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SCIENTIFIC REPLIRTS

CRISPR/Cas9 mediated genome
editing in ES cells and its
“application for chimeric
wemsnresanalysis in mice
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vplishe vgus - Asami Qji%3", Taichi Noda'~*", Yoshitaka Fujihara’, Haruhiko Miyata?, Yeon Joo Kim*",

Masanaga Muto®23, Kaori Nozawa®3*, Takafumi Matsumura®2, Ayako Isotani® &
Masahito Ikawa®2*5

Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/
CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as
large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in
founder generations complicates the genotypic and phenotypic analyses in these animals. Here we
show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient
in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs.
Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed
their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found
that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs
and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole
organism.

The genome sequencing projects revealed that approximately 20,500 protein-coding genes are encoded in the 3.3
billion base-pairs of DNA sequence in both humans and mice (http://www.genome.gov/12011238). In addition
to the protein coding regions, flanking regions play important roles in regulating gene expression. Recent studies
also highlighted the importance of non-coding RNAs such as miRNAs for transcriptional and post-transcriptional
control!. Overall, the genetic sequence of the genome is the blueprint of all living organisms. Gene-manipulated
animals have been a mainstay in studying physiological functions. The adaptation of gene targeting in ESCs and
subsequent chimeric mouse production and intercrosses enables us to generate homozygous knockout (KO)
mice and study gene function in mammals®~’. However, only a few laboratories can take advantage of these gene
targeting strategies because these experiments are time-consuming, laborious, and costly.

In 2006, the International Knockout Mouse Consortium started to generate a predesigned knockout mouse
library to accelerate physiological studies®”’. The targeting strategy is well designed so that researchers can
observe LacZ reporter gene expression in the heterozygous state, analyze phenotype in the homozygous state,
and generate conditional KOs with promoter driven Cre lines in most cases. With this technology, nearly 20,000
protein coding genes have been knocked out in ESCs to date. However, their use is limited by the inefficient
germline transmission of the targeted ESCs and the complicated processes of serial mating. More importantly, as
we know more about gene features, researchers require a more finely-tuned gene modification system for gene
functional analysis as well as making disease model animals. Thus, an efficient system for generating these ani-
mals on demand is necessary.
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Figure 1. Experimental designs of the pronuclear-injection and the ESC-transfection. (a) The sgRNA/
CAS9 expressing plasmid was injected into pronuclei of fertilized eggs. The induction of monoallelic or biallelic
mutations at the one cell stage results in mutant mice carrying one or two different mutations in all cell types.
On the other hand, the introduction of a mutation after the 2-cell stage results in mosaic mice in the founder
generation. “X” indicates the mutated sites. (b) Mouse ESCs with GFP fluorescence were transfected with
sgRNA/CAS9 expressing plasmids. The ESC clone with the desired mutation can be expanded and injected
into WT (+/+) 8-cell embryos to generate chimeric mice. The ESC-derived mutant cells can be identified by
fluorescence (green). (a,b) The mosaic mice in (a) may carry multiple cell types with unidentified mutations
whereas chimeric mice in (b) carries WT (4/4) host cells and cells with identified mutations (—/—).

The emergence of the CRISPR/Cas9 system opened a new era for mammalian genome editing®®. The sgRNA/
CAS9 complex recognizes a target site in the genome by 20 nts upstream of the protospacer adjacent motif (PAM)
to cause a blunt end double-strand break (DSB) between 3™ and 4™ nucleotides upstream of the PAM. After DSB
formation, non-homologous end-joining (NHE]) causes indels that disrupt gene functions. If a reference DNA
strand is co-injected, designed mutations and transgenes are efficiently incorporated by homology-dependent
repair (HDR) following DSBs. The CRISPR/Cas9 system works efficiently in mammalian cells and the targeted
gene-manipulated mice can be generated by simply injecting sgRNA/CAS9 complex into the pronuclei of fer-
tilized eggs with or without the reference DNA, depending on the desired mutation'*-'2. Therefore, sgRNA/
CAS9-mediated genome editing in fertilized eggs is now widely used in many laboratories and animal facilities
to generate gene-manipulated mice.

However, some factors remain to be optimized. For targeted gene disruption, small indels are easily introduced
by single sgRNA/CAS9 complexes, but removal of the entire gene by two sgRNA/CAS9 complexes becomes less
efficient as the distance between the two sgRNAs increases. The efficiency of HDR-mediated gene manipulation
in mouse oocytes varies among not only target genes but also among laboratories!?-1°. More importantly, the mice
generated by sgRNA/CAS9 complexes were thought to be homozygous in the founder generation. However, later
experiments demonstrated the high prevalence of mosaicism in most founder animals which obfuscate genotyp-
ing and phenotyping analyses (Fig. 1)!*7. Subsequent matings are required to generate fully homozygous mutant
animals, making the experimental process similar to conventional ESC-mediated gene manipulation.

In the present study, we examined complicated genome editing in mouse ESCs (Fig. 1). The indels and large
deletions were efficiently obtained compared to fertilized eggs. It is noteworthy that while the HDR efficiency
with a single-stranded oligodeoxynucleotide (ssODN) is comparable in eggs and ESCs, dsDNA-mediated HDR
is more efficient in ESCs. Finally taking advantage of efficient genome editing in ESCs, we selected biallelically
mutated ESC clones and analyzed their phenotype in the founder generation as chimeric mice. Our approach
provides a versatile tool for studying gene functions and generating disease models.

Results

sgRNA/CAS9-mediated NHEJ in ESCs. We previously showed that pronuclear injection of pX330 plas-
mids expressing sgRNAs and human codon optimized CAS9 efficiently generates pups with indels at the target
sites (52.9 £ 22.3% of pups, n =32 genes)'>!%. In the present study, it was our goal to examine the feasibility of
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Figure 2. CRISPR/Cas9 mediated genome editing and screening strategy. (a) Indels introduced with a
sgRNA/CAS9 expressing plasmid were identified by PCR using the primer set a/b (see Supplementary Table S1) and
subsequent sequencing. The WT allele (wt) and the deletion mutant allele lacking 8 nts (em4) are presented.
(b) Deletions introduced with two sgRNA/CAS9 expressing plasmids were identified by PCR using the primer
set a/b and agarose gel electrophoresis. The WT and the mutant alleles lacking 385 nts (em21) have 619 bp

and 234 bp, respectively. (c) Point mutations introduced with a sgRNA/CAS9 expressing plasmid and the
oligonucleotide (ssODN) or plasmid (dsDNA) for the reference were identified by PCR using the primer set
a/b and subsequent restriction enzyme digestion and/or sequencing. The ssODN and dsDNA contained 50 nts
and 0.5 kbps homology arms, respectively. G to T mutation (em31, red-colored site) was introduced to generate
EcoRI site (underlined sequence). PCR amplicons digested with (4) and without (—) EcoRI were subjected to
electrophoresis and sequencing. (d) Gene knockins introduced with a sgRNA/CAS9 expressing plasmid and
the reference plasmid (dsDNA) were identified by PCR. The homologous recombinant allele (em41) generates
bands with primer sets ¢/d and e/f (see Supplementary Table S6). (a-d) The black box, scissors, bold fonts, and
long green arrows indicate the coding region, DSB sites, PAM sequences, and sgRNA target, respectively. Primer
pairs used for genotyping were indicated as short arrows (black, red, and blue).

genome editing in ESC. We first transfected ESCs with pX330 plasmids which showed lower nuclease activity
in fertilized mouse eggs (Fig. 2a, Table 1). The target sequences of sgRNA are shown in Supplementary Table
S1. To concentrate the transfected cells, we co-transfected ESCs with pX330 plasmid and a pPGK-puro plasmid
that expresses a puromycin resistant gene under the PGK promoter. We also used pX459, a modified pX330 that
contains a puromycin-resistant gene expression cassette. The short period of puromycin treatment (2 to 3 days)
was used to select for transiently transfected cells (only 8 out of 96 analyzed clones carried the integrated pX459
plasmids). In all ten targets, sgRNA/CAS9-mediated indels were frequently found in ESC clones (91.3%, Table 1).
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#01 9 41 0 0 2 2 (4.9) 19 0 17 1 18 (94.7)
#02 11 14 0 0 0 0 (0) 13 0 12 0 12 (92.3)
#03 4 22 1 0 0 1 (4.5) 25 1 10 10 21 (84.0)
#04 16 17 0 0 0 0 (0) 13 1 10 2 13 (100)
#05 17 21 0 0 0 0 (0) 8 1 7 0 8 (100)
#06 6 19 1 0 1 2 (10.5) 8 0 8 0 8 (100)
#07 7 17 2 0 0 2 (11.8) 8 2 4 1 7 (87.5)
#08 18 13 0 0 0 0 (0) 7 0 7 0 7 (100)
#09 18 11 0 0 0 0 (0) 6 0 5 0 5 (83.3)
#10 7 12 0 0 0 0 (0) 8 1 4 1 6 (75.0)
total — 187 4 0 3 7 (3.7) 115 6 84 15 105 (91.3)

Table 1. Efficiency of generating indel mutant mice or ES clones via pX330 plasmid injection or
transfection. Chr.: chromosome number, Single: monoallelic mutant, Double: biallelic mutant, GM:
Genetically Modified. *Total of mutations/analyzed pups or clones.

#11+#12 5 04 10 2 | (200) 24 11 (45.8)
#13 4 #14 7 20 6 1 |67 16 12 (75.0)
#15+#16 6 60 13 3| @3 32 7 (21.9)
#170 16 130 21 0 (0) 9% 5 (5.2)
#18+#19 Y 380 — — — 32 6 (18.8)
#20 +#21 9 841 13 0 (0) 48 25 (52.1)

Table 2. Efficiency of generating deletion mutants by introducing two sgRNAs into zygote or ES cells. Chr.:
chromosome number. °A sgRNA recognizes the same sequence with 130kbp apart.

ssODN 13 232 58 9 |(3.9 7¢ 448 12 2.7)
dsDNA 4d 48 8 0 | (0) 10¢ 247 102 (41.3)

Table 3. HDR-mediated small mutations using ssODN or dsDNA as a reference. GMO: Genetically
Modified Organism, HDR: Homology-Dependent Repair. “The sgRNAs used for this experiment are shown in
Table S1, and the breakdown of this table is shown in Tables S2 and S3. bngNAs #22 ~#34, ‘sgRNAs #22 ~ #24,
#29, #30, #35, #36, dngNAs #22 ~#24, #27, °sgRNA #22 ~ #24, #35 ~ #41.

The absence of the wild-type (WT) allele in ESC clones confirmed that the biallelic mutations occurred (73.0% of
clones analyzed), comparable to the previous report®.

Next, we examined the efficiency of sgRNA/CAS9-mediated excision between two cleavage sites (Fig. 2b,
Table 2). In the fertilized eggs, the excision efficiency varied among the target genes and decreased as the distance
was increased. In ESCs, the designed excision was obtained up to a distance of 841 kbp with 52.1% efficiency
(Table 2).

sgRNA/CAS9-mediated HDRin ESCs. sgRNA/CAS9-mediated DSBs and subsequent HDR with ssODN
or dsDNA can be used to introduce designed mutations into the targeted locus'®!'°. To examine which reference
target works better for small mutations (e.g., point mutations and FLAG-tag insertion), we introduced sgRNA/
CAS9 expressing plasmids with either ssODN or dsDNA references and examined HDR in fertilized eggs and
ESCs (Fig. 2¢, Table 3). We introduced mutations in the PAM sequence and/or adjacent 3’ seed sequence (8 nts)
to prevent cleavage after HDR. The introduction of restriction sites enabled us to assess HDR without sequencing
of PCR amplicons. We placed 50 ntsand 0.5 kbps homology arms into ssODN and dsDNA, respectively, for cost
and practical reasons. With ssODN, targeted gene modifications were introduced into fertilized eggs (3.9% in 13
targets) and ESCs (2.7% in 7 genes) at similar frequencies (Table 3, Supplementary Table S2). With dsDNA, we

SCIENTIFICREPORTS | 6:31666 | DOI: 10.1038/srep31666 4



www.nature.com/scientificreports/

Pronuclear-injection ESC-transfection
Homology Analyzed Analyzed
sgRNA Chr. arms (kbp) pups GMO | HDR (%) clones HDR (%)
#22 18 0.5+0.5 50 5 2 (4.0) 120 18 (15.0)
0.5+0.5 31 12 0 (0) 225 10 (4.4)
#42 6
1.0+1.0 27 0 0 (0) 224 18 (8.0)

Table 4. HDR-mediated reporter knockins using dsDNA as a reference. GMO: Genetically Modified
Organism, HDR: Homology-Dependent Repair.

failed to introduce the designed mutation into fertilized eggs (0% in 4 genes), but we obtained designed mutant
ESCs at a high frequency (41.3% in 10 genes) (Table 3, Supplementary Table S3).

Because synthetic oligonucleotides are restricted to ~200 nts, we cannot use ssODN to knockin a larger frag-
ment such as an EGFP reporter gene. Therefore, we constructed reference plasmids carrying the knockin cassette
with either 0.5kbps or 1.0 kbps homology arms (Fig. 2d, Table 4). When we injected fertilized eggs with the
pX330 and the reference plasmids carrying 0.5 kbps homology arms, homologous recombination mediated EGFP
knockin occurred at the Centrinl (Cetnl) locus in 4.0% of pups (2/50) (sgRNA #22 in Table 4 and Supplementary
Table S1). With the same strategy, we transfected ESCs and confirmed that 15.0% of analyzed clones (18/120)
were homologous recombinants. While the zeocin cassette was not knocked into the Rosa26 locus in fertilized
eggs (0/31 and 0/27 pups with 0.5kbps and 1.0 kbps homology arms, respectively), correct knockin was observed
in ESCs (10/225 and 18/224 clones with 0.5kbps and 1.0 kbps homology arms, respectively) (sgRNA #42 in
Table 4 and Supplementary Table S1).

ESC-derived chimeric analysis in founder generation. Biallelic mutations are rarely obtained with
conventional homologous recombination approaches in ESCs. However, as we showed here, biallelic mutations
are efficiently obtained in ESCs using sgRNA/CAS9-mediated genome editing (Table 1). Therefore, we generated
chimeric mice with these biallelic mutant ESCs to observe their phenotypes in the founder generation. To distin-
guish the mutant ESC-derived cells from WT host cells, we used ESC clones established from double transgenic
mice expressing GFP ubiquitously and in the sperm acrosome?*?!. In this mouse line, cells were labeled with
EGFP in their cytosol and sperm cells were labeled with EGFP in their acrosome.

As a proof of concept, we first generated chimeric mice from ESCs carrying biallelic mutations in the Cetn1
locus with sgRNA #22 (Fig. 3a, Supplementary Fig. S1, Supplementary Table S1). Observation of testes from chi-
meric mice under a fluorescent microscope showed the seminiferous tubules carrying green fluorescent spermat-
ogenic cells (Fig. 3b). The malformation of sperm heads with defective cilia formation is consistent with previous
studies of Cetnl knockout mice'>?? (Fig. 3¢). It should be noted that we observed control WT cells in the same
field enabling us to compare phenotypes without any biases.

Finally, we applied this method for a lethal gene, DnaJ heat shock protein family (Hsp40) member B13
(Dnajb13), which encodes one of the radial spoke proteins in the 9 + 2 structure?. As shown in Fig. 4, when
we generated mutant mice by zygote injection of sgRNA #43 (Supplementary Table S1), homozygous mutant
mice died before sexual maturation due to severe dilatation of the lateral ventricle and the abnormal increase of
cerebrospinal fluid, indicating hydrocephalus (Fig. 4a,b, Supplementary Fig. S2a and S2b). However, most of the
chimeric mice generated with biallelic mutant ESCs improved hydrocephalus symptoms and allowed survival
until sexual maturation (Fig. 4c, Supplementary Fig. S2a and S2c). Interestingly we observed cilia in the epend-
ymal cells of the lateral ventricles in Dnajb13 KOs as well as in rescued mice (Supplementary Fig. S2b and S2c).
Collection of the epididymal spermatozoa from the chimeric mice showed that the mutant cells were immotile
due to sperm tail defects as observed in fertilization medium (Fig. 4d, Supplementary Movies S1-54).

Discussion

In the present study, although it cannot be directly compared, we show that complicated genome editing is highly
efficient in ESCs even with sgRNAs that do not work well in fertilized eggs (Tables 1, 2, 3 and 4, Supplementary
Tables S2 and S3). There are additional advantages in ESC-mediated approaches. Whereas animals born without
designed mutations are sacrificed after zygote injection, we can screen hundreds of ESC clones to obtain the ideal
mutant clones without sacrificing animal lives. It should also be noted that researchers first believed that homozy-
gous mutant mice could be obtained at the founder generation but later realized that mosaicism was highly prev-
alent in the founder generation which complicated genotyping and phenotyping analyses (Fig. 1)!¢17. Moreover,
there remains a risk of non-germ line transmission of the desired mutation because the germ cells and the cells
used for genotyping might be different in mosaic animals after zygote injection. With ESCs, chimeric animals can
be generated from clones carrying the identified mutations. If necessary, the desired mutation can be transmitted
through the germline by crossing with WT animals.

If the founder mice obtained by zygote injection are mosaic, they can be crossed to obtain the heterozy-
gous F1 generation and the subsequent F1 intercrosses can be used to obtain the homozygous F2 generation for
phenotypic analysis (about two months for one generation in mice). Thus, the amount of time is similar to the
conventional ESC mediated approach in which only one allele is mutated by homologous recombination or gene
trap. In contrast, most ESC clones are biallelic mutant after sgRNA/CAS9-mediated genome editing, although
the mechanism remains unclear. Therefore, one can analyze the effects of genome editing by differentiating the
mutant ESCs in vitro**-26. Alternately, by using EGFP-tagged ESCs, one could directly analyze the mutant cell
phenotypes in chimeric mice at the founder generation (Figs 3 and 4, Supplementary Movies S1-54).
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Figure 3. Functional analysis of CetnI in the chimeric mice at founder generation. (a) Chimeric mice
generated from ESCs carrying a biallelic mutation in Cetnl gene (em51/em52) (see Supplementary Fig. S1).
Highly chimeric animals have darker coat color. (b) Testes of BED2F1 (wt) and chimeric mice (chi) were
photographed under a stereomicroscope (left panel; bright field, center and right panels; fluorescent field).

The dashed-line square in the center panel was magnified in the right panel. (¢) The cells dispersed from green
fluorescent seminiferous tubules of a chimeric mouse were stained with Hoechst 33342 and photographed
under a fluorescence microscope (left panel; bright field, right panel; fluorescent field). GFP-negative
spermatozoa derived from host ICR and GFP-positive spermatozoa derived from mutated ESCs were indicated
with red arrowheads and yellow arrows, respectively.

Our approach also gives us a chance to analyze lethal genes in vivo without a Cre-mediated conditional knock-
out (cKO) strategy (Fig. 4). We chose Dnajb13 because KO mice die due to hydrocephalus. As we expected from
previous studies showing abundant testis expression??, the radial spoke protein DNAJB13 is required for func-
tional sperm formation (Fig. 4d and Supplementary Movies S1-S4). In contrast, Dnajb13 KO cilia looked normal
in the lateral ventricle (Supplementary Fig. S2b), implicating that the DNAJB13 plays a more critical role in sperm
flagella formation than ciliary formation. This is consistent with previous data found in KO mice for cilia and
flagella-associated proteins, CFAP221% and CFAP54%. Different from a cKO approach, all the ESC-derived cells
in the body carry KO mutations. Thus, the chimeric mice can also be used as a source of mutant cells, enabling
us to isolate, expand, and analyze their fate. In combination with stem cell transfer technology***!, whole systems
like the hematopoietic cells can be reconstituted in recipient animals which would accelerate gene functional
studies in vivo. In many cases, analysis can be achieved without further time consuming and laborious breeding
steps.

Recently, next generation sequencing has identified numerous genetic variations among human popula-
tions*>33. To validate if the variation is associated with a particular disease, creation of the same mutations in
mice is a critical step. Different from null mutations that can be caused by simple DSB and subsequent NHE],
these genetic variations need to be introduced precisely by HDR. We show here that dsDNA rather than ssODN
works well with CRISPR/Cas9 in ESCs while no such success was observed by zygote injection. Further, some
researchers require multiple mutations in one individual to characterize diseases caused by multiple factors. These
multiple mutations can be efficiently introduced with the CRISPR/Cas9 system!%3**. We conclude here that the
combination of genome editing in ESCs and subsequent chimeric analysis provides a robust tool not only for
reverse genetics but also for genome-wide association studies.
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Figure 4. Sperm malformation found in chimeric Dnajb13 KO mice rescued from hydrocephalus. (a) The
survival rate of Dnajbl3 mutant mice (em1/eml) generated by pronuclear injection. (b) The brain morphology
of 1 week old Dnajb13 mutant mice (em1/em1) generated by pronuclear injection. A characteristic domed head
(left panel, yellow arrowhead), the ventricular distention (center panel) and the abnormal accumulation of
cerebrospinal fluid (right panel) were observed in KO mice (em1/em1l) (see Supplementary Fig. S2b). Bar scales
indicate 10 mm. (c) The brain morphology of adult chimeric mice generated with WT and KO ESCs (wt/wt and
em2/em?2, respectively). The chimeric mice survived to adulthood with mild hydrocephalus (see Supplementary
Fig. S2¢). Bar scales indicate 10 mm. (d) The DIC and fluorescent images of spermatozoa collected from the
chimeric mice with Dnajb13 KO ESCs (em2/em2). Red and blue arrowheads show tailless and short-tailed
spermatozoa, respectively. These spermatozoa were immotile (see Supplementary Movies S1-S4). Bar scales
indicate 25 pm.

Methods

Animals. All animal experiments were conducted in accordance with the guidelines of “Animal experiment

rules” established by the Research Institute for Microbial Diseases, Osaka University, and were approved by the
Animal Care and Use Committee of the Research Institute for Microbial Diseases, Osaka University. BED2F1

and ICR mice were purchased from CLEA (Tokyo, Japan) and SLC (Shizuoka, Japan).

Plasmid construction and genotyping. The construction of sgRNA/CAS9 expressing plasmids, pX330
and pX459 (#42230 and #48139, respectively, Addgene, Cambridge, MA, USA), and the validation of the DNA
cleavage activity of these plasmids were performed as described previously'>*®. The sgRNA oligonucleotides and
genotyping primers are listed in Supplementary Table S1. Genotyping primers were located outside of the homol-
ogy arm region to distinguish from the transgene that integrated into the genome. The reference oligonucleotides
used for HDR are listed in Supplementary Table S4. The reference plasmids used for HDR were constructed in
pBluescript IT SK (+) vector containing EGFP or the zeocin cassette. Homology arms were amplified by PCR with
primer sets shown in Supplementary Table S5 and placed in 5’ and 3’ sites of the EGFP or zeocin cassette. HDR
was screened by PCR with primers listed in Supplementary Table Sé6.

Pronuclear injection of mouse zygotes. B6D2F1 superovulated females were mated with B6D2F1 males
and then fertilized eggs were collected. Circular pX330 plasmids were injected into one of the pronuclei at 5 ng/p
1 with or without reference DNA (ssODN at 100 ng/pl and dsDNA at 100 ng/ul)'>%.

SCIENTIFICREPORTS | 6:31666 | DOI: 10.1038/srep31666 7
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Genome editing in mouse ESCs and generation of chimeric mice. The EGR-G101 ESC line was
previously established from C57BL/6-Tg (CAG/Acr-EGFP) C3-N01-FJ0020sb?!. The 1 x 10** EGR-G101 ESCs
were seeded on mouse embryonic fibroblasts (MEF) in a 6 well plate and transfected with sgRNA/CAS9 express-
ing plasmids (total 1.0 ug) using Lipofectamine LTX & PLUS technology (Life Technologies, Carlsbad, CA, USA).
When the pX330 plasmids were used, a pPGK-puro plasmid (0.1 j1g) was also transfected. For HDR experiments,
the ESCs were co-transfected with 1.0 g of ssODN or dsDNA. After 14-18hours of transfection, the cells were
selected with puromycin (0.1 pg/ml) for 48 hours, then grown for 5 to 6 more days, picked, and transferred onto
MEEF cells in 96-well plates. After 48-72hours of culture, each ESC clone was split in duplicate, for freezing, and
DNA harvesting. After PCR amplifications and direct sequencing, the positive clones were thawed and expanded
to analyze their karyotypes. The mutant ESC clones were injected into 8-cell ICR embryos, and the chimeric blas-
tocysts were transported into the uteri of pseudopregnant females®.

Sperm motility and morphology of chimeric mice.  The cauda epididymal spermatozoa were collected
from chimeric mice. Some spermatozoa were incubated in modified Krebs—Ringer bicarbonate (TYH) medium
for 10 min and then the sperm motility was observed. To observe the morphology, spermatozoa were dispersed
in PBS and then stained with 65 M Hoechst 33342 (Life Technologies) for 5min.

Brain morphology. The X-ray images of brains were taken under anesthesia (Isoflurane: Mylan Inc.,
Canonsburg, PA, USA) using In-Vivo Multispectral Imaging System FX (Kodak, New Haven, CT, USA). The
brains of 1-week old mice were fixed in 4% PFA for 2~7 days, dehydrated by EtOH and xylene, and then embed-
ded in paraffin. The brains of adult mice were fixed in 1~2 days, dehydrated by 100% acetone, and subsequently
embedded in plastic resin (Technovit 8100, Heraeus Kulzer GmbH, Hanau, Germany). The 5-pum sections were
subjected to hematoxylin and eosin staining and then enclosed with Entellan New (Merck, Darmstadt, Germany).
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