrows indicate axoneme. Axoneme formation is severely impaired in Drc7 KO spermatids. An arrowhead indicates abnormal caudal

movement of the manchette. Hoechst (blue), nucleus. Scale bar, 10 μm.

https://doi.org/10.1371/journal.pgen.1008585.g005
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manchette at an unusual location and subsequent formation of the “club-shaped” head. These

results indicate that the failure of axoneme elongation precedes the formation of abnormal

sperm heads in the Drc7 KO spermatids.

Ultrastructural analysis of the testis in Drc7-/- mice

To investigate axoneme elongation in Drc7-/- mice in more detail, we observed the testis from

Drc7+/- and Drc7-/- mice using transmission electron microscopy (TEM). Consistent with the

PAS staining, normal round spermatids (step 8) were observed in Drc7-/- testis (Fig 6A and

6B). The manchette formation in elongating Drc7 KO spermatids was also comparable with

that of Drc7 heterozygous spermatids (Fig 6C and 6D). Further, in step 10–11 elongating sper-

matids, the basal body, a structure for axoneme extension, was correctly located on the poste-

rior side of the nucleus in the Drc7 KO spermatids (Fig 6C’ and 6D’). However, it was difficult

to find the flagella in the Drc7-/- testis (Fig 6E–6H). In the rare Drc7 KO flagellum found, the

arrangement of mitochondria and outer dense fibers were abnormal, and the inner ‘9+2’

arrangement of microtubules were missing (Fig 6F). Very rarely in these Drc7 KO flagellum,

scattered microtubule-like structures were found (Fig 6G and 6H), which is consistent with

the detection of acetylated tubulin in the mature Drc7 KO spermatozoa (Figs 4B, 4D and 5).

These results suggest that the basal body can be located correctly, but flagellum elongation was

impaired because the axoneme structure was disrupted in the Drc7-/- mice.

Drc7 is not required for ciliogenesis in the brain and trachea

Drc7 expression was detected in tissues other than testis, however no overt abnormalities were

observed in Drc7-/- mice. To examine the role of DRC7 in other ciliated tissues, multicilia of

ependymal and tracheal epithelia were observed because Drc7 expression was detected in these

tissues. No morphological abnormalities were observed by scanning electron microscopy (S5A

Fig 6. Ultrastructural analysis of Drc7-/- testis. (A) and (B) Step 8 spermatids. No difference was observed between control and KO spermatids. Scale

bar, 1 μm. (C) and (D) Step 10–11 spermatids. Both control and KO spermatids show a normal manchette structure (shown as “M”). Basal body (black

arrowheads) were localized to the posterior region of the nucleus in both control and KO spermatids. Enlarged pictures are shown in (C’) and (D’).

Scale bar in (C) is 2 μm and scale bars in (C’), (D), and (D’) are 1 μm. (E)—(H) Cross section of the midpiece of step 16 spermatids. Spermatids from

Drc7+/- mice show normal arrangement of mitochondria, outer dense fibers, and microtubules (E). In Drc7 KO spermatids, ‘9+2’ arrangement of

microtubules was absent (F) or disorganized (G) and (H). White arrowheads indicate microtubule-like structures. Scale bar, 200 nm.

https://doi.org/10.1371/journal.pgen.1008585.g006
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and S6A Figs) and the ‘9+2’ arrangement of microtubules was observed in the Drc7-/- mice

(S5B and S6B Figs). In addition, cilia motility was not impaired in ependymal cilia (S3 and S4

Movie). These results indicate that motile cilia can be formed in the Drc7-/- brain and trachea.

Normal pups are obtained from Drc7 KO spermatozoa with ICSI

To investigate if Drc7 KO sperm nuclei can produce viable pups despite impaired spermiogen-

esis, we conducted intracytoplasmic sperm injection (ICSI). Ninety wild-type oocytes were

injected with Drc7 KO spermatozoa obtained from cauda epididymis and 42 of them were

developed to the 2-cell stage (Fig 7A). These embryos were transplanted into pseudopregnant

female mice and 4 heterozygous pups were obtained (Fig 7B). These pups grew normally (Fig

7C). These results showed that Drc7 KO sperm nuclei could activate eggs and produce viable

pups, and the infertility phenotype seen in Drc7 KO males could be rescued with ICSI.

Discussion

Fbxl13 and Drc7 are evolutionarily conserved genes that are present in nearly all eukaryotes

including Chlamydomonas, Trypanosoma, flies, mice, and humans. In mice, we showed that

these genes are testis-enriched and start to express during the haploid phase of spermatogenesis,

when several flagellar proteins are translated to form the axoneme [41]. Despite showing testis-

enriched expression, Fbxl13 is not necessary for male fertility, sperm formation, or sperm motil-

ity. According to the previous report in Chlamydomonas, DRC6 (FBXL13 ortholog) is located

in the most distal region adjacent to the B-tubule [10,13]; therefore, FBXL13 may not play criti-

cal roles compared to proteins localized at the base of the N-DRC. It is also possible that there is

either a paralogue or an analog that replaces FBXL13 in mouse flagella. In Chlamydomonas, a

structural paralogue (FAP43) of a flagella protein (FAP244) has been shown to replace FAP244

[42]. BLAST searches against Chlamydomonas DRC6 in mice reveal that FBXL4 and FBXL7 are

potential orthologs. These two proteins may replace the function of FBXL13.

In contrast, in the absence of DRC7, male mice were infertile due to flagellar malformation.

This phenotype is different from CG34110 (ortholog of mouse Drc7) mutants in Drosophila

Fig 7. Normal pups were obtained from Drc7 KO spermatozoa with ICSI. (A) Development of ICSI embryos. Oocytes injected with Drc7 KO spermatozoa

developed to the 2-cell stage and pups were obtained after embryo transfer. (B) Genotyping of obtained pups. Four pups were derived from Drc7 KO

spermatozoa. (C) Pups derived from Drc7 KO spermatozoa.

https://doi.org/10.1371/journal.pgen.1008585.g007
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melanogaster [30], which do not exhibit short flagella but show impaired sperm motility, sug-

gesting that flagellar formation may be slightly different in Drosophila and mice. For example,

in Drosophila, intraflagellar transport (IFT) is not required for the assembly of flagella [43,44],

whereas it is reported that IFT proteins are required for sperm flagellum formation in mouse

[45]. Immunostaining of the axoneme during spermiogenesis suggests that the axoneme for-

mation is severely impaired in Drc7 KO spermatids. Consistent with this result, we could not

detect any organized ‘9+2’ microtubule arrangement in the Drc7 KO testis with electron

microscopy. Mitochondrial sheaths and other accessory structures were also misshapen.

Because other N-DRC components were reduced in theDrc7 KO spermatozoa, DRC7 may sta-

bilize the N-DRC, which is essential for proper axoneme elongation. A disorganized axonemal

structure could lead to impaired IFT transport on the B-tubule of the outer-doublets, which

may cause flagellar shortening in the Drc7 KO spermatozoa. In contrast, in the Tcte1 KO mice,

the axoneme structure was normal, but their sperm motility was impaired [29]. In Chlamydo-
monas, it is indicated that DRC5 (TCTE1 orthologue) is localized to a more distal region from

the A-tubule than DRC7, suggesting that DRC7 is essential to localize TCTE1 in the correct

place, and that TCTE1 regulates flagellar motility. This is supported by the observation that

TCTE1 decreased in Drc7 KO spermatozoa, but DRC7 was detected in the Tcte1 KO sperma-

tozoa [29].

Despite severe phenotypes found in spermatozoa, no defects were recognized in the epen-

dymal and tracheal cilia of theDrc7 KO mice. A recent study has shown that drc7mutant Chla-
mydomonas does not display an obvious motility defect, which is consistent with no obvious

ciliary abnormalities found in the Drc7 KO mice in this study. As sperm flagellum has acces-

sory structures such as outer dense fibers, fibrous sheaths, and mitochondrial sheaths, sperm

flagellum formation may be different from that of cilia and Chlamydomonas flagella. This idea

is supported by several KO mouse lines that show normal ciliary formation, but exhibit

impaired sperm flagellum formation [46]. Alternatively, it is possible that other proteins com-

pensate the function of DRC7 in the ependymal and tracheal cilia. Proteins used for axonemal

formation are known to be different between cilia and sperm flagellum [47].

In addition to flagellar deformation, abnormal sperm head morphology was observed in

Drc7 KO mice. Because manchette movement is abnormal, it is likely that tightening of the

sperm heads by the manchette occurs at an incorrect place is causing the abnormal morphology.

Since flagellar deformation precedes the formation of the misshapen heads in Drc7 KO testis,

impaired manchette movement may be a secondary effect of abnormal flagellar formation. As it

is suggested in the previous study [48], proper flagellar formation may be required to remove

the manchette properly. It is noteworthy to mention that mutations of axonemal proteins often

exhibit both abnormal flagellar formation and misshapen heads in mice [37,39,48].

In summary, our results indicate that Drc7 is essential for flagellar formation and male fer-

tility. The phenotype of Drc7 KO mice is similar to human reproduction disorders called mul-

tiple morphological abnormalities of the flagellum (MMAF). The genes identified as associated

with MMAF thus far account for only one-third of cases with the remaining two-thirds having

unknown etiology [49]. By clarifying the interactions between the N-DRC proteins, this may

give us a better understanding of the mechanism involved in sperm flagellar formation and

may lead us to uncover the remaining causative genes of MMAF.

Materials and methods

Ethics statement

All animal experiments were conducted in accordance with the guidelines of “Animal experi-

ment rules” established by the Research Institute for Microbial Diseases, Osaka University,
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and were approved by the Animal Care and Use Committee of the Research Institute for

Microbial Diseases, Osaka University (#Biken-AP-H30-01).

Animals

All mice used in this study were purchased from CLEA Japan (Tokyo, Japan) or Japan SLC

(Shizuoka, Japan). All mice were maintained under specific-pathogen-free conditions with ad
libitum feeding. The mouse line with FLAG knocked into the 3’ end of the Tcte1 locus

(Tcte1tm2(Maik)) was maintained in our laboratory [29].

Isolation of RNA and RT-PCR

RNA was isolated and purified from multiple adult tissues of C57BL/6N mice at different ages

with TRIzol (15596018, Thermo Fisher Scientific). Reverse transcription was performed using

purified RNA and the SuperScript III first-strand synthesis system (18080051, Thermo Fisher

Scientific). PCR was carried out using KOD Fx neo (KFX-201, TOYOBO, Osaka, Japan). The

primers for each gene are listed in S2 Table.

Generation of Fbxl13-deficient mice

Fbxl13 large deletion (LD) KO mice were generated as previously described [33]. We designed two

gRNAs that recognize either exon 1 or exon 7 to avoid the cleavage of nearby genes (S2A Fig) and

inserted the sequences into the pX459 V2.0 plasmid (#62988, Addgene, Cambridge, MA, USA).

EGR-G01 embryonic stem (ES) cells [34] were co-transfected with 1.0 μg of two gRNAs inserted

vectors. Nine ES clones out of 48 had a large deletion of Fbxl13. ES cell clones that possessed the

mutation were injected into ICR embryos and chimeric blastocysts were transferred into the uteri

of pseudopregnant females. Generated chimeric male mice were mated with B6D2F1 female mice

to obtain heterozygous KO mice. Fbxl13KO mice were maintained by sibling matings.

Generation of Drc7-deficient mice

A targeting vector for Drc7 (#PG00082_Z_3_D01) was obtained from the KnockOut Mouse

Project (KOMP) and electroporated into EGR-G101 ES cells [34] after linearization. Poten-

tially targeted ES cell clones were selected with G418. Correctly targeted ES cell clones and

germ-line transmission were determined via PCR using primers listed in S2 Table. Ten ES

clones that were correctly targeted were obtained out of 48 clones. Heterozygous KO mice

were generated from the ES cells in the same way as Fbxl13 KO mice.

Genotyping analysis

PCR was performed using KOD FX neo (KFX-201, TOYOBO). The primers for each gene are

listed in S2 Table.

In vivo male fertility check

Each control (wild-type or Drc7+/-) or KO male was caged with 2 or 3 8-week-old B6D2F1

female mice for 2 months. Plugs and the number of sired pups were checked every morning.

Morphological, histological, and motility analysis of testis and

spermatozoa

Testes and epididymides were fixed overnight at 4˚C in Bouin’s fluid (16045–1, Polysciences,

Inc., Warrington, PA, USA) and embedded in paraffin. Paraffin sections (5 μm) were
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rehydrated, treated with 1% periodic acid for 20 min at room temperature, and incubated with

Schiff’s reagent (193–08445, FUJIFILM Wako Pure Chemical, Osaka, Japan) for 20 min at

room temperature. The sections were stained with Mayer’s haematoxylin solution (131–09665,

FUJIFILM Wako Pure Chemical) and observed using a BX-50 microscope (Olympus, Tokyo,

Japan).

Cauda epididymal spermatozoa were dispersed in TYH medium [50] or non-capacitating

medium [51] for 10 min before the observation of morphology and motility. For mitochondria

staining, spermatozoa were dispersed in TYH medium containing 10 nM MitoTracker Red

FM (M22425, Thermo Fisher Scientific) and 10 μg/mL of Hoechst 33342 (H3570, Thermo

Fisher Scientific). After 10 min incubation at 37˚C under 5% CO2 in air, spermatozoa were

observed using a phase contrast microscope (BX50, Olympus).

Sperm velocity analysis

Sperm velocity was analyzed as described previously [52]. Cauda epididymal spermatozoa

were suspended in TYH medium [50]. Sperm velocity was measured using the CEROS sperm

analysis system (software version 12.3; Hamilton Thorne Biosciences, Beverly, MA, USA) at 10

min and 2 h after incubation. More than 200 spermatozoa were analyzed for each male.

Protein extraction of testis and spermatozoa

Protein samples were extracted from testis and spermatozoa using lysis buffer (6 M urea, 2 M

thiourea, and 2% sodium deoxycholate) and centrifuged at 15,300 × g for 15 min at room tem-

perature. Obtained supernatants were subjected to SDS-PAGE for immunoblotting.

Construction of plasmid

cDNA encoding Drc3, Gas8, Tcte1, and Drc7 were amplified from mouse testis (C57BL/6N)

and cloned into FLAG-tagged (C-terminus) or PA-tagged (C-terminus) pCAG vectors that

contain the CAG promoter and a rabbit globin poly(A) signal [53]. PA-tagged Rsph4a vector

was described previously [48]. The primers used to amplify each gene are listed in S2 Table.

Cell culture and transfection

HEK293T cells were cultured in DMEM (11995–065, Thermo Fisher Scientific) supplemented

with 10% fetal bovine serum (S1560, Biowest, Nuaillé, France) and 1% Penicillin-Streptomy-

cin-Glutamine (10378–016, Thermo Fisher Scientific) at 37˚C under 5% CO2 in air. Plasmid

DNA were transiently transfected into HEK293T cells [54] and cultured for 48 h.

Immunoprecipitation

Harvested cells were lysed with a solution containing 1% Triton X-100, 50 mM NaCl, 20 mM

Tris-HCl, pH 7.4, Protease Inhibitor Cocktail (25955, Nacalai tesque, Kyoto, Japan), and incu-

bated for 30 min at 4˚C. The lysates were centrifuged at 15,300 × g for 15 min at 4˚C, and the

resulting supernatants were incubated for 60 min at 4˚C with FLAG (M2 or PM020) conju-

gated Dynabeads (10009D, Thermo Fisher Scientific). The immune complexes were then

washed three times with a solution containing 40 mM Tris-HCl, 150 mM NaCl, 0.1% Triton

X-100, and 10% glycerol and eluted with sample buffer with 2-mercaptoethanol before

SDS-PAGE and immunoblot analysis.
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Immunoblotting

Proteins obtained from culture cells or tissues were separated by SDS-PAGE under reducing

conditions and transferred to PVDF membrane using the Trans Blot Turbo system (Bio-Rad,

Foster City, CA, USA). After blocking with 5% skim milk (232100, Becton Dickinson, Cockeys-

ville, MD, USA), the membrane was incubated with primary antibodies overnight at 4˚C and

then incubated with HRP-conjugated secondary antibodies. Chemiluminescence was detected

by Chemi-Lumi One Super (02230, Nacalai tesque) or Chemi-Lumi One Ultra (11644, Nacalai

tesque) using Image Quant LAS 4000 mini (GE Healthcare, Buckinghamshire, UK). Antibodies

used are listed in S3 Table. Antibody for RSPH6A was generated as previously described [48].

Immunofluorescence

Immunofluorescence for mature spermatozoa was conducted as described previously [48]

with slight modifications. Spermatozoa collected from the cauda epididymis were diluted in

PBS, spread onto glass slides, and incubated at 37˚C until dry. The samples were fixed with 4%

paraformaldehyde in PBS for 20 min and fixed with 100% methanol at -30˚C for 3 min. After

three 10 min washes with 0.1% Triton X-100 in PBS, the slides were blocked with 5% BSA and

10% goat serum for 1 h at room temperature and incubated with primary antibodies overnight

at 4˚C. After three 10 min washes with 0.1% Triton X-100 in PBS, the slides were incubated

with secondary antibody at room temperature for 90 min and then washed with 0.1% Triton

X-100 in PBS three times for 10 min each. To stain the nucleus, the slides were incubated with

Hoechst 33342 (H3570, Thermo Fisher Scientific) for 15 min, washed with 0.1% Triton X-100

in PBS three times for 10 min each, and then mounted using Immu-Mount (9990402, Thermo

Fisher Scientific). Slides were observed with a BX-53 microscope (Olympus).

Immunofluorescence for manchette was conducted as described previously [48] with slight

modifications. Germ cells including spermatids were squeezed out from the seminiferous

tubules onto slide glasses and incubated at 37˚C until dry. The samples were fixed with 4%

paraformaldehyde in PBS for 15 min. After three 5 min washes with PBS, the samples were

permeabilized with 0.3% Triton X-100 for 15 min, washed with PBS three times for 5 min

each, and blocked with 5% BSA and 10% goat serum diluted in PBS for 1 h at room tempera-

ture. Incubations with antibodies were performed as described above. Samples were observed

using a Nikon Eclipse Ti microscope connected to a Nikon C2 confocal module (Nikon,

Tokyo, Japan). Fluorescence images were false-colored and cropped using ImageJ software

(version 2.0.0, NIH, Bethesda, MD, USA). Antibodies used are listed in S3 Table.

Ultrastructural analysis using transmission electron microscope (TEM)

Testis samples were prepared as previously described [55]. The sections were observed using a

JEM-1400 plus electron microscope (JEOL, Tokyo, Japan) at 80 kV with a CCD Veleta

2K × 2K camera (Olympus).

Brain and trachea samples were prepared as previously described [56] with slight modifica-

tions. Ultrathin sections stained with uranyl acetate solution for 5 min, briefly washed three

times with distilled water, stained with Reynolds lead staining solution for 5 min, and washed

three times with distilled water. The sections were observed using a JEM-1200EX electron

microscope (JEOL) at 80 kV.

Ultrastructural analysis using scanning electron microscope (SEM)

Brain and trachea samples were prepared as previously described [56]. The samples were

observed using a JCM-5000 NeoScope Table Top SEM (JEOL).
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Ciliary motility analysis

Ependymal cilia were prepared as previously described [56]. The motility of ependymal cilia

was observed under a 60x objective (LUCPlan FL N, Olympus) on a differential interference

contrast microscope (BX53, Olympus) and recorded at 200 fps through a HAS-220 high-speed

camera (DITECT, Tokyo, Japan).

Intracytoplasmic sperm injection (ICSI)

Mature oocytes were collected from superovulated B6D2F1 female mice of 7–8 weeks of age,

13–15 h after injection of human chorionic gonadotropin (hCG, ASKA Animal Health,

Tokyo, Japan). After treatment with 1 mg/ mL of hyaluronidase (088–07243, FUJIFILM Wako

Pure Chemical) for 5 min to remove the cumulus cells, oocytes were placed in KSOM medium

at 37˚C under 5% CO2 in air until subjected to ICSI. Wild-type sperm heads were separated

from the tail by applying a few piezo pulses. Because mutant spermatozoa proved difficult in

separating the head, the whole spermatozoa was used for subsequent ICSI. The sperm head

was injected into a mature oocyte using a piezo manipulator (PrimeTech, Tsuchiura, Ibaraki,

Japan), as previously described [57]. The following day, two-cell embryos were transferred to

pseudopregnant females. Genotyping was conducted one week after the birth.

Statistical analysis

Statistical analyses were performed using a two-tailed student’s t-test (N� 3). Differences

were considered significant at p<0.05 (�), p<0.01 (��), and p<0.001 (���). Data represent the

means ± standard deviation (SD) and error bars indicate SD.

Supporting information

S1 Fig. Sequence similarity of FBXL13 in various organisms. Sequence similarity of FBXL13

in Chlamydomonas reinhardtii, Trypanosoma brucei, Drosophila melanogaster, Xenopus tropi-
calis, Mus musculus, and Homo sapiens. Dark purple indicates a match in all species. Blue indi-

cates a match among four species. Light purple indicates a match among at least three species.

(TIF)

S2 Fig. Sequence similarity of DRC7 in various organisms. Sequence similarity of the C-ter-

minus of DRC7 in Chlamydomonas reinhardtii, Trypanosoma brucei, Drosophila melanogaster,
Xenopus tropicalis, Mus musculus, and Homo sapiens. Dark purple indicates a match in all spe-

cies. Blue indicates a match among four species. Light purple indicates a match among at least

three species.

(TIF)

S3 Fig. Generation of Fbxl13 or Drc7 knockout mice. (A) Targeting scheme for generating

Fbxl13 KO mice with the CRISPR/Cas9 system. Exon 1 and exon 7 were targeted. Magenta

arrows indicate gRNA #1 and gRNA #2 that were used for targeting. The region flanked by

these two gRNAs was deleted. Black arrowheads (Primer F1, F2, R1 and R2) indicate primers

for genotyping, shown in (B). Genomic PCR with primers F2 and R2 can amplify the KO allele

because of large deletion. Blue arrowheads (Primer F3 and R3) indicate primers for RT-PCR,

shown in (C). (B) Genotyping of Fbxl13 mutant mice. (C) mRNA expression of Fbxl13 in

Fbxl13+/- and Fbxl13-/- testis. No bands were detected in the Fbxl13-/- testis. (D) Targeting

scheme for generating Drc7 KO mice using a vector obtained from the Knockout Mouse Proj-

ect (KOMP). LacZ-neo expression cassette was introduced into intron 8. Mice with a tm1a

allele were mated with CAG-Cre transgenic mice to delete the region flanked by loxP sites
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including neo expression cassette and exon 9–11. Black arrowheads (Primer F1, F2, R1, R2

and R3) indicate primers for genotyping and RT-PCR, shown in (E) and (F). En2 SA,

Engrailed-2 splice acceptor; IRES, internal ribosome entry site; pA, SV40 polyadenylation sig-

nal; hBactP, human β-actin promoter (an autonomous promoter); neo, neomycin resistance

gene; DTA, Diphtheria Toxin A. (E) Genotyping of Drc7 mutant mice. (F) mRNA expression

of Drc7 in wild-type and Drc7 KO testis. No bands were detected in the Drc7-/- testis.

(TIF)

S4 Fig. Fbxl13 is not required for male fertility. (A) Number of pups born per plug. Fbxl13-/-

male mice sired offspring comparable to wild-type males. (B) PAS staining of seminiferous

tubules of adult mice. Testis morphology of Fbxl13-/- mice is comparable to that of Fbxl13+/-

mice. Scale bar, 100 μm. (C) Observation of spermatozoa obtained from the cauda epididymis.

Fbxl13 KO spermatozoa exhibit normal head and tail morphology. Scale bar, 50 μm. (D)

Sperm motility analyzed with Computer-Assisted Sperm Analysis (CASA). Error bars repre-

sent S.D. No significant differences were found in all the parameters (unpaired Student’s t-

test). N = 5 males each for Fbxl13+/- and Fbxl13-/- mice.

(TIF)

S5 Fig. Fbxl13 and Drc7 are not required for ciliogenesis in the trachea. (A) Observation of

wild-type, Fbxl13-/-, and Drc7-/- tracheal cilia using scanning electron microscopy. Morphology

of Fbxl13-/- or Drc7-/- cilia is comparable to that of wild-type cilia. Scale bar, 5 μm. (B) Observa-

tion of wild-type, Fbxl13-/-, and Drc7-/- tracheal cilia using transmission electron microscopy.

The ‘9+2’ structure with both inner and outer dynein arms was found in Fbxl13-/- and Drc7-/-

mice. Scale bar, 100 nm.

(TIF)

S6 Fig. Drc7 is not required for ciliogenesis in the brain. (A) Observation of wild-type and

Drc7-/- ependymal cilia using scanning electron microscopy. Morphology of Drc7-/- cilia is

comparable to that of wild-type cilia. Scale bar, 5 μm. (B) Observation of wild-type and Drc7-/-

ependymal cilia using transmission electron microscopy. The ‘9+2’ structure with both inner

and outer dynein arms was found in both wild-type and Drc7-/- mice. Scale bar, 100 nm.

(TIF)

S1 Table. N-DRC information.

(TIF)

S2 Table. Sequences of primers.

(TIF)

S3 Table. Antibodies used in this study.

(TIF)

S1 Movie. Sperm motility of Drc7+/- mice. Scale bar, 20 μm.

(AVI)

S2 Movie. Sperm motility of Drc7-/- mice. Scale bar, 20 μm.

(AVI)

S3 Movie. Ependymal cilia motility in wild-type mice. Scale bar, 10 μm.

(AVI)

S4 Movie. Ependymal cilia motility in Drc7-/- mice. Scale bar, 10 μm.

(AVI)
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